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We demonstrate that a completely integrable classical mechanical model, namely the lattice Landau-

Lifshitz classical spin chain, supports diffusive spin transport with a finite diffusion constant in the easy-

axis regime, while in the easy-plane regime, it displays ballistic transport in the absence of any known

relevant local or quasilocal constant of motion in the symmetry sector of the spin current. This surprising

finding should open the way towards analytical computation of diffusion constants for integrable

interacting systems and hints on the existence of new quasilocal classical conservation laws beyond

the standard soliton theory.
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Introduction.—Derivation of irreversible macroscopic
transport (e.g., Fourier’s, Ohm’s, or Fick’s) laws from
reversible, deterministic, microscopic equations of motion
is one of the central questions of statistical physics which
remains largely unsolved even today. It has been believed
[1–6] that chaotic dynamics in classical systems, or more
generally strong nonintegrability in either quantum or
classical systems, are necessary conditions for diffusive
transport. Recently, few examples of spin diffusion at high
temperature in completely integrable but strongly interact-
ing quantum spin or particle chains have appeared [7–11],
suggesting that complete integrability might not exclude
the possibility of macroscopically diffusive dynamics. It
has remained unclear, however, whether quantum nature of
the corresponding many-body dynamics supporting mac-
roscopic entanglement is a necessary condition. Here, we
show that even quantum correlations are not necessary. By
performing extensive numerical simulations in a family of
integrable classical spin chains with local interactions—
the lattice Landau-Lifshitz model [12]—we show that spin
transport at finite temperature is diffusive in the easy-axis
regime, while it becomes ballistic in the easy-plane regime
and anomalous at the isotropic point. This opens up
the possibility for analytic computations of diffusion con-
stants in interacting many-body systems. In the context of
spin transport, our results have potential applications to
nanomagnetism and the theory of data storage devices
where the soliton based transport of magnetization plays
a crucial role [13].

Liouville integrability [14] is the central concept in the
analytic theory of classical mechanics. A Hamiltonian, i.e.,
conservative system in classical mechanics, is integrable if
it possesses the same number of independent conserved
quantities as the number of degrees of freedom, call it n.
In other words, its motion can be reduced to quasiperiodic
winding around n-dimensional torus embedded in

2n-dimensional phase space [14]. Thus, integrable dynam-
ics is regular and manifestly free of sensitive dependence
on initial conditions. Nevertheless, integrable systems,
though being sparse in nature, represent one of the key
topics in mathematical physics as they gave birth to
the celebrated soliton theory [12] explaining a variety of
observable phenomena, ranging, to name just a few, from
localized light in nonlinear optics, waves on shallow water,
and tsunami waves, to elementary particles and localized
excitations in condensed matter at low temperatures.
The solitons, indestructible localized packages of energy

which propagate through the system and scatter from each
other like elastic hard balls, have been believed to be the
reason why integrable extended systems behave as ideal
ballistic conductors of heat, particles, electric charge,
magnetization, etc. [1,2]. Being particularly interested in
the one-dimensional lattice systems, where n particles are
arranged along a line or a ring such that only nearest
neighbors can interact representing the simplest model of
crystalline solids, one finds that the existence of nontrivial
conservation laws (besides the transported quantity, e.g.,
energy, particle number, electric charge, magnetization)
generically implies the ballistic (nondiffusive) transport
[15]. This statement, which builds on an old idea of
Mazur [16] but has only recently been formally proven
[17], essentially states the following. Whenever there
exists a quantity I which is conserved in time IðtÞ � I
and independent of the transported quantity itself, such
that hIJi � 0, where JðtÞ ¼ P

n
x¼1 jðx; tÞ is the current

with jðx; tÞ being the current density at time t and at site
x in the lattice, and h� � �i denotes the thermodynamic
average (for fixed, specified values of temperature, electro-
chemical potential, magnetization, etc.), then the transport
is ballistic and the corresponding Kubo conductivity �
diverges. Conductivity is related to a diffusion constant
D, via the generalized Einstein relation � ¼ D=T where T
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is the absolute temperature, and the latter can be within
Green-Kubo linear response theory expressed

D ¼ lim
�!1 lim

n!1
Xn
r¼1

Z �

0
Cðr; tÞdt; (1)

in terms of the integrated spatiotemporal current-current
correlation function Cðr; tÞ ¼ hjðx; 0Þjðxþ r; tÞi. Lattice
site x is arbitrary for translationally invariant systems
which exhaust major examples of integrable systems.
Note that in statistical mechanics the thermodynamic
limit of size n ! 1 has to be taken always before the
time � ! 1 limit. It is clear that the above expression
for the diffusion constant can be given in terms of time
correlations only, namely D ¼ limt!1DðtÞ, introducing a
time-dependent diffusion constant as

Dð�Þ ¼
Z �

0
CðtÞdt; (2)

where we can write the total current time autocorrelation
as CðtÞ ¼ 1

n hJð0ÞJðtÞi. The existence of solitons and

nontrivial conserved quantities in integrable systems
implies nonvanishing tails of the time correlations
[15,17] C1 ¼ Cðt ! 1Þ � 0, in turn implying linear
divergence of the time-dependent diffusion constant
D ! C1t ! 1 which is a signature of ballistic transport.
To date, all studies of transport in classical integrable
particle chains have persistently showed ballistic transport
(see e.g., Ref. [18] and references therein). On the other
hand, for diffusive transport (D<1), we have evidence
that not even microscopic chaos [6] is necessary, but a
weaker property of dynamical mixing [19] is sufficient
[18,20,21]. Furthermore, some recent numerical studies
of quantum spin 1=2 chains with anisotropic Heisenberg
interaction (XXZ chains) indicated [8,9,22,23] that the
high temperature spin transport is diffusive in the easy-
axis regime, despite the fact that the XXZ chains are
quantum integrable by the algebraic Bethe ansatz which
is the quantum version of the soliton theory. These results
have been further corroborated with evidence of particle
and spin diffusion in another Bethe ansatz integrable
model, namely the one-dimensional Hubbard model [11].
Nevertheless, as the completeness of Bethe ansatz solu-
tions has not been proven in these models and as quantum
dynamics supports a high degree of complexity as opposed
to classical dynamics due to exponentially large (in n)
Hilbert space dimension and possibility of macroscopic
entanglement [24], it has remained unclear whether the
key to the observed diffusion really lies in the integrability
structures of the Heisenberg and Hubbard models.

Model and methods.—However, in this Letter we show a
convincing numerical evidence for spin diffusion at high
temperature in a fully classical completely integrable
model. We consider a lattice Landau-Lifshitz (LLL)
model [12] for a chain or a ring of n classical spins

described by angular-momentum vectors ~Sx, x ¼ 1; . . . ; n

of equal fixed length j ~Sxj � R and the Hamiltonian
function of the form

H ¼ Xn
x¼1

hð ~Sx; ~Sxþ1Þ; (3)

where the nearest-neighbor spin interaction density hð ~S; ~S0Þ
is given by

hð ~S; ~S0Þ ¼ logj coshð�S3Þ coshð�S03Þ
þ coth2ð�RÞ sinhð�S3Þ sinhð�S03Þ
þ sinh�2ð�RÞFðS3ÞFðS03ÞðS1S01 þ S2S

0
2Þj; (4)

and FðSÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½sinh2ð�RÞ � sinh2ð�SÞ�=ðR2 � S2Þp
(as

defined by Faddeev and Takhtajan, Ref. [12],
Chapter III.5). � is the model’s parameter, which can be
real or purely imaginary. So we shall reparametrize it with
an alternative real parameter � ¼ �2, which may—in anal-
ogy with the closely related XXZ spin chain [25]—be
called an anisotropy parameter. The cases with � > 0
correspond to easy-axis spin-spin interaction, those with
� < 0 to easy-plane interaction, whereas � ¼ 0 designates
the case of isotropic interaction.
As the third component M3 of the total magnetization

~M ¼ P
n
x¼1

~Sx is a constant of motion, one finds that the
equation of motion for local magnetization dSx;3=dt ¼
jx � jx�1 has a form of a local continuity equation from
which we read out the expression for the spin current

density jx ¼ jð ~Sx; ~Sxþ1Þ in the LLL model, namely
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FIG. 1 (color online). Current autocorrelation function CðtÞ
in log-log scale for easy-plane regime (top curves, orange:
n ¼ 160, black: n ¼ 2560), isotropic regime (middle curves,
yellow: n ¼ 2560, blue: n ¼ 5120), and easy-axis regime (bot-
tom curves, violet: n ¼ 2560, green: n ¼ 5120). Shaded regions
denote the estimated statistical error for ensemble averages over
N � 103 initial conditions. Dashed lines denote asymptotic
behavior for large time in the easy-plane regime (dark blue)
and isotropic regime (light blue).
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jð ~S; ~S0Þ ¼ sinh�2ð�RÞðS2S01 � S1S
0
2Þ

� FðS3ÞFðS03Þ exp½�hð ~S; ~S0Þ�: (5)

The Hamiltonian and the current density in the easy-plane
regime � < 0 can be obtained from (4) and (5) by analytic
continuation, i.e., by replacing coshð� � � �Þ by cosðs � � �Þ

and sinhð� � � �Þ by sinðs � � �Þ where s ¼ ffiffiffiffiffiffiffiffi��
p

. In the iso-
tropic case � ¼ 0, one performs the limit � ! 0 in (4) and
(5) and obtains explicitly

hð ~S; ~S0Þ ¼ log

�
1þ

~S � ~S0

R2

�
; jð ~S; ~S0Þ ¼ S2S

0
1 � S1S

0
2

R2 þ ~S � ~S0
:

(6)

Time development of each spin is given by solving

Hamilton’s equations d ~Sx=dt ¼ @H
@ ~Sx

� ~Sx, where� denotes

the cross product. These equations of motion for ~SxðtÞ are
then solved using a variable step integrator of MATLAB with
required relative accuracy of better than 10�6 for all tra-
jectories (see [26] for more details). Besides checking the
accuracy of trivial conservation laws, such as H and M3,
we have also checked that numerically determined
Lyapunov exponents [14] vanish asymptotically in all three
regimes (�>;¼; <0) as required for a completely inte-
grable system.
We chose N initial conditions generated by the

Metropolis algorithm [27] yielding a thermal Gibbs en-
semble with given temperature T and vanishing M3 ¼ 0
component (along the symmetry axis of the spin-spin
interaction) of the magnetization. We note that ensembles
with nonvanishing or nonfixed M3 would not yield the
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FIG. 2 (color online). Time dependent diffusion constant DðtÞ
in isotropic regime (left) and easy-axis regime (right) comparing
different system sizes n ¼ 640 (black), n ¼ 2560 (orange), and
n ¼ 5120 (blue). The shaded region denotes estimated statistical
error and the dashed lines show estimated asymptotic behavior.

FIG. 3 (color online). Modulus of spatiotemporal spin current autocorrelation function jCðr; tÞj shown in log scale with color scale
ranging from 10�4:5 to 10�1 indicated in the bottom right. In the upper panels we show data averaged over ensembles of N � 103

initial conditions in easy-axis (left; n ¼ 5120), isotropic (center; n ¼ 5120 ), and easy-plane (right; n ¼ 2560) regimes. The bottom
plot shows the easy-axis regime again with a smaller system or ensemble size n ¼ 160, N ¼ 600 where scars of solitons emerging
from local thermal fluctuations are still clearly visible.
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correct Kubo formula [4] for the spin-diffusion constant in
the absence of an external magnetic field. The LLL model
is invariant under a canonical transformation

R: ðSx;1; Sx;2; Sx;3Þ ! ðSx;1;�Sx;2;�Sx;3Þ; (7)

i.e., a � rotation around the first Cartesian axis, namely
RH ¼ H. As the LLL r matrix [12] is invariant under R,
so are also all the derived local conserved quantities
RIk ¼ Ik. However, the spin current is odd under the
symmetry transformation, RJ ¼ �J, so all (ballistic)
terms in the Mazur bound [15] have to vanish, hIkJi ¼
hRIkRJi ¼ �hIkJi, allowing for the possibility of non-
ballistic transport.

Results.—Solving Hamilton’s equations numerically we
compute the spatiotemporal current-current autocorrela-
tion function Cðr; tÞ, as well as the temporal autocorrela-
tion CðtÞ and obtain the time-dependent spin diffusion
constant DðtÞ (2). We chose several different chain sizes
n (up to n ¼ 5120) and ensemble size N large enough
(typically N � 103) so that finite size effects, and the

statistical error scaling as �1=
ffiffiffiffiffiffiffi
nN

p
, appear negligible.

Representative values of the anisotropy parameters are
chosen as � ¼ 1 (easy-axis regime), � ¼ �1 (easy-plane
regime), and � ¼ 0 (isotropic regime) while fixing R ¼ 1.
In all cases, the temperature of the initial Gibbs ensemble
is T ¼ 4. In Fig. 1, we plot spin current autocorrelation
CðtÞ in all three regimes and find a finite saturation value
C1 � 0 implying ballistic transport in the easy-plane
regime, whereas, in the isotropic and easy-axis regimes
the tails of the current autocorrelation function are vanish-
ing. To elaborate on the tails of the current autocorrelation
function, we plot in Fig. 2 the time dependent diffusion
constant DðtÞ, which in the isotropic regime shows power
law behaviorDðtÞ / t� with� � 0:35, and in the easy-axis
regime saturates at a finite valueDð1Þ � 0:38, providing a
firm evidence of anomalous spin transport in the isotropic
regime and diffusive spin transport in the easy-axis regime.
These results can be even better illustrated by portraying
spatiotemporal correlations Cðr; tÞ in Fig. 3. In the easy-
plane regime, we find a clear causality-cone structure with
nondecaying tails whereas in the easy-axis case, the cone is
curved inwards and the tails are strongly damped in time
resulting in suppression of all ballistic contributions for
long times. In the bottom panel of Fig. 3, we present data
for much a smaller ensemble of initial conditions and
smaller system size showing ‘‘scars,’’ i.e., ballistic solitons
which may emerge in initial conditions with localized large
thermal fluctuations and which can travel much faster than
the correlation velocity, but contributions of which (due to
the existence of R symmetry) vanish in the limit of the
infinitely large ensemble N ! 1. Therefore, one would
recognize the fact that we are dealing with a completely
integrable system (in particular in the easy axis regime)
only by looking at a finite N data.

Conclusion.—The surprising possibility of having a
regime with normal, diffusive transport in a completely
integrable classical system (as found in the easy-axis
regime of the LLL model), which is associated with the
existence of parity-type symmetry of the classical r matrix
whose operation changes the sign of the corresponding
transporting current, opens up the immediate question
regarding whether the classical r matrix theory [12] can
be updated to allow for analytical calculations of diffusive
transport coefficients. Equally interesting is the problem of
explaining the ballistic regime in such a situation (say in
the easy-plane regime of the LLL model), since the Mazur
bound identically vanishes. As the LLL model can be
considered as a classical limit of the XXZ spin chain (see
also [25]), we conjecture the existence of a classical analog
of the construction of quasilocal conserved quantities with
negative parity [29] going beyond the standard soliton
theory [12].
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and U. Schollwöck, Phys. Rev. B 79, 214409 (2009).
[24] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod.

Phys. 80, 517 (2008).
[25] J. Avan, A. Doikou, and K. Sfetsos, Nucl. Phys. B840, 469

(2010).
[26] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.111.040602 for
details and tests of numerical integration scheme and
Metropolis sampling, in particular time-invariance of
equilibrium distributions.

[27] The ensemble of initial conditions is sampled via a
standard Metropolis algorithm [28], where the new

configuration in each Metropolis step is generated by
choosing two random spins and changing their values
randomly in the �-z plane (� denotes the angle of a
spin-vector in the xy plane and z is its component along
the z-axis) according to a uniform probability with a
constraint preserving the total magnetization (assuring
M3 ¼ 0), namely dP / d�1d�2dz1dz2�½z1 þ z2 � ðz01 þ
z02Þ�, where z01;2 denote the spin components before the
change. The acceptance probability of the step is given by
the Gibbs factor exp½ðE0 � EÞ=T�, where E0 and E denote
the values ofH, Eqs. (3), (4), and (6), of the configurations
before and after the step, respectively, and T is the
temperature. (see also [26]).

[28] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth,
A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087
(1953).

[29] T. Prosen, Phys. Rev. Lett. 106, 217206 (2011).

PRL 111, 040602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
26 JULY 2013

040602-5

http://dx.doi.org/10.1038/44759
http://dx.doi.org/10.1103/PhysRevLett.92.254301
http://dx.doi.org/10.1103/PhysRevLett.92.254301
http://dx.doi.org/10.1209/0295-5075/97/67001
http://dx.doi.org/10.1103/PhysRevB.79.214409
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1016/j.nuclphysb.2010.07.014
http://dx.doi.org/10.1016/j.nuclphysb.2010.07.014
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.040602
http://link.aps.org/supplemental/10.1103/PhysRevLett.111.040602
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1103/PhysRevLett.106.217206

