
Events Search and Views Navigation
February 2022
Dario Poletti: From conserved quantities to the emergence of slow relaxation and steady currents
The understanding of the relaxation of large quantum systems has received an important boost from the point of view of pure state quantum statistical mechanics, and in particular from the eigenstate thermalization hypothesis. At the same time, the dynamics of quantum systems has been investigated by out of time ordered correlators. Interestingly it was shown, using hydrodynamic theory, that such correlators relax algebraically in the presence of conserved quantities. Here we show how such slow relaxation can be expected from…
Find out more »March 2022
Žiga Krajnik: Anomalous current fluctuations in a deterministic model
The full counting statistics encodes the probability distribution of a dynamical observable and is a dynamical analogue of the thermodynamic partition function. It is naturally discussed within the frameworks of the large deviation theory and the Lee-Yang theory of phase transitions, which we briefly review. By combining the two approaches we point out that, in the presence of dynamical critical point, a rich phenomenology of fluctuations is permissible. As an explicit demonstration we introduce an interacting cellular automaton, where an…
Find out more »Giorgio Frangi: Supersolid phases of matter and holography
Supersolids are phases of matter that spontaneously and simultaneously break both a global U(1) and translational symmetry. In this talk I will show how to derive a phenomenological description -- in the spirit of Ginzburg-Landau theory -- valid near the supersolid transition, and use it to find a few model-independent relationships between quantities of interest around it. Such relationships are then confirmed by performing calculations in the framework of the holographic correspondence, which provides some predictions even away from the…
Find out more »April 2022
Thomas Barthel: Criticality and phase transitions in quadratic open quantum many-body systems
The nonequilibrium steady states of open quantum many-body systems can undergo phase transitions due to the competition of unitary and dissipative dynamics. We consider translation-invariant systems governed by Lindblad master equations, where the Hamiltonian is quadratic in the ladder operators, and the Lindblad operators are either linear or quadratic and Hermitian. These systems are called quasi-free and quadratic, respectively. Quadratic one-dimensional systems with finite-range interactions necessarily have exponentially decaying Green's functions. For the quasi-free case without quadratic Lindblad operators, we…
Find out more »May 2022
Felix Fritzsch: Boundary chaos
Spatiotemporal correlation functions provide the key diagnostic tool for studying spatially extended complex quantum many-body systems. In ergodic systems scrambling causes initially local observables to spread uniformly over the whole available Hilbert space and causes exponential suppression of correlation functions with the spatial size of the system. In this talk, we present a perturbed free quantum circuit model, in which ergodicity is induced by a unitary impurity placed on the system's boundary. We refer to this setting as boundary chaos.…
Find out more »Marko Ljubotina: Optimal steering of matrix product states and quantum many-body scars
Ongoing development of quantum simulators allows for a progressively finer degree of control of quantum many-body systems. This motivates the development of efficient approaches to facilitate the control of such systems and enable the preparation of non-trivial quantum states using a limited set of available controls. In this talk I will present a new approach which can be used to find the locally optimal driving protocol for trajectories within an MPS manifold. I will then focus on a specific example,…
Find out more »June 2022
Žiga Krajnik: Spontaneous breaking of fluctuation symmetry
One of the most general results of non-equilibrium statistical physics is the fluctuation symmetry, which relates the probabilities of forwards and backward fluctuations even far away from equilibrium. We present a novel mechanism that generates dynamical phase transitions, which spontaneously break the fluctuation symmetry. Moreover, the same mechanism leads to universal non-Gaussian typical fluctuations in equilibrium. An attempt at a pedagogical presentation will be made.
Find out more »October 2022
Alberto Catalano: Topological frustration in 1D spin chains
Especially in one dimension, models with discrete and continuous symmetries display different physical properties, starting from the existence of long-range order. Introducing topological frustration in spin chains characterized by a discrete local symmetry, they develop a region in parameter space which mimics the features of models with continuous symmetries. After discussing the emergence and the characterization of this novel region, I will show how these effects of frustration can be exploited for the development of efficient quantum technologies such as quantum…
Find out more »Guillermo Preisser: The rise and fall, and slow rise again, of operator entanglement under dephasing
The operator space entanglement entropy, or simply ‘operator entanglement’ (OE), is an indicator of the complexity of quantum operators and of their approximability by Matrix Product Operators (MPO). In this talk I will present the study of OE of the density matrix of a 1D spin chain undergoing dissipative evolution. While it is expected that, after an initial linear growth the OE should be supressed by dissipative processes as the system evolves to a simple stationary state, we find that…
Find out more »Thomas H. Seligman: Molecular Materials and Quantum transport in Molecular Nano-Systems
Quasi 2-D and even quasi 1-D materials are at the forefront of many ideas for molecular devices. I plan to present a panorama driven by the possibility of simulating small and medium sized flakes and ribbons of such materials by DFT calculations with a fairly high confidence that they predict the behaviour of such materials at least qualitatively very well. In the domain of transport through Benzene and small polyacenes we shall even present experiments where transmissions have been measured…
Find out more »