
A one-dimensional hard-point gas and thermoelectric efficiency

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

J. Stat. Mech. (2009) L03004

(http://iopscience.iop.org/1742-5468/2009/03/L03004)

Download details:

IP Address: 78.153.51.177

The article was downloaded on 14/04/2010 at 19:08

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1742-5468/2009/03
http://iopscience.iop.org/1742-5468/2009/03/L03004/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.S
tat.M

ech.
(2009)

L03004

ournal of Statistical Mechanics:
An IOP and SISSA journalJ Theory and Experiment

LETTER

A one-dimensional hard-point gas and
thermoelectric efficiency

Giulio Casati1,2, Lei Wang3,4 and Tomaž Prosen5
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Abstract. We study heat and particle transport in a classical disordered, one-
dimensional, hard-point gas model. We provide convincing numerical evidence
that the figure of merit ZT diverges as a power law with the average particle
number in the chain. This quite surprising result appears to be related to the
ergodic and mixing properties of the system and it is independent of the mass
ratio.
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Understanding the dynamical origins of macroscopic behavior of non-equilibrium systems
is one of the major and long standing challenges of statistical mechanics. The main issue
is not only related to the understanding of fundamental aspects, but also has important
practical implications. For example, the possibility of converting waste heat into useful
work, or conversely, of performing refrigeration via thermoelectric phenomena is becoming
one of the main challenges for the not far distant future in order to meet the increasing
world demand for energy. In spite of the fact that the basic principles of thermoelectric
engines have been well known for a long time, the practical suitability is greatly limited
by the low efficiency of all known thermoelectric materials [1]–[3].

Indeed the efficiency of a thermoelectric material for energy conversion or electronic
refrigeration is given by the non-dimensional thermoelectric figure of merit

ZT =
σS2T

κ
, (1)

where σ is the electric conductivity, S is the Seebeck coefficient, κ is the thermal
conductivity and T is the absolute temperature. For a given material, and a pair of
temperatures TH and TC of hot and cold baths respectively, ZT is related to the efficiency
η of converting heat to work, under optimized conditions, through

η =
P

JQ
= ηcarnot

√
ZT + 1 − 1√
ZT + 1 + 1

, (2)

where ηcarnot = 1 − TC/TH is the Carnot efficiency, T = (TH + TC)/2, P is the output
power and JQ is the heat current. For the best known thermoelectric materials the figure
of merit at room temperatures is below the value ZT = 3 which is the estimated threshold
for thermoelectric devices to become competitive with compressor based refrigeration, for
example.

In a recent letter [10] an interesting mechanism has been discovered for increasing ZT
in a classical dynamical system. The model, based on classical ergodic dynamics, is an
idealized polyatomic gas with dint internal degrees of freedoms. Here the figure of merit
has been found to be a growing function of the number of internal degrees of freedom
ZT = (d + 1 + dint)/2 where d is the geometric dimension.

In spite of the abstract nature of the model, the above letter opens the possibility for a
theoretical understanding of the basic microscopic requirements that a classical dynamical
system must fulfil in order to lead to a high figure of merit and therefore to thermoelectric
efficiency which, in principle, is arbitrarily close to Carnot’s.

In this letter we make a first step in this direction. Here we consider the thermoelectric
efficiency in a hard-point interacting one-dimensional gas. Indeed, a heuristic hint taken
from [10] might suggest that inter-particle interaction increases the effective number of
degrees of freedom and thus leads to a higher figure of merit than in the non-interacting
idealized d-dimensional gas, where ZT = (d + 1)/2 [9, 10].

This is quite a speculative hypothesis which should be confirmed by an accurate
numerical analysis. In the following we undertake a detailed numerical study of the cross
heat and particle transport [4, 5], in an open hard-point gas, and evaluate ZT . As a result
we find, very interestingly, that ZT diverges as a power law in the thermodynamic limit,
ZT ∝ N b where N is the average number of particles in the system and b ≈ 0.79.

We recall that, due to the equivalence between electric and chemical potentials [6], it
is sufficient to study non-equilibrium effects due to the chemical potential difference only.
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Our model is a one-dimensional, di-atomic disordered chain, of hard-point elastic
particles with coordinates xi ∈ [0, L], velocities vi and masses mi ∈ {1, M} randomly
distributed (we use convenient non-dimensional units). The particles interact among
themselves through elastic collisions only. A collision between two particles with mass
m1 and m2 changes their velocities v1 and v2 as v′

1 = [(m1 − m2)/(m1 + m2)]v1 +
[2m2/(m1 + m2)]v2 and v′

2 = [2m1/(m1 + m2)]v1 − [(m1 − m2)/(m1 + m2)]v2. Two
thermochemical baths inject and absorb particles at the two ends of the system xL = 0,
xR = L. We notice that thermal properties of a similar model, with periodically arranged
masses 1, M, 1, M, . . ., have been previously extensively studied [11]–[13]. It has been
found that even though the model appears to be ergodic and dynamically mixing for
generic mass ratio M , the decay of temporal correlation functions seems too slow for the
validity of diffusive transport laws and convergence of Green–Kubo formulae; hence the
thermal conductivity was found to diverge as κ ∝ Nν , with ν ≈ 0.3. As a consequence,
in order to have divergence of the figure of merit ZT in the thermodynamical limit, we
must count on an even faster increase with N of σ or S.

A thermochemical bath generates particles with randomly chosen mass 1 or M (with
equal probability), at some fixed rate γ. Since injections from a macroscopic bath should
be independent events, the time interval t between subsequent injections is taken to satisfy
the exponential distribution P (t) = γe−γt, where t0 = 1/γ is the average time between
injections. Note that the injection rate γλ is simply related to the temperature Tλ, and
the chemical potential μλ, of either of the baths λ = L, R, through

μλ = Tλ log

(
c0γλ

Tλ

)
. (3)

The arbitrary scaling constant c0 is set to 1 throughout the letter. The injected
particles have the velocity distribution P (vi) = (mi/Tλ)|vi|e−(miv

2
i )/(2Tλ), which ensures

the canonical (Maxwellian) distributions under the equilibrium conditions TL = TR and
μL = μR. Note that in our units, kBoltzmann = 1.

Any gas particle which hits the bath, at x = 0, L, is absorbed by the bath, so
the steady state is reached where the density of particles ρ obeys the thermodynamic
equation of state ρT = const. For convenience we introduce the two independent heat
bath parameters αλ ≡ μλ/Tλ and βλ ≡ 1/Tλ. We note that in the equilibrium situation
the particle density satisfies the relation

ρ(α, β) = c(M)β−1/2eα, (4)

where c(M) is some constant which can depend only on the mass ratio M .
Note that a more sophisticated model of thermochemical reservoirs, where each species

of particles would have a different injection rates and chemical potentials, essentially gives
results equivalent to those reported below [14].

In order to calculate the temperature/particle density profiles we divide our sample
x ∈ [0, L] into a set of small boxes (intervals). Suppose that during a long period of
simulation time, a box with length l is visited Nv times, where the jth visit is by a

particle with mass m
(v)
j and velocity v

(v)
j , and the visit lasts for a time interval tj . Then,

the particle density ρ, the temperature T and the energy density 1
2
ρT are calculated as

ρ ≡ (tl)−1
∑Nv

j=1 tj , T ≡ (
∑Nv

j=1 m
(v)
j [v

(v)
j ]2tj)/(

∑Nv

j=1 tj),
1
2
ρT ≡ (tl)−1

∑Nv

j=1
1
2
m

(v)
j [v

(v)
j ]2tj .

Simulating the gas under the non-equilibrium conditions we found that a linear profile of
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Figure 1. Energy density, particle density, and temperature profiles in a
disordered hard-point gas inside two thermochemical baths with fixed αL =
αR = α0, here putting mean α0 = 0, but slightly different β around β0 = 1.
Namely βL,R is determined by equation (4) with ρL,R = ρ(α0, β0)(1±Dρ), where
Dρ = 0.01. Notice that the energy density is constant across the system.

temperature T (x) and density ρ(x) is built up (shown in figure 1), whereas the energy
density is—as expected—constant across the system.

Note that an isolated one-dimensional hard-point gas has three conservation laws: of
the total energy, the number of particles, and the total momentum (due to translational
invariance), so the corresponding currents should satisfy the continuity equations. In the
steady state these are given, respectively, by the injection minus the absorption rates of
the particle’s energy, the particle’s number count and the particle’s momentum, at the
left bath or, with the opposite signs, at the right bath.

Suppose that in a period of time t, the left heat bath injects Ni particles with masses

m
(i)
j , and velocities v

(i)
j , j = 1, . . . , Ni, and absorbs Na particles with masses m

(a)
j , and

velocities v
(a)
j , j = 1, . . . , Na. Notice that for the left bath v

(i)
j is always positive, and v

(a)
j

is always negative, while for the right bath the signs would be just the opposite. In the
large t limit, the energy current Ju, the particle current Jρ and the momentum current
Jm, are computed as follows:

Ju =
1

2t

(
Ni∑

j=1

m
(i)
j [v

(i)
j ]2 −

Na∑
j=1

m
(a)
j [v

(a)
j ]2

)
, (5)

Jρ =
1

t
(Ni − Na), (6)
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Jm =
1

t

(
Ni∑
j=1

m
(i)
j v

(i)
j −

Na∑
j=1

m
(a)
j v

(a)
j

)
. (7)

In the steady state they should be equal to the corresponding currents for the right
bath—with the signs changed. For numerical simulations it turns out that the statistical
error is reduced if one takes the average of the contributions from the two baths.

Let us now write the phenomenological non-equilibrium thermodynamic relations for
our model. By means of the 2 × 2 Onsager matrix Lτ,ω, {τ, ω} ∈ {u, ρ}, the energy and
the particle currents can be written in terms of gradients of thermodynamic potentials
α = μ/T and β = 1/T as follows [7, 8]

Ju = Luu∇β − Luρ∇α, (8)

Jρ = Lρu∇β − Lρρ∇α. (9)

Expressing the Onsager matrix in terms of the phenomenological transport coefficients S,
κ and σ one arrives at the very simple expression for the figure of merit

ZT =
L2

uρ

det L
. (10)

Note that the additional mean chemical potential term (see e.g. [9]) can be set to
zero for the ideal gas systems. Note also that a higher value of ZT is obtained when the
matrix L tends to being singular, i.e. when the two currents become nearly proportional
to each other as functions of ∇α and ∇β.

Let us first discuss the somewhat trivial case of equal masses M = 1 in which the gas
particles are essentially non-interacting so that the energy and particle currents can be
expressed analytically as

Ju = TLγL − TRγR, Jρ = γL − γR. (11)

Using the expression of the chemical potential (3), the Onsager coefficients can be
analytically calculated: Luu = 2eαβ−3L, Lρu = eαβ−2L, Luρ = eαβ−2L, Lρρ = eαβ−1L,
thus leading to ZT = 1. These values of Onsager coefficients were also confirmed by
numerical simulation.

We consider now the non-trivial, non-equal mass case, M �= 1. First, as expected, we
have found that the figure of merit ZT , which is a dimensionless quantity, depends only
on the average number of particles N , and on the mass ratio M . In figure 2 we display the
dependence ZT (N) for a given mass ratio M = π. For small average particle number, a
particle injected by one bath will be, quite probably, absorbed by the other bath without
colliding with another particle; thus we expect to recover the result for the non-interacting
gas. This means that ZT (N → 0) = 1. By increasing the particle number N we find a
highly non-trivial behavior, namely a power law divergence of ZT . The overall behavior
can be globally well captured by a phenomenological relation:

ZT − 1 = aN b, a = 0.255, b = 0.785. (12)

As is clear also from figure 2, results are very sensitive to non-linear response effects.
Indeed the Onsager coefficients and the numerical estimate for ZT converge to a constant
value only for very small gradients of the thermodynamic fields, which can be characterized
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M

Figure 2. The figure of merit ZT as a function of average number of particles N
on a log–log scale, for M = π. Different symbols refer to different values of the
relative density gradient Dρ (see the legend), whereas the full line corresponds
to the power law fit (12). Note that for fixed Dρ, different values of the mean
inverse temperature β, mean α and size L have been considered (namely, we
(i) put L = 100, β = 1.0 and varied α, (ii) put L = 100, α = 0 and varied β, and
(iii) put α = 0, β = 1.0 and varied L), but the resulting ZT clearly depends on
the average number of particles N only. Note also the convergence of numerical
results to the asymptotic power law (12) as Dρ → 0.

by the relative density gradient Dρ, which is defined by boundary (bath) values of the
density ρL,R, as Dρ = (ρR−ρL)/(ρR+ρL). In figure 3 we show in more detail the non-linear
effect of the finite relative density gradient Dρ, by plotting ZT versus Dρ for different N .
Again we observe clear convergence as Dρ → 0. In the region of N < 140, ZT saturates
when Dρ is about 0.02 or less.

Nevertheless, in the linear regime Dρ → 0 we find a divergence ZT → ∞ in the
thermodynamic limit N → ∞. This is the main result of this letter.

In order to calculate the Onsager coefficients for a given value of α and β, say for
α = 0, β = 1, we follow the same procedure as in [10]. We first calculate Luu and Lρu

by setting αL = αR = 0, and specifying a certain small relative density gradient Dρ we
obtain the inverse temperatures βL,R using the relation (4). Then, we calculate Luρ and
Lρρ by setting βL = βR = 1 and, again, αL,R are determined by equation (4) for a given
small Dρ.

Finally we consider the dependence of ZT on the mass ratio M . In figure 4 we display
ZT versus M for a fixed average particle number, i.e., for each M we fix N by adjusting
the mean value of α = μ/T , which directly affects the mean density (4). Note a cusp-like
minimum at M = 1, corresponding to the integrable case, where ZT = 1. This minimum
becomes sharper and sharper when N increases, so we expect that in the thermodynamic
limit the value M = 1 will become an isolated (integrable) point, whereas for any other

doi:10.1088/1742-5468/2009/03/L03004 6
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Figure 3. The figure of merit ZT as a function of the relative density gradient
Dρ for several different values of the length of the lattice L = 10, 20, 30, 40, which
correspond to an average particle number N = 35, 70, 104, 140, for curves from
below to above. Note that convergence takes place for smaller and smaller Dρ as
the average particle number N increases.

M

Figure 4. ZT as a function of M for fixed N = 100. Inset: ZT as a function
of M for fixed N = 1000. Note that in the latter case, Dρ = 0.02 is not small
enough and the asymptotic value of ZT is not yet reached. Computations with
smaller Dρ, at such large value of N , are beyond the reach of our computers
(see figure 3).
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M �= 1, corresponding to ergodic and mixing dynamics, ZT is expected to grow with N
with the same power law (12).

Perhaps, one might note that the validity of non-equilibrium thermodynamics and the
linear response relations (9) should be questioned in detail for systems with anomalous
thermodynamic (N → ∞) scaling of transport coefficients. For this purpose we have
measured the efficiency (the ratio P/JQ in equation (2)) via direct numerical experiment.
This has been done by inserting a potential barrier against the direction of the particle’s
current so that one can extract useful work. The height of the barrier which particles
needed to climb was optimized in order to yield the highest efficiency, and this number
was found to be in perfect agreement with the right-hand side of (2) where ZT is computed
via the Onsager matrix elements (e.g. equation (10)).

In conclusion, we have demonstrated that in a very simple, interacting many-particle
classical dynamical system, namely the hard-point gas of unequal mass particles in one
dimension, the figure of merit ZT diverges to infinity in the thermodynamic limit with
a power law in the number of particles which is reminiscent of the divergence of thermal
conductivity found earlier in the studies of the Fourier law [11]–[13].

The next obvious step is to implement the hard-point gas system in a working
operative model of a heat engine or refrigerator which performs in a steady cycle.

The work is supported by the National Natural Science Foundation of China Grant
No. 10874243 and the start-up grant of Renmin University of China (LW).
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