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Magnetization transport in spin ladders and next-nearest-neighbor chains
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We study magnetization transport at infinite temperature in several spin ladder systems as well as in next-
nearest-neighbor coupled spin chains. In the integrable ladder considered we analytically show that the transport
is ballistic in sectors with nonzero average magnetization, while numerical simulations of a nonequilibrium
stationary setting indicate an anomalous transport in the zero-magnetization sector. For other systems, isotropic
Heisenberg ladder and spin chains, showing eigenlevel repulsion typical of quantum chaotic systems, numerical
simulations indicate diffusive transport.
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I. INTRODUCTION

Understanding transport in quantum and classical systems
from first principles has a long history. Perhaps the simplest
question one can ask is, What is the nature of transport in a
given system? Is it ballistic, in which case localized distur-
bances spread with time to a region whose maximal linear
size (a diameter) grows linearly with time, or is it diffusive, in
which case the diameter grows only as the square root of time?
In one dimension, which is the subject of the present work, the
situation is clear in systems of noninteracting particles—in the
absence of external scattering effects, noninteracting systems
are ballistic; however, for interacting systems (also called
strongly correlated) this question proves to be very difficult
to answer, even in the simplest conceivable models.

A paradigmatic example of a simple system whose transport
properties are difficult to assess is the one-dimensional (1D)
Heisenberg model.1,2 Its anisotropic version (called, briefly,
the XXZ chain), with the anisotropy denoted �, serves as
one of the simplest strongly interacting quantum systems.
Despite being solvable by the Bethe ansatz,3 its nonequi-
librium physics, in particular, magnetization transport, has
been debated for many years. One can use the so-called
Mazur’s inequality5,6 to show ballistic transport of energy6,7

or of magnetization away from the zero-magnetization sector6

or in the gapless phase, |�| < 1.8,9 The main obstacle to a
more detailed understanding is the lack of efficient out-of-
equilibrium tools; on the other hand, evaluating the linear-
response formalism using the Bethe ansatz solution seems too
difficult, except in the simplest case of zero temperature.4

One might wonder whether there exists a simple principle
that would tell us when to expect diffusion and when not
to. At first sight, an appealing conjecture would be that, due
to constants of motion, integrable systems display ballistic
transport, while chaotic systems are diffusive. Unfortunately,
there are exceptions to both rules. In the integrable Heisenberg
model for � > 1 and at high temperatures, numerics suggests
that magnetization transport is diffusive,10–18 although a more
involved picture sometimes emerges.19,20 The same seems to
hold also at temperatures below the ground-state gap.21 The
isotropic point � = 1, which is at the transition between
the ballistic and the diffusive regime, seems to be even
less clear; some numerical investigations suggest anomalous
transport,16,22–24 while others10,18,25–30 indicate ballistic trans-
port or are inconclusive. In addition, there exists an exactly

solvable diffusive (albeit dissipative) 1D model31 showing that
integrability does not necessarily imply ballistic transport. For
chaotic systems things are also not always simple. It has been
rigorously shown33 that in a special class of XX-type spin
ladders (that class, for instance, includes the Hubbard chain)
ballistic subspaces exist even-though the model is chaotic.
Although probably exceptional, these counterexamples show
that the conjecture is not true, at least not in 1D systems. In
light of this, it is important to gather information on transport
in different chaotic and integrable systems.

In the present work we study magnetization transport at
an infinite temperature and zero average magnetization in
a number of spin ladder and next-nearest-neighbor (n.n.n.)
chain systems. Note that n.n.n. coupled chains can be viewed
as ladder systems with a special kind of rung-rung coupling
(compare Figs. 1 and 5). Namely, we can, in general, call a
ladder any system that can be viewed as a nearest-neighbor
coupled chain of local four-level systems (representing one
rung). We should also mention that spinful 1D chains, e.g., the
1D Hubbard model,4,11,19,21,38–45 can be, via Jordan-Wigner
transformation, rewritten as spin ladder models. Spin ladder
systems not only are of theoretical interest, but also are realized
in a number of compounds (for a review see Refs. 46 and 47).

Apart from one integrable ladder, we exclusively focus on
systems with strong chaos. In the integrable SU(4) ladder
we numerically find anomalous transport in a subsector with
zero magnetization and analytically prove ballistic transport
in sectors with nonzero magnetization. For all other models
studied (isotropic Heisenberg ladder and XX chain as well
as Heisenberg chain with n.n.n. coupling), all of which are
quantum chaotic, we numerically find diffusive or very-close-
to-diffusive transport.

II. METHODS

There are different ways to numerically assess quantum
transport. One is via linear response theory by evaluation
of the equilibrium time-dependent current autocorrelation
function. In numerical calculations one is always limited to
finite-size systems, causing two effects: for finite L and time
t the correlation function C(t) might not yet converge to
its thermodynamic limit value, and going with t → ∞ the
correlation function will not decay to 0, even in a diffusive
system, but rather will have finite-size fluctuations. Therefore,
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FIG. 1. Schematic of different spin ladders: (a) integrable ladder,
Eq. (7); (b) isotropic Heisenberg ladder, Eq. (6); (c) XX ladder;
(d) free fermions on a ladder. A straight line denotes an XX-type
coupling; a spring, a ZZ-type coupling; a double line, an isotropic
Heisenberg coupling; and the straight line with two springs in (d), a
coupling involving four sites (see text). Filled circles mark sites that
are coupled to a reservoir described by Eq. (2).

due to these finite-L and finite-t effects great care is needed
to correctly evaluate the limits limt→∞ limL→∞ in the correct
order. Another way to study transport is to directly simulate
nonequilibrium states. There are two possibilities: one can
study the transient dynamics of initial nonequilibrium states,
e.g., spreading of localized packets and calculate how fast
their width increases with time, or one can go to a stationary
setting in which constant driving is applied to a system. The
latter approach has the advantage that there are no finite-time
effects, only finite-size effects, as one, by definition, studies a
nonequilibrium stationary state reached after an infinite time.
In the present study we use a nonequilibrium stationary setting.

The following subsections describe the methods used and
do not present any new material. Section II A describes the
Lindblad formalism and presents the Lindblad operators used
for simulations; in Sec. II B some details about numerical
simulations are given, in Sec. II C we repeat basic notions of
normal and anomalous transport, and in Sec. II D we present
the level spacing criterion of quantum chaos.

A. Lindblad master equation

A nonequilibrium situation will be induced by a boundary
coupling to magnetization reservoirs. These can, with certain
probabilities, flip the boundary spin either up or down. If these
probabilities are different at two ladder ends, the driving will
cause a nonequilibrium situation. Spin flips at the boundary
are described in an effective way with the so-called Lindblad
operators Lk , while the density matrix describing the ladder
evolves according to the Lindblad master equation,

dρ(t)/dt = i[ρ(t),H ] + Ldis(ρ(t)) = L(ρ(t)),

Ldis(ρ(t)) =
∑

k

[Lkρ(t),L†
k] + [Lk,ρ(t)L†

k]. (1)

Provided the dissipative part Ldis is nonzero, one will typically
have a single stationary state ρ∞, which is the solution of
L(ρ∞) = 0, to which an arbitrary initial state ρ(0) converges
after a long time, ρ∞ = limt→∞ ρ(t). In a nonequilibrium
setting this state ρ∞ is called the nonequilibrium steady state
(NESS). The summation over k in Eq. (1) goes over all
Lindblad operators. What kind of Lindblad operators is used
depends on each specific situation.

Before specifying in detail the Lindblad operators used,
let us comment on the applicability of the Lindblad equation
within the context of quantum transport. The Lindblad equa-
tion can be derived from microscopic equations of motion
of the system plus reservoirs under certain, rather restrictive,
from the condensed-matter perspective, conditions of weak
coupling and rapidly decaying environmental correlations.48

While these conditions are sometimes well satisfied, e.g., in
quantum optical systems where the environment is fast, this
is not so in condensed matter. Environmental degrees there
(electrons in the leads, phonons, etc.) are not necessarily fast
compared to the time scale of the system of interest. As a
consequence, the evolution equation for the system will not
be local in time, like the Lindblad equation, (1), but will in
general be nonlocal with a nontrivial integral kernel accounting
for memory effects. While memory effects can play a role in
a transient finite-time behavior, they are not expected to be
important in the long-time limit of nonequilibrium stationary
states considered here. In certain situations one can even show
exactly that the memory effects (i.e., non-Markovian effects)
play no role for the NESS.49

The Lindblad operators modeling the reservoirs will differ
depending on whether we want to study ladders or n.n.n. chains
(which can be viewed as ladders with a diagonal interrung
coupling; see Fig. 5). For ladders both spins in the first and in
the last rung are coupled to the reservoir. The eight Lindblad
operators that we use are

L1 =
√

�(1 − μ) σ+
1 , L2 =

√
�(1 + μ) σ−

1 ,

L3 =
√

�(1 + μ) σ+
L , L4 =

√
�(1 − μ) σ−

L ,
(2)

L5 =
√

�(1 − μ) τ+
1 , L6 =

√
�(1 + μ) τ−

1 ,

L7 =
√

�(1 + μ) τ+
L , L8 =

√
�(1 − μ) τ−

L ,

where σα
k and τα

k are Pauli matrices on the first and the
second ladder legs, respectively, and σ± = (σx ± i σy)/2,
τ± = (τ x ± i τ y)/2. L is the number of rungs. For n.n.n.
coupled chains, only the leftmost and the rightmost spins are
coupled to reservoirs. The four Lindblad operators are, in this
case,

L1 =
√

�
√

1 − μσ+
1 , L2 =

√
�

√
1 + μσ−

1 ,
(3)

L3 =
√

�
√

1 + μσ+
L , L4 =

√
�

√
1 − μσ−

L .

For chains, L is the chain length. The coupling � in both
cases plays no essential role and we fix it to � = 1. All NESS
states obtained with such Lindblad operators studied here are
unique.

Note that the precise form of Lindblad operators, and their
number, is not expected to play any role in the results presented,
as long as they induce a NESS at an infinite temperature. In
quantum chaotic systems the value of the diffusion constant
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is also not influenced by the choice of Lindblad operators.
Provided the boundary effects are small, which is the case
at high temperatures,50 and for nonballistic systems, the bulk
properties should be independent of the details of driving. For
ladders, which are symmetric with respect to the exchange
of two legs (see Fig. 1), the natural choice is eight Lindblad
operators, (2), while for n.n.n. coupled chains, without that
symmetry (see Fig. 5), the natural choice is four Lindblad
operators, (3). The choice used in the present work is perhaps
the simplest because it induces states at an infinite temperature
and has been used in a number of our previous studies (see
also, e.g., Ref. 52).

The most important parameter in Lindblad operators is the
driving strength μ. For zero driving μ = 0 and all systems
studied, one can easily show (see, e.g., Ref. 33) that the NESS
is a trivial ρ∞ ∼ 1; that is, it is an equilibrium state at an
infinite temperature. For nonzero μ the stationary state is
a true nonequilibrium state with a nonzero current flowing
through the system. For sufficiently small μ the NESS is
still close to an identity density matrix and one can expand
it in a series over μ: ρ∞ ∝ 1 + μA + O(μ2). Although for
nonsolvable systems the precise form of A cannot be explicitly
calculated in the thermodynamic limit (however, see Ref. 31
for a solvable case where it can be), one can nevertheless
make some useful general statements. For the driving used,
Eqs. (2) or (3), the operator A contains, among others, also
local current and magnetization operators. This means that for
small μ the expectation values of magnetization density and
current are trivially proportional to μ. The fact that for small
μ the NESS is close to an identity also has consequences
for the temperature of these NESSs. In general, provided that
the nonequilibrium is locally sufficiently weak (e.g., taking
L → ∞ at fixed driving strength), one can determine the
local temperature and chemical potential by comparing the
expectation values of local operators in the NESS with the
expectation values in an equilibrium grand-canonical state at
a given temperature and chemical potential (see Ref. 50).
However, for the driving used here [Eqs. (2) or (3)] and
small μ, the situation is much simpler. Namely, because the
NESS is close to 1 we immediately know that the expectation
value of the energy density will also be close to 0 and that
such states are close to an infinite temperature. Therefore, we
study nonequilibrium systems at an infinite temperature.51 The
driving used is also symmetric with respect to the left/right end
and the NESS obtained always has 0 expectation value of the
total magnetization (i.e., in fermionic language this would be
called half-filling).

The ladder and chain systems that are considered (with-
out driving) all conserve the total magnetization in the
z direction. The corresponding unitary symmetry is U =
exp(−iα

∑
j σ z

j ), with UHU † = H . Because the dissipative
Lindblad termLdis (2, 3) is also invariant under such U (this is a
consequence of the facts that Uσ+U † = e−i2ασ+ and that Ldis

does not depend on the phase of the Lindblad operators), where
the invariance for Ldis means that ULdis(ρ)U † = Ldis(UρU †),
NESSs considered in the present work are all independent of
the optional homogeneous magnetic field in the z direction
added to H . That is, if ρ∞ is the NESS for L with H , then the
same ρ∞ is also the NESS for L′ with H ′ = H + B

∑
j σ z

j .
This is a general consequence of the symmetry of the master

equation. The proof is very simple. Let us denote by V

a general unitary symmetry and by C the corresponding
conserved quantity. Let V be an exact symmetry of the
Liouvillian, (1); that is VL(ρ)V † = L(VρV †). Provided the
NESS is unique (with our driving this is always the case)
it must be invariant under V , meaning that Vρ∞V † = ρ∞.
This can be seen by noting that VL(ρ∞)V † = 0 = L(Vρ∞V †)
(see also e.g., Ref. 58). This means that in the eigenbasis of
a corresponding conserved quantity C, matrix ρ∞ is block
diagonal, while matrix C is diagonal with identical elements
within each diagonal block. C and ρ∞ therefore commute,
and if ρ∞ satisfies i[ρ∞,H ] + Ldis(ρ∞) = 0, it also satisfies
i[ρ∞,H + C] + Ldis(ρ∞) = 0; i.e., ρ∞ is also the NESS state
for H ′ = H + C.

B. Numerical method

Because we want to study the system’s properties in
a stationary state we have to obtain ρ∞. There are two
possibilities: one can either solve the stationary equation,
L(ρ∞) = 0, or one can integrate the Lindblad equation, (1),
obtaining ρ(t) and, from it, the NESS in the limit t → ∞. We
use the latter method by first writing ρ(t) in a matrix product
form with matrices As

k of fixed dimension M , describing a
site k and an element s of a local operator basis. Ladders as
well as n.n.n. chains are treated as a ladder system with an
arbitrary coupling between two nearest-neighbor rungs. One
rung is considered as a single site k, so that the dimension of
the operator basis at one site is 42 (i.e., the number of different
values of the index s in matrices As

k). The total number of
complex parameters describing a state ρ(t) of a ladder with L

rungs is therefore 16LM2. Choosing a large enough M , any
state ρ(t) can be written in such a matrix product operator form.
Time evolution is then evaluated using the time-dependent
density renormalization-group method53 (time-evolved block
decimation) by writing a short-time propagator eL�t as a
series of single- and two-site transformations. The method
we use is an adaptation12 for dissipative systems in which the
optimality of a matrix product decomposition is preserved by
reorthogonalizations (for details see Ref. 54). Evaluating two-
site transformations exactly would lead to an exponentially
increasing (in time) matrix dimension M . Numerically this
cannot be handled and one truncates dimension after each
transformation to a fixed size M . This truncation is the main
source of errors in the numerical method. How large M should
be depends on the amount of entanglement that a state ρ(t) has
in the operator space. For instance, the equilibrium state at an
infinite temperature is a product state (a product of identities at
each site) and can be represented by matrices of size M = 1.
For small μ, where ρ(t) is still close to 1, we therefore expect
that one can do with a reasonably small M . This is the reason
why simulations at an infinite temperature require the smallest
M and are therefore the easiest.55 In our simulations we used
matrix sizes of up to M = 150 and ladder lengths of L � 100.
Because the costliest operation in the algorithm is a singular
value decomposition of a matrix of size dM , if d is the
dimension of local operator space, the time needed for one
time step scales as ∼M3 and quickly becomes unmanageable
for larger M . We typically performed simulations at increasing
values of M and observed the convergence of, e.g., the current.
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We deemed results as having converged if the difference in
currents between the two largest M values was less than
∼1–2% (for the hardest integrable ladder see also Ref. 66).
Note also that, because d = 4k for a “ladder” with k legs,
adding one leg increases the computational time by a factor
of 64 (keeping M and L the same). Simulating ladders with
two legs is therefore about 64 times more time-consuming
than simulating chains. Therefore, beyond two-leg ladders,
simulations soon become too time-consuming. However, one
can expect on general grounds that the transport will be
typically diffusive in systems with more legs, as integrable
cases are rarer in higher dimensional systems.

C. Assessing transport

Once the NESS is obtained—after time t , which is given by
the inverse of the Liouvillean gap—the expectation values of
any local operator can be evaluated. Practically, the simulation
is run until the current converges to a time-independent value,
which typically happens after a time that is some multiple
of L. Our main focus is on the magnetization current and
on the magnetization profile along the ladder/chain. Fixing
the driving μ, typically56 at μ = 0.2, we study how the
magnetization current j scales with the system length L. If
the scaling is j ∼ 1/L, the system is diffusive and obeys a
phenomenological transport law,

j = −D∇z, (4)

where ∇z is the magnetization gradient and D is the size-
independent transport coefficient (diffusion constant). Another
extreme situation would be when j is independent of L,
signaling ballistic transport. Transport that is intermediate
between ballistic and diffusive is called anomalous,57 with
a scaling j ∼ 1/Lα with 0 < α < 1. The nature of transport
can also be inferred from the magnetization profile. For small
magnetization the profile is linear for diffusive systems, while
it is nonlinear in the case of anomalous transport, where D can
be considered to be length dependent.

All the above statements about the scaling should be
investigated in the thermodynamic limit L → ∞. Even though
we limit ourselves, besides one integrable case, to fully chaotic
systems, where the convergence with L is expected to be
the fastest, it turns out that in some cases sizes L ∼ 100,
though rather large for a quasiexact simulation of a strongly
interacting quantum system, still might not be large enough
to reach the thermodynamic limit. Going to significantly
larger sizes is at present not possible due to the rapidly
increasing simulation times. The simulation time increases
with L because the convergence time to ρ∞ increases, but even
more significantly, the required matrix size M also increases
because the observables, like the current, decrease with L and
so a larger M is required to obtain the same relative accuracy
in j .

D. Checking for quantum chaos

Despite the exceptions,33 one, in general,expects that
for nonintegrable strongly interacting quantum systems—in
other words, for systems displaying characteristic features of
quantum chaos—transport is diffusive. In order to convince
ourselves that the systems we study are indeed not close to

integrability, we have checked their chaoticity by calculating
the spacing distribution of nearest energy levels. The so-called
level spacing distribution p(s) is a standard criterion of
quantum chaos in Hamiltonian systems.32 In chaotic systems
there are no selection rules and the eigenenergies will “repel”
each other, leading to a deficit of small spacings between two
consecutive eigenenergies. In quantum chaotic systems with
time-reversal symmetry the expected theoretical level spacing
distribution is well described by the so-called Wigner’s surmise
for the orthogonal ensemble,

p(s) = s
π

2
exp(−s2π/4). (5)

In integrable systems there are selection rules due to constants
of motion, resulting in an exponential form of p(s) = exp(−s).
One should bear in mind that in order to see chaotic level
statistics, (5), explicit symmetries of a system have to be taken
into account. Spacing has to be calculated within a single
symmetry class. The symmetries of the systems studied are
described in the Appendix. We always use open boundary
conditions, which, however, have no effect on the level spacing
distribution in chaotic systems.

III. RESULTS FOR LADDERS

There have been a number of works studying magnetization
transport10,13,21,33 as well as heat transport34–37 in spin ladders.
The prevailing conclusion is that in nonintegrable ladders at
high temperatures transport is diffusive, being in line with the
general rule of expecting diffusion in nonintegrable systems.
Numerical studies have been mostly limited to systems with
less than L = 20 rungs; in the present work we study
significantly larger systems. For a review of ladder systems,
including references to an extensive experimental work, see
Refs. 46 and 47. For studies of transport in the 1D Hubbard
model, which can be equivalently rewritten as a spin ladder
(see Refs. 4, 11, 19, 21, and 38–45).

We name different ladder systems according to the type
of coupling between nearest-neighbor sites. The XX type is
a coupling of the form σ x

i σ x
i+1 + σ

y
i σ

y
i+1, the XXZ type is

a coupling of the form σ x
i σ x

i+1 + σ
y
i σ

y
i+1 + �σ z

i σ z
i+1, and an

isotropic Heisenberg coupling is equal to the XXZ coupling
with the anisotropy � = 1, i.e., an XXX coupling.

Ladder systems studied here are depicted in Figs. 1(a)
and 1(b). The same methodology that we use has been used
before to study the so-called XX ladder [Fig. 1(c)], with an
XX-type coupling along the legs and an XXZ type in the rungs.
A special case of such an XX ladder is the 1D Hubbard model
obtained when the coupling in rungs is σ z

i τ z
i . As shown in

Ref. 44 the 1D Hubbard model is diffusive under symmetric
driving at infinite temperature. This diffusive transport is not
changed in the presence of an additional XX-type coupling
in rungs.33 It is instructive to rewrite a tight-binding system
of free fermions on a ladder in spin language. Namely, for
a tight-binding model we know that it is ballistic because
it is equivalent to a system of free fermions. Using the
Jordan-Wigner transformation it can be written as the ladder
shown in Fig. 1(d) with the four-site coupling interchangeably
connecting neighbors in the upper/lower leg being of the form
(σ x

k σ x
k+1 + σ

y
k σ

y
k+1)τ z

k τ z
k+1 (written here for the upper leg). We
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s=Ej+1-Ej
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FIG. 2. (Color online) Level spacing distribution for the isotropic
Heisenberg ladder, (6). Parameters are U = 1, L = 8, and four
symmetry sectors with Z = 0 from the subspace with zero total spin
are used (1026 spacings in total); see the Appendix for details about
symmetries. Error bars denote 1 standard deviation obtained from the
square root of the number of spacings in a given bin.

have numerically checked (data not shown) that such a ladder
coupling indeed results in a ballistic magnetization transport.
Note that the τ z

k τ z
k+1 term in the above coupling is absolutely

crucial for the ballistic transport to appear; without it, one
would have an ordinary XX-type ladder displaying diffusive
transport.33

A. Isotropic Heisenberg ladder

The isotropic Heisenberg ladder is described by

H =
L−1∑

i=1

σ i · σ i+1 + τ i · τ i+1 + U

L∑

i=1

σ i · τ i . (6)

The isotropic Heisenberg ladder, in particular, its version
with different coupling strengths along rungs and legs (U 	=
1), is realized in some materials and is therefore also an
experimentally relevant model.46,47 System (6) has a nonzero
spin gap.59 It is quantum chaotic as indicated by the good
agreement of the level spacing distribution with the Wigner’s
surmise, (5), demonstrated in Fig. 2. Regarding magnetization
transport, in Ref. 13 it was found that initial localized packets
spread out diffusively at zero temperature.

In our stationary nonequilibrium setting we use a symmetric
driving of Eq. (2) so that in the NESS ρ∞ magnetization flows
only along both legs, and there is no current in the rungs. The
driving is chosen to be μ = 0.2, which is still in the linear
response regime. It has been explicitly checked that for μ =
0.1 the results in Fig. 3(a) would be almost indistinguishable
from the presented ones for μ = 0.2, thereby confirming the
validity of the linear response. Note that for very small driving
μ the expectation values of current and magnetization are
trivially proportional to μ. The current operator is defined
via a continuity equation for local magnetization σ z

k + τ z
k ,

resulting in j tot
k = i[σ z

k + τ z
k ,hk,k+1], where hk,k+1 is the local

Hamiltonian density. For the model in Eq. (6) we obtain
j tot
k = jσ

k + j τ
k , with the current operator in the upper leg

jσ
k = 2(σ x

k σ
y
k+1 − σ

y
k σ x

k+1) and a similar expression for j τ
k in

the lower leg. Due to the symmetric driving of both legs, (2),
in the NESS both currents are the same and, due to continuity,
independent of the site k. We therefore simply study the
current in one of the legs and denote j = 〈jσ

k 〉 = 〈j τ
k 〉, with the

averages being expectation values in the NESS ρ∞. In Fig. 3

 0.01
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FIG. 3. (Color online) (a) Dependence of the scaled magneti-
zation current on L; (b) magnetization profile in one of the legs
(U = 1,L = 64). All data are for the isotropic Heisenberg ladder,
(6), with driving μ = 0.2; in (a) data are shown for U = 1.0 and
U = 0.5.

we show the current and magnetization profile zk = tr(σ z
k ρ∞)

in the NESS. While the magnetization profile is linear (with
only very small deviations at a few edge sites), suggesting
diffusion, the scaling of the current shows small deviations
from the diffusive ∼1/L. Observe that if one plots the scaled
current j/(L∇z) vs the system size L, as is the case in all
our plots [e.g., Fig. 3(a)], then the prefactor in front of the
1/L scaling (i.e., the slope in a log-log plot) is equal to the
diffusion constant. At U = 1.0 the scaling is j ∼ 1/L0.9, while
at U = 0.5 it is j ∼ 1/L0.95. Note that at U = 0 one would
have two uncoupled isotropic Heisenberg chains for which an
anomalous j ∼ 1/L0.5 scaling has been observed.16,22 From
the finite-size data presented it is difficult to make a definite
conclusion whether or not magnetization transport in the
Heisenberg ladder is diffusive in the thermodynamic limit.
Considering the rather linear magnetization profiles we deem
it plausible that the small deviations observed are due to
finite-size effects and the transport would become diffusive
in the thermodynamic limit.

B. Integrable ladder

The Hamiltonian is

H =
L−1∑

j=1

(1 + σ j · σ j+1)(1 + τ j · τ j+1) + 4U

L∑

j=1

σ j · τ j .

(7)

This is a Heisenberg ladder with an additional four-spin
interaction.60 At U = 0 the model is called the spin-orbital
model61 and can be obtained as the large-U limit of the
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two-orbital Hubbard model at quarter-filling.62 The spin-
orbital model can be, up to an irrelevant constant, written
as HSU(4) = H (U = 0) = ∑

j Pj,j+1, where Pj,j+1 is the
permutation operator on two rungs, Pj,j+1|α,β〉 = |β,α〉, and
|α〉 and |β〉 are two arbitrary rung states. Alternatively, it
can be expressed in terms of generators Gν,λ = |ν〉〈λ| of the
SU(4) group, HSU(4) ∼ ∑

k

∑
ν,λ G

ν,λ
k G

λ,ν
k+1. The interaction is

therefore SU(4) invariant and the spin-orbital model can be
considered to be a generalization of the isotropic Heisenberg
chain [which has an SU(2) symmetry] and is sometimes called
the SU(4) Heisenberg model. It is Bethe ansatz solvable in
one dimension by the general method63 for systems with per-
mutation interaction. The one-rung operators C1 = ∑

j σ z
j +

τ z
j , C2 = ∑

j σ z
j τ z

j , and C3 = ∑
j σ x

j τ x
j + σ

y
j τ

y
j + σ z

j τ z
j are

conserved quantities for any U , while at U = 0 all three
components of

∑
j σ j and

∑
j τ j are also conserved. The

nonzero rung interaction U , (7), which is equal to C3, plays
the role of a chemical potential, preserving the integrability of
the system64 for any U . The model is gapless64 for U < 1 and
gapped for U > 1.

1. Ballistic transport in nonzero-magnetization sectors

Let us consider for a moment the HSU(4) obtained for
U = 0. Because the Hamiltonian is the sum of nearest-
neighbor transpositions one can easily construct invariant
subspaces that will display ballistic transport. Taking the
singlet |S〉 = (|01〉 − |10〉)/√2, triplet states |T 〉 = (|01〉 +
|10〉)/√2,|O〉 = |00〉,|I 〉 = |11〉 for the rung basis, and, for
instance, the initial state of the ladder |S . . . SIIIS . . . S〉,
we can see that HSU(4) acting on such a state will cause
the leftmost and the rightmost I ’s to spread ballistically to
the left and right, respectively, causing two ballistic fronts.
Although this construction is similar to the one in Ref. 33,
the two situations are fundamentally different. HSU(4) is
integrable, and, as we show, the energy current is a constant
of motion, causing ballistic transport in sectors with nonzero
magnetization, whereas the XX ladder discussed in Ref. 33 is
quantum chaotic, with a more complicated dynamics than just
transpositions (for instance, there the energy current is not a
constant of motion). To see why model (7) is ballistic away
from a zero-magnetization sector let us first define currents.
The magnetization current operator is independent of U and is
j tot
k = jσ

k (1 + τ k · τ k+1) + j τ
k (1 + σ k · σ k+1), where j

σ,τ
k are

the same chain currents as for the isotropic Heisenberg ladder.
The local energy current, defined by jE

k = i[hk−1,k,hk,k+1], is
the sum of a U -independent term and a term proportional to U ,
jE
k = jE

k (U = 0) + U · jE
k (U 	= 0). jE

k (U = 0) is simply the
energy current of the HSU(4) model and is (written for k = 2)

jE
2 (U = 0) = [(

σ z
1 jσ

23 + σ z
2 jσ

31 + σ z
3 jσ

12

)

× (
1 + hτ

12 + hτ
13 + hτ

23

) + (σ ↔ τ )
]
, (8)

with jσ
jk = 2(σ x

j σ
y
k − σ

y
j σ x

k ), hτ
jk = τ j · τ k , and (σ ↔ τ )

meaning all preceding terms with σ and τ matrices in-
terchanged. One can show that, taking periodic boundary
conditions, the total energy current of the HSU(4) model, J E

0 =∑
k jE

k (U = 0), is an exact constant of motion, [J E
0 ,H ] = 0,

regardless of U (note that J E = ∑
k jE

k , however, is not).
Because J E

0 has, in addition, a nonzero overlap with the

magnetization current it can be used to bound the spin Drude
weight away from 0. Let us denote by J S = ∑

k j tot
k the total

magnetization current. The thermodynamic overlaps needed,
e.g., 〈J E

0 J S〉, are relatively simple to evaluate at infinite
temperature but finite chemical potential, where the grand-
canonical state is ρ = ∏

k ρk , with ρk ∼ exp(−φσ z
k ) being

the equilibrium state of one spin. Identifying z = tr(ρkσ
z
k )

as the average equilibrium magnetization or, equivalently, as
the filling fraction f = (z + 1)/2, all averages are polynomial
functions of z. Denoting by DS the magnetization Drude
weight, Mazur’s inequality6 can be used to obtain

DS � β

2
K, K = 1

L

〈
J E

0 J S
〉2

〈
J E

0 J E
0

〉 ,

(9)

K = 29 z2(1 − z2)(1 + z2)2

15 + 13z2 + 10z4 + 2z6
,

holding at close-to-infinite temperature. Observe that the
bound is independent of U , simply because J E

0 and J S are,
even though the Hamiltonian in Eq. (7) does depend on
U . Away from maximal polarization, z 	= ±1, and nonzero
magnetization, z 	= 0, the value of K is nonzero, proving
nonzero spin Drude weight in the integrable spin ladder, (7),
at an infinite temperature and, as a consequence, ballistic
magnetization transport. In the present work we numerically
study the case z = 0 (f = 1/2), where the possibility of having
nonballistic transport remains.

2. Numerical results for the zero-magnetization sector

In numerical simulations we use the critical U = 1. Note,
however, that, due to the fact that the interaction term
proportional to U is equal to the constant of motion C3

of the closed system, the magnetization transport for our
symmetric driving is almost independent of the value of U . If
the symmetry V = exp(−iα

∑
k σ k · τ k), corresponding to the

conserved quantity C3 = ∑
k σ k · τ k , were an exact symmetry

of the Liouvillian, (1), VL(ρ)V † = L(VρV †), then the NESS
state ρ∞ would be exactly independent of U . In our case the
symmetry V preserves the unitary part, V HV † = H , but is
not an exact symmetry of the dissipative part, (2). Therefore,
in an open system V is only an approximate symmetry; it is
violated at boundaries. Still, we find65 that the magnetization
transport is almost independent of U . This also shows that the
size of the ground-state gap by itself does not play any role in
the transport at an infinite temperature.

In Fig. 4 we show the scaling of the magnetization current66

of one leg species j ≡ 〈jσ
k (1 + τ k · τ k+1)〉 with L and one

instance of the magnetization profile. The current scales as j ∼
1/L0.66, indicating anomalous transport. Correspondingly, the
magnetization profile along the ladder is not linear but, rather,
displays larger gradients towards the ends. Similar profiles
have been observed16,22 in the isotropic Heisenberg model, also
showing anomalous transport j ∼ 1/Lα with α = 1/2. Note
that both the isotropic Heisenberg model and the integrable
ladder, (7), are special due to their SU(2) and SU(4) symmetry,
respectively. On a speculative note, considering that α = 1/2
for the SU(2) model and α = 2/3 for the SU(4) one, the general
rule would be that the exponent of anomalous transport is
α = N/(1 + N ) for a permutation model H ∼ ∑

k Pk,k+1 with
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FIG. 4. (Color online) (a) Dependence of the scaled magnetiza-
tion current and (b) magnetization profile in the upper leg (L = 64)
for the integrable ladder system, Eq. (7). The dotted line in (b) is the
best-fitting gradient used in the scaling of the current shown in (a).
Parameters are U = 1 and driving μ = 0.2.

an SU(2N) invariance. Because an SU(2N) model has 2N local
levels, it can be written as a spin-(N − 1

2 ) chain. Therefore, as
N → ∞ one goes essentially to the classical limit for which
α → 1; i.e., one gets diffusive transport. For a recent study of
transport in the classical Heisenberg model see Ref. 67.

IV. NEXT-NEAREST-NEIGHBOR CHAINS

It is believed that integrability-breaking perturbations in
1D spin chains, provided they are large enough, will, in
general, induce diffusive transport. This is expected on
general grounds, because a sufficient perturbation will result
in a chaotic system, and is also supported by numerical
observations.10,12,20,25,28,68–71 At sufficiently low temperatures,
though, some studies26,72 have observed indications of ballistic
transport. In the present work we reconsider the question
of magnetization transport in spin chains with integrability-
breaking n.n.n. coupling in the regime of strong integrability
breaking (quantum chaos). The different spin chains studied
are shown in Fig. 5. Note that by numbering ladder sites in
a zigzag manner, the n.n.n. coupling of a chain is in a ladder
formulation given by the coupling terms in both legs, while
the nearest-neighbor coupling of a chain is a ladder coupling
in rungs and the diagonal inter-rung coupling.

A. XX chain

First, we study the XX chain with ZZ n.n.n. coupling,

H =
L−1∑

i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

) + Uzz

L−2∑

i=1

σ z
i σ z

i+2. (10)

(a)

(b)

(c)

FIG. 5. Different spin chains with next-nearest-neighbor cou-
pling: (a) XX chain with ZZ n.n.n. coupling; (b) XX chain with
XX n.n.n. coupling; (c) isotropic Heisenberg chain with ZZ n.n.n.
coupling. A straight line represents an XX-type coupling; a spring,
a ZZ-type coupling; a double line, an isotropic Heisenberg coupling.
Filled circles mark sites that are coupled to a reservoir described by
Eq. (3).

The magnetization current in the NESS is a standard j =
〈2(σ x

k σ
y
k+1 − σ

y
k σ x

k+1)〉. Integrability-breaking perturbations of
strength Uzz = 0.5 and Uzz = 1.0 are used, for which the
system is quantum chaotic. In Fig. 6 we see a nice agreement
of the level spacing distribution with Wigner’s surmise.

We also study the XX chain with XX-type n.n.n. coupling:

H =
L−1∑

i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

) + Uxx

L−2∑

i=1

σ x
i σ x

i+2 + σ
y
i σ

y
i+2.

(11)

At the Uxx = 0.5 studied the model is again quantum chaotic
(see Fig. 6). The magnetization current operator73 gets, in this
case, an additional n.n.n. term and is

jk = 2
(
σ x

k σ
y
k+1 − σ

y
k σ x

k+1

) + 2Uxx
(
σ x

k σ
y
k+2 − σ

y
k σ x

k+2

)
. (12)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0.5  1  1.5  2  2.5

p(
s)

s=Ej+1-Ej

(c)
ZZ n.n.n., Uzz=0.5

 0  0.5  1  1.5  2  2.5  3
s=Ej+1-Ej

(d)
ZZ n.n.n., Uzz=1.0

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

p(
s)

(a)
iso. Heis., U=1.0

(b)
XX n.n.n., Uxx=0.5

FIG. 6. (Color online) Level spacing distribution for spin chains.
(a) Isotropic Heisenberg with ZZ n.n.n. coupling; (b) XX chain with
XX n.n.n. coupling; (c), (d) XX chain with ZZ n.n.n. coupling. All
data are for L = 8 and a sector with Z = 0 (averaging over four
subsectors; in total, about 11 000 levels for each system); see the
Appendix. The solid curve is Wigner’s surmise, (5).
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FIG. 7. (Color online) (a) Scaling of the current for the XX
chain with ZZ-type (squares and circles) or XX-type n.n.n. coupling
(triangles). The scaling is diffusive in all cases. Straight lines
are 16.6/L, 9.0/L, and 3.8/L (from top to bottom). (b) The
magnetization profile is linear (L = 128). Driving is μ = 0.2 in all
cases.

As shown in Fig. 7 the magnetization transport is in all cases
diffusive, indicated by the scaling j ∼ 1/L, as well as by the
linear magnetization profiles.

B. Isotropic Heisenberg chain

As the last model we study the isotropic Heisenberg chain
with ZZ n.n.n. coupling,

H =
L−1∑

i=1

σ i · σ i+1 + U

L−2∑

i=1

σ z
i σ z

i+2, (13)

with U = 1.0, for which the model is quantum chaotic (Fig. 6).
The magnetization current is j = 〈2(σ x

k σ
y
k+1 − σ

y
k σ x

k+1)〉. As
shown in Fig. 8 the current scales as j ∼ 1/L1.1, while the
profiles show slight deviations from a linear function close
to the chain ends. Note that, as is most often the case, if the
current scales more rapidly than ∼1/L, i.e., if the system goes
towards an insulating regime, a local gradient in profiles is
smaller close to the system edge (Fig. 8); on the other hand, if
the scaling is slower than ∼1/L, i.e., if the system goes towards
a ballistic regime, the gradient is larger (e.g., Fig. 4). In the
present case deviations are small and it is difficult to assess
whether it is just a finite-size effect and the system becomes
diffusive in the thermodynamic limit. Provided that the scaling
is asymptotically ∼1/L, the prefactor found, 3.8, would be
equal to the diffusion constant, D ≈ 3.8. The same value74 of
the diffusion constant was found in Ref. 71 using a current
autocorrelation function obtained by an exact diagonalization

 0.01

 0.1

 10  100

j/(
L∇
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L-1

(a) U=1.0
3.8/L1.1
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FIG. 8. (Color online) Isotropic Heisenberg chain with ZZ n.n.n.
coupling of strength U = 1.0, μ = 0.2. (a) Scaling of the current with
the system size; (b) magnetization profile for L = 100.

as well as perturbatively for large U via a time-convolutionless
projection operator approach.

V. CONCLUSION

We have studied magnetization transport in a linear
response regime at an infinite temperature by numerically
calculating nonequilibrium stationary states of the Lindblad
master equation. For the isotropic Heisenberg ladder, which is
quantum chaotic, we find close-to-diffusive behavior, with the
differences possibly being due to finite-size effects. In the XX
spin chain with strong n.n.n. interaction, transport is always
found to be diffusive. The isotropic Heisenberg chain with an
integrability-breaking n.n.n. interaction is also very close to
diffusive. We also found that the integrable ladder, which at
U = 0 has SU(4) symmetry, shows anomalous magnetization
transport in the zero-magnetization sector, while away from
the zero-magnetization sector, using Mazur’s inequality, we
prove that the transport is ballistic.
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APPENDIX: SYMMETRIES

We study magnetization transport, i.e., transport of the z

component of spin. All systems considered (their Hamiltonian
part) therefore conserve the total magnetization in the z

direction. For ladders this is the operator Z = ∑L
j=1 σ z

k + τ z
k .

The corresponding symmetry transformation is a rotation,
Uz = ∏

j exp(−iασ z
j ) exp(−iατ z

j ). Under U Pauli matrices
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transform as Uσ z
k U † = σ z

k , Uσ x
k U † = cos(2α)σ x

k +
sin(2α)σ y

k , and Uσ
y
k U † = − sin(2α)σ x

k + cos(2α)σ y
k , and

similarly for τα
k .

There are two geometrical symmetries of the underlying
ladder lattice. One is a parity Px in the x direction, obtained by
mapping of sites k → L + 1 − k, while the other is a parity Py

in the y direction, obtained by the swapping of the two legs,
σα

k ↔ τα
k .

In addition, there is a spin-flip symmetry given by the
transformation U = ∏

j σ x
j τ x

j , i.e., a rotation exp(−iπσ x/2)

around the x axis. It changes the sign of σ
y,z
k , while it preserves

σ x
k . It commutes with the rotation Uz around z only in the sector

with zero total magnetization, Z = 0.
Symmetries of the isotropic Heisenberg ladder described

by H in Eq. (6) are both parities Px and Py, spin-flip, and
total magnetization Z. In addition, the square of the total spin
(
∑

j σ j + τ j )2 is also a constant of motion.
For chains with n.n.n. coupling, Eqs. (10), (11), and (13),

the symmetries are spin-flip, total magnetization Z, and the
product of parities PxPy.
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