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Standard quantum state preparation methods work by preparing a required state locally and then
distributing it to a distant location by a free-space propagation. We instead study procedures of preparing a
target state at a remote location in the presence of an interacting background medium on which no control is
required, manipulating only local dissipation. In mathematical terms, we characterize a set of reduced
steady states stabilizable by local dissipation. An explicit local method is proposed by which one can
construct a wanted one-site reduced steady state at an arbitrary remote site in a lattice of any size and
geometry. In the chain geometry we also prove uniqueness of such a steady state. We demonstrate that the
convergence time to fixed precision is smaller than the inverse gap, and we study robustness of the scheme
in different medium interactions.
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Introduction.—Preparation of quantum states is a fun-
damental prerequisite for quantum technologies [1], e.g., in
quantum teleportation [2] or quantum computation [3].
Frequently, these states are needed at different spatial
locations and one has to solve a problem of preparing a
given state at a remote place by using only local resources
that are spatially separated from the remote location.
Because quantum resources needed to prepare a given
quantum state are usually involved and expensive, a
standard approach is to have a dedicated device that
produces states locally, which are then sent through free
space to a required location. In the present Letter we
address and solve the question of how to achieve the same if
the medium through which one has to “send” a state is
interacting. One can envisage this interaction to be due to a
non-negligible fundamental interacting background, or,
e.g., because the whole setting is embedded in a solid-
state environment where interactions are ubiquitous, a
situation of importance in quantum computation.
We are going to study a concrete setting consisting of a

lattice system described by a Markovian master equation of
the Lindblad type [4], being within experimental realm
[5–7]. An interacting medium is described by a fixed local
Hamiltonian, while the operations that one is allowed to
make consist of an arbitrary Lindblad evolution on a single
site. After a long time an initial state converges to a steady
state (SS), and we are interested in a reduced SS on a given
remote target site; see also Fig. 1. We want to characterize a
set of reduced states stabilizable by local dissipation (also
called stabilizable states, or reachable states).
Existing procedures of transporting a given state to a

target location—like doing swap operations, or using
quantum wires [8,9]—all require some control over an
interacting medium. In our method we can do without such
control. Characterizing the power of open-system [10]
evolution—for instance, the set of reachable states and

the controllability of a master equation [11,12]—has
received a lot of attention recently, in particular, the
optimality of time required to transform a given initial
state to a given target state [13–15]. Allowing any trans-
formations, one can show that Lindblad equations are, in
fact, a universal resource [16]. Several other general results
are also known: for instance, conditions under which a
given pure state can be a SS [17,18]; see also Ref. [19].
Having control over unitary evolution allows one to
decrease, or even remove, detrimental effects of dissipation
[20,21]. Frequently, though, we only have limited control,
and therefore a pressing problem is to characterize the
power of constrained resources. In cases where there is less
symmetry, the problem is more difficult, with few results
available. An important constraint is the locality of the
interactions, studied for pure SSs in Ref. [22], for trans-
lationally invariant states in Ref. [23], and for frustration-
free states in Ref. [24]. It has also been shown that local
dissipation limits the lowest attainable temperature [25].
The setting.—The Lindblad equation is [4]

dρ
dt

¼ LðρÞ ¼ i½ρ; H� þ LdisðρÞ; ð1Þ

where LdisðρÞ ¼
P

k2LkρL
†
k − ρL†

kLk − L†
kLkρ is a dissi-

pator that depends on a set of traceless Lindblad operators
Lk. After a long time, the solution of the Lindblad equation
converges to a SS ρ∞ ¼ limt→∞eLtρð0Þ, and we are

FIG. 1. Remote preparation of states: acting only on the first
spin (the red ball), we want to prepare a given target state ρ� on
the last spin (the yellow ball).
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interested in a reduced SS on a given target site k,
ρk ¼ trj≠kðρ∞Þ. We want to characterize the set of ρk
reachable by controlling only one-site dissipation, keeping
H fixed, as well as find a concrete procedure achieving a
given ρk ¼ ρ�. The following theorem about SSs of
permutation Hamiltonians under local one-site dissipation
will be of great help.
Theorem 1.—Let us have a lattice of n sites (each having

finite dimension d), described by local Lindblad (1)
generator Lm acting nontrivially only on the site m, and

HP ¼
X

j;k

Pj;k; ð2Þ

where Pj;k is a permutation operator between two sites
(acting as Pj;kjαijjβik ¼ jβijjαik), and the sum running
over an arbitrary set of connections (not necessarily nearest
neighbor). Denoting by ρ� a single-site SS of Lm, i.e.,
Lmρ� ¼ 0, the SS on the whole lattice is then a product
state ρ∞≔ρ⊗n� , Lρ∞ ¼ 0, where L≔Lm ⊗ 1þ LH and
LHρ≔i½ρ; HP�. In a one-dimensional chain (with only
the nearest-neighbor coupling Pj;jþ1) with Lm on the edge
(m ¼ 1 or m ¼ n), the above ρ∞ is a unique SS of L if and
only if ρ� is a unique SS of Lm.
Proof of Theorem 1.—The first part is trivial: ρ∞ is

invariant to any permutation, Pj;kρ∞Pj;k ¼ ρ∞, and thus
LHρ∞ ¼ 0. At the same time, we also have ðLm ⊗ 1Þρ∞ ¼
0 because the reduced state of ρ∞ on the mth site is ρ�.
Regarding the uniqueness, it is clear that if ρ∞ is a unique
SS of L, then ρ� must be a unique SS of Lm. For the other
direction of the proof, we use the fact that the SS is unique
if and only if Lindblad operators, their adjoints, and H
span under multiplication and addition the whole
operator space [26]. If ρ� is a unique SS of Lm (defined

in terms of the local Lindblad operators LðjÞ
m and Hm), we

know that the set fLðjÞ
m ; LðjÞ†

m ;Hmg spans the local operator
space at site m. All operators at other chain sites can
be constructed by the following recursive mapping,P

d
i¼1 jiihjjrHPjkihijr ¼ jkihjjrþ1 þ jkihjjr−1, holding for

k ≠ j (if r is on the edge, the rhs is without one of the terms
with r� 1). Starting from the edge sitem, we can construct
all off-diagonal operators at the neighboring site (and all
diagonal ones by products of the off diagonal). Recursively
repeating the procedure, we generate the whole basis,
progressing from one edge to the other. □

The above SS ρ∞ is also unique if dissipation acts on any
chain site other than the middle one for an odd n
[m ¼ ðnþ 1Þ=2]. Potential degeneracy of the SS on other
lattices can be removed by placingLm at several sites. Such a
ρ∞ is an example of a frustration-free SS [24]. Hamiltonians
treated in the above theorem are, in general, called SUðdÞ
Heisenberg models (chains), important examples being the
standard isotropic Heisenberg chain for d¼2 (where one has
H¼P

n−1
j¼1 σ

x
jσ

x
jþ1þσyjσ

y
jþ1þσzjσ

z
jþ1 ¼

P
n−1
j¼1½2Pj;jþ1−1�),

or the spin-orbital model [27] having d ¼ 4, i.e., a system
with a local two-qubit space. Theorem 1 completely answers

the question of SSs under strictly local Lindblad dissipation
in such systems. Steady states are rather simple from a
complexity point of view—they are simple product states—
however, for our purpose they are just what we need.
Preparation of remote states.—Let us consider a chain

lattice composed of n sites, with each site having the
dimension d ¼ 2 (everything we present works for any
finite d). We would like to prepare an arbitrary target qubit
state ρ� at the far end of our chain (at site j ¼ n) by doing
operations only on the first site (j ¼ 1); see Fig. 1. Theorem
1 tells us how to proceed: choose a one-site Lindbladian L1

that has the wanted ρ� for the unique SS, and the
Heisenberg Hamiltonian. Time evolution by L ¼
L1 þ LH then results in ρðtÞ ¼ eLtρð0Þ, which after a long
time converges to the wanted state,

lim
t→∞

eLtρð0Þ ¼ ρ� ⊗ ρ� ⊗ � � � ⊗ ρ�; ∀ ρð0Þ: ð3Þ

Our procedure is different than the unitary state transfer with
quantum wires where a special H is used to gradually
transfer a state from one end to the other [8,9,28]. There, at
least some control over the wire is required, be it through
preparation of a special initial state (for different approach
see Ref. [29]) and/or, e.g., extra engineered magnetic fields.
In our scheme no control over the interacting medium is
required [30]: for different ρ�’s we are only adjusting local
dissipation at the site j ¼ 1, while H is held fixed, thereby
evolving the system in such a way that the final reduced state
at site j ¼ n is ρ�. Also, our procedure is stabilization and
not transfer and is, as such, inherently more robust. It works
for any initial state and any sufficiently long time—we do
not have to use a specific initial state or stop at a special time
[29]. We also note that ρðtÞ is, in general, not factorizable at
intermediate times, even when starting with a product initial
state, and therefore the dynamics cannot be described by a
mean-field approximation, like, e.g., in Ref. [31]. Regarding
the choice ofL1, there is still a certain freedom, as there exist
different L1’s having the same SS. Several explicit con-
structions [32] are known that use different numbers of
Lindblad operators, e.g., just one Lindblad operator [33], or
log2 d (for pure states) in Ref. [18], or a maximal number of
d2 Lindblad operators in Ref. [34]. In practice, it is important
not just that we can prepare an arbitrary state but also how
fast and robust the preparation procedure is. We shall study
these questions in the rest of the Letter.
Convergence time.—Convergence time to a stationary

state is, in general, dictated by a spectral gap g of L. The
spectral gap is g ¼ −Reðλ1Þ, where λ1 is the eigenvalue of
L with the largest nonzero real part. Any initial state ρð0Þ
converges to a unique SS ρ∞ within a time τ proportional to
the inverse gap, τ ∼ 1=g. On general grounds, one can argue
[35] that for local dissipation—our remote-state preparation
scheme is an example—the convergence time must grow at
least linearly with the system size, τ ∼ n. It has been found
[35,36], though, that in integrable systems one typically
finds scaling τ ∼ n3. Note that permutation Hamiltonians
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(2) are solvable by Bethe ansatz. As an initial state ρð0Þ for
our numerical demonstration, we use a product pure state
with alternating j0i � j1i at even-odd sites (similar results
are obtained for other choices). In Fig. 2(a) we can see that,
for our protocol, the Liouvillian gap indeed scales as ∼n−3,
irrespective of the choice of the target state ρ�. It can
happen, though, that the gap is not the whole story and that
particular (important) observables converge on a shorter
time scale [37]. In addition, the decay in the thermody-
namic limit can be different than a simple exponential
decay [36,38] (which happens for an isolated λ1). With that
in mind, we also calculated how fast the reduced state at a
particular site k approaches its asymptotic SS value ρ�. As a
measure of convergence, we use quantum fidelity [1],
defined as Fðρ; σÞ ¼ trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

σ
ffiffiffi
ρ

pp Þ. For pure states it
simplifies to F ¼ jhψ jφij. In Fig. 2(b) we see that, even
though the asymptotic decay is given by the gap,
1 − F2 ∼ exp ð−2tgÞ, the fidelity behaves quite differently
at different sites. In particular, the asymptotic exponential
decay with time constant τ ¼ 1=g kicks in only after an
initial nonexponential decay, the duration of which is longer
the farther away we are from the middle of the chain (F is
approximately the same at sites symmetric with respect to
the middle of the chain). At the last (and the first) site the
convergence to our target state ρ� is the fastest [the red line
for k ¼ 10 in Fig. 2(b)]. Compared to state transfer
procedures [8,9], the state ρ� does not gradually travel
through the chain: instead, the convergence is the fastest at a
far-end target site. What is more, the amplitude of the
transient initial decay also increases with an increasing n. To
demonstrate that, we show in Fig. 3(a) the scaling of fidelity
at the middle and the last site for different system sizes n. We
can see that, for large times, one has a scaling form

1 − F2≍ 1

nν
fðt=n3Þ; ð4Þ

with some scaling function fðxÞ that approaches an expo-
nential for a large x. We note that, while the shape of the
scaling function might depend on a particular choice of the
initial state and L1, the presented scaling is generic.
Interesting is a nontrivial prefactor 1=nν, with ν ≈ 0.8 for
the middle site k ¼ n=2, and ν ≈ 2.8 for the far-end site at
k ¼ n [39]. As a consequence, the error 1 − F2 at a fixed
time that scales ∼n3 decreases with n as ∼1=nν. This means
that the required time to reach a fixed error grows with n
slower than ∼n3; see Fig. 3(b). While it is hard to conclude
about the exact value of the asymptotic scaling, the con-
vergence time at which a fixed precision 1 − F2 is reached is
closer to t ∼ n2 than to t ∼ 1=g ¼ n3. This is rather
intriguing and has to do with the clustering of eigenvalues
around 0 and the structure of decay eigenmodes.
Choice of Hamiltonian.—We next study how different

choices of the Hamiltonian influence our remote-state
preparation ability. That is, we want to understand whether
with other choices of H one can also prepare an arbitrary ρ�
just by varying L1. In full generality this is a very difficult
question, so we will limit our discussion to two important
cases. First is a general theorem showing that for a certain
type of H only a limited fraction of states can be reached.
Second is a full characterization of the set of reachable states
for an XXZ type Hamiltonian on n ¼ 2 qubits, a situation of
perhaps the most immediate experimental relevance.
The following theorem limits the set of one-qubit

reduced stabilizable states for bipartite systems that have
a separable coupling between the target site (subsystem
index n) and the rest (subsystem A).
Theorem 2.—Let us have a master equation with a

general Lindblad superoperator LA ⊗ 1n (containing arbi-
trary dissipation as well as a Hamiltonian) and a product
coupling Hamiltonian H ¼ σzn−1 ⊗ σzn between one of the
spins in A and the nth spin. Then the SS trAðρ∞Þ is always
diagonal in the eigenbasis of σzn.
Proof of Theorem 2.—The Liouvillian is invariant to

rotations around the σzn axis, so we can write a separate SS
equation LðρÞ ¼ 0 for each subspace jiihjjn. Taking an off-
diagonal SS ansatz ρ≔ρA ⊗ ðσxn þ μσynÞ with a real μ, we
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FIG. 2. (a) Convergence time τ ¼ 1=g for remote-state prepa-
ration with the Heisenberg model grows asymptotically as τ ∼ n3.
Results for two different target states are shown, mixed ρ� ¼
1
2
1þ 2

5
σz (the red squares) and pure ρ� ¼ j0ih0j (the blue circles).

Full symbols are obtained by exact diagonalization, empty by
open-system time-dependent density matrix renormalization
adaptation [40]. (b) Time dependence of fidelity between the
target state ρ� and the reduced state ρkðtÞ ¼ trj≠k½eLtρð0Þ� at site
k, all for n ¼ 10 and L ¼ σþ1 . The dashed line is an exponential
with the τ ≈ 215 read from (a).
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FIG. 3. (a) Fidelity scales as 1 − F2≍ 1
nν fðt=n3Þ, where the

scaling exponent is ν ≈ 0.8 for the middle of the chain (the black
curves) and ν ≈ 2.8 for the end site (the blue dotted curves). Data is
shown for L ¼ σþ1 and n ¼ 7, 9, 11, 13 (the curves are almost
overlapping). (b) Time at which 1 − F2ðρ�; ρnÞ reaches the value
10−1; 10−2; 10−3 (squares, triangles, stars) clearly grows slower than
the inversegap τ ∼ n3 [the blue circles, data fromFig. 2(a)],L ¼ σþ1 .
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get LAðρAÞ⊗ ðσxnþμσynÞþfρA;σzn−1g⊗ ðσyn−μσxnÞ¼ 0.
Therefore, ρA must simultaneously satisfy LAðρAÞ ¼ 0
and the zero anticommutator, fρA; σzn−1g ¼ 0. Expanding
ρA into an orthogonal basis bðkÞ acting on sites 1;…; n − 2,

ρA ¼ P
kb

ðkÞ ⊗ rðkÞn−1, each rðkÞn−1 must anticommute with
σzn−1 and, therefore, must be from a linear span of
fσxn−1; σyn−1g, leading to trAρA ¼ 0. The reduced SS on
the nth spin is never off diagonal. □

Note that, while sometimes a solution of the two con-
ditions onρAmight not exist, there are caseswhere a traceless
solution does exist [41]. A simple consequence of the above
theorem is that, for the Ising-type Hamiltonian, H ¼P

n−1
j¼1 σ

z
jσ

z
jþ1, and an arbitrary Lindblad Liouvillian on the

first n − 1 spins one is able to reach only diagonal reduced
SSs on the last spin (the stabilizable set is the z axis of the
Bloch ball). However, as we will now show, the Ising-type
Hamiltonian is, in a sense, the worst choice, with other H’s
being better [43]. We shall demonstrate this with a simple
two-qubit example which is analytically solvable.
Two-qubit systems.—Let us study the set of stabilizable

reduced states for Hamiltonians of the form H ¼ σx1σ
x
2þ

σy1σ
y
2 þ Δσz1σ

z
2. Expressing the reduced SS ρ2 ¼ tr1ðρ∞Þ ¼

1
2
1þ r · σ in terms of the Bloch vector r, we already know

that the set of reachable r’s is equal to the whole Bloch ball
for Δ ¼ 1 (the isotropic Heisenberg model), while it is
equal to a line r ¼ ð0; 0; sÞ; s ∈ ½−1=2; 1=2� for Δ → ∞
(the Ising model). We are now going to demonstrate that,
for any finite Δ, the whole Bloch ball is reachable. Let us
take L1 with a single Lindblad operator L ¼
ð1=2 ffiffiffi

2
p Þ½ ffiffiffiffiffi

q3
p ðσz1 cos β − σx1 sin βÞ − i

ffiffiffiffiffi
q2

p
σy1�. It is a

rotated deformed σþ1 , with the diagonal form parameters
[25] being q1 ¼ t2;3 ¼ 0, while t1 ¼ ffiffiffiffiffiffiffiffiffiffi

q2q3
p

. For a given
q2;3, the chosen t1 is the largest possible, resulting in the
largest r [25]. The SS of such an L can be computed
explicitly, giving us the reduced SS ρ2. The expression for r
is still fairly complicated and we do not write it out. We
notice that, provided q2;3 are finite, not all states within the
Bloch ball can be reached. Focusing on the limit in which
we allow an L1 of any strength, we set q2 ¼ q3=k and take
the limit q3 → ∞, in which the expression for r simplifies.
Taking into account rotational invariance around the z axis,
we can limit our discussion to r laying in the xz plane,
writing r ¼ rðcosφ; 0; sinφÞ and obtaining

r2 ¼ kðΔ2 þ tan2φÞð1þ tan2φÞ
½kðΔ2 þ tan2φÞ þ 1þ tan2φ�2 : ð5Þ

We plot these curves for a set of k’s in Fig. 4. We see that
varying q3=q2 ¼ k, the whole Bloch ball can be reached,
except for Δ ¼ 0, where we cannot reach r in the xy plane
(but can come arbitrarily close). A stabilizable set of
reduced states in an important case of longer XXZ-type
chains, which is likely not analytically tractable, needs to
be studied in future.

Conclusion.—We demonstrate that, in the presence of a
Heisenberg-type interaction, one can prepare an arbitrary
target one-site state at a distant remote location by acting
with Markovian dissipation only on a single site. No
control over the medium is required. We also study the
convergence time of such a remote-state preparation
procedure, finding that the fidelity has a universal scaling
form and that, interestingly, the convergence time grows
with a distance slower than that suggested by the inverse
gap of the propagator. We also characterize the set of
reachable reduced SSs in the presence of other types of
interaction, like the anisotropic Heisenberg coupling. We
show that with the Ising interaction one can prepare only
diagonal states, while with others (on two qubits) the
stabilizable set is equal to the whole Bloch ball.
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