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Transport properties of a boundary-driven one-dimensional gas of spinless fermions
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We analytically study a system of spinless fermions driven at the boundary with an oscillating chemical
potential. Various transport regimes can be observed: At zero driving frequency the particle current through the
system is independent of the system’s length; at the phase-transition frequency, being equal to the bandwidth,
the current decays as ∼n−α with the chain length n, α being either 2 or 3; below the transition the scaling of
the current is ∼n−1/2, indicating anomalous transport, while it is exponentially small ∼exp (− n

2ξ
) above the

transition. Therefore, by a simple change of frequency of the a.c. driving of the system one can vary transport
from ballistic, anomalous to insulating.
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I. INTRODUCTION

A system of free fermionic particles is of great importance
in many areas of physics. It can describe a gas of electrons,
a solid state system in a tight-binding approximation, or
the so-called XX spin chain, to name just a few. In a
noninteracting case without fields physics is rather simple.
Free modes, either in real or in momentum space, propagate
without mutual interaction or dissipation with constant speed,
resulting in ballistic transport properties. Things become
more interesting in the presence of external fields. Limiting
the discussion to one-dimensional (1D) systems, any on-site
disorder results in a localization of all states: the Anderson
localization [1]. A constant static electric field causes Bloch
oscillations [2] in a periodic lattice. An oscillating electric
field, on the other hand, results in a renormalized hopping
strength, leading to localization at specific values of the field
or the frequency [3]. In the present work we study a new
setting, namely, that of a harmonically (ac) boundary-driven
system of free fermions, and show that, depending on the
driving frequency, very different transport regimes can be
observed. The model can also be seen as a minimal model for
the boundary-driven nonequilibrium quantum phase transition.
We also discuss its experimental implementations, showing
that it could be realized in an optical setting with cold
atoms or ions or, in its fermionic version, with mesoscopic
systems.

We study a 1D chain of spin-1/2 particles interacting
between nearest-neighbor sites with an exchange interaction
of the XX type. The Hamiltonian is

H =
n−1∑
j=1

(
σ x

j σ x
j+1 + σ

y
j σ

y
j+1

)
. (1)

Equivalently, using Jordan-Wigner transformation the XX

model can be mapped to a system of noninteracting spinless
fermions with the Hamiltonian H = 2

∑
k(c†kck+1 + ckc

†
k+1),

where ck = σ−
k

∏
j<k σ z

j , and c
†
k = σ+

k

∏
j<k σ z

j (σ±
k ≡ (σ x

k ±
iσ y

k )/2) satisfy the standard fermionic algebra. The first and
the last spin are coupled to magnetization reservoirs. In
the language of fermions the reservoirs impose an external
chemical potential determining the number of fermions in

the system. The evolution of the system’s density matrix is
described by the Lindblad master equation [4],

dρ/dt = i[ρ,H ] + Ldis(ρ), (2)

where a dissipatorLdis(ρ) = ∑
k([Lkρ,L

†
k] + [Lk,ρL

†
k]) takes

into account the influence of two reservoirs. The left reservoir
is described by a pair of time-dependent Lindblad operators
L1,2(t) = √

ε[1 ± μ(t)] σ±
1 , and similarly at the right end,

L3,4(t) = √
ε[1 ∓ μ(t)] σ±

n . Note that drivings at the two ends
are opposite. For instance, when there is a maximal coefficient
of σ+

1 at the left end, we have a minimal coefficient of
σ+

n at the right end. Two important bath parameters are the
coupling strength ε between the chain and the reservoirs and
the value of the “chemical potential” that is oscillating in
time, μ = μ0 cos ωt . Nonzero μ means that probabilities for
an injection and absorption of a spin/fermion are different. For
dc driving, ω = 0, the transport of magnetization is trivially
ballistic; that is, the value of the current through the system is
independent of the length n, and the nonequilibrium stationary
solution of the Lindblad equation is known [5] and can be
compactly written in a matrix product operator form [6]. We
show by a fully analytic calculation that the situation is rather
different and interesting for ω �= 0.

II. THE SOLUTION

We want to find an asymptotic solution ρ(t → ∞) of the
Lindblad equation to which the system converges after very
long time. Because the system is harmonically driven, this
solution is not time independent, as is the case for ω = 0,
but instead oscillates with the very same forcing frequency ω.
In fact, the asymptotic stationary solution of Eq. (2) can be
written in the form

ρ(t) = 2−n1 + 1
2 (ρ̃eiωt + ρ̃†e−iωt ), (3)

where ρ̃ is time independent. The nonequilibrium stationary
state ρ̃ is in our case unique. There are several ways of
computing ρ̃. One is to realize that the XX model, even
when time-dependent, belongs to a class of systems [7–9] in
which exponentially many equations for all r-point functions
decouple into a hierarchy in which one has separate equations
for each order of correlations. This greatly simplifies the
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Lindblad equation, enabling one to find the exact nonequi-
librium steady state [8] and even study time evolution toward
a steady state [9]. We are especially interested in two-point
correlations as these include local magnetization σ z

k (=fermion
density) as well as spin current (=particle current) jk =
2(σ x

k σ
y
k+1 − σ

y
k σ x

k+1). In fact, the only nonzero two-point terms

in ρ̃ are B
(r)
k = 2(c†kck+r − ckc

†
k+r ) for even r and B

(r)
k =

2i(c†kck+r + ckc
†
k+r ) for odd r [10]. For instance, the first two

operators in the series are B
(0)
k = −2σ z

k and B
(1)
k = jk/2. In a

chain of length n there are in total n(n − 1)/2 such operators
and one can write a self-contained set of as many equations for
their unknown coefficients in ρ̃. Due to our parametrization
of driving they are all exactly proportional to μ0; from now
on we therefore set μ0 = 1 in all our results. Using standard
procedures such a set of linear equations can be solved for
chain lengths of n ∼ 103. Once these two-point coefficients
are known, they can be used as inhomogeneous source terms
in the set of equations for all four-point terms (which are all
proportional to μ2

0), and so on (see [8] for an example of such
a calculation).

In our case, though, one can do even better. Following
[11–13], the evolution of two-point correlations [i.e., the
above-mentioned n(n − 1)/2 linear equations] can be com-
pactly written in terms of a linear matrix equation. Defining
the time-dependent covariances 〈wjwk〉 ≡ tr ρ(t)wjwk =
δj,k − iZj,k , where wm = cm + c

†
m, wm+n = i(cm − c

†
m), m =

1, . . . ,n, and applying the Lindblad master equation, we obtain
a differential equation for the 2n × 2n covariance matrix Z

dZ/dt = −XTZ − ZX + Y cos ωt, (4)

where X = 2i σ y ⊗ J − 2ε12 ⊗ R and Y = −4i σ y ⊗ P are
real matrices, with J,P,R being n × n matrices having nonzero
elements Jk,k+1 = Jk+1,k = 1, k = 1, . . . ,n − 1, and R1,1 =
Rn,n = P1,1 = −Pn,n = 1. By considering the symmetry of the
differential equation (4) we write the covariance matrix in the
simple form Z(t) = Re[eiωt (12 ⊗ Z0 − i σ y ⊗ Z2)]. Inserting
the last definition into (4) we get two coupled equations
for the n × n matrices Z0 and Z2. We immediately see that
(Z0)j,k = 0 for j + k even, and (Z2)j,k = 0 for j + k odd;
hence, we can replace the two equations with one. Defining the
orthogonal transformation Oj,k = (−1)k+1δj,k , the matrices
C± = O(Z0 ± iZ2), and inverting the last relation, we end up
with two uncoupled equations,

2{J ± iεR,C∓} ∓ ωC∓ = −4εOP, (5)

where {,} is an anticommutator. Note that for odd n, OP =
P, while for even n, OP = R. The last equation (5) can be
solved perturbatively in the coupling ε. The solution to first
order in the coupling, obtained by the Fourier method (see the
Appendix B), is

C−
j,k = −32ε

n∑
p,m = 1

p + m = n(mod 2)

sin ap sin am sin ajp sin akm

(n + 1)2(λp + λm)
, (6)

with λm = (ω
2 − 4 cos am) − 8iε

n+1 sin2 am, where ak ≡ πk
n+1 .

It is instructive to emphasize the connection C−
j,k =

−i (−1)j 〈wjwk〉 = − 1
2 (−1)j 〈B(|k−j |)

j 〉 if j + k is odd and

C−
j,k = (−1)j 〈wj+nwk〉 = − i

2 (−1)j 〈B(|k−j |)
k 〉 if j + k is even.

All expectation values in this work are computed with respect
to the ac part of the density matrix ρ̃, 〈A〉 = tr (ρ̃A). Note that
C+

j,k = (−1)j+k+1C−
j,k and that n × n matrix C− contains all

nonvanishing matrix elements of Z.
From the perturbative solution (6) we can see [14] that for

large n and ω > ωc ≡ 8 the imaginary part of the Lyapunov
equation (5) can be neglected. In the thermodynamic limit one
can, in fact, express the solution in terms of a generalized
hypergeometric function (Appendix C). Here we prefer a
different route by first taking a continuum limit and writing
a partial differential equation. This results in a Helmholtz
equation for the correlation function C(x ≡ j

n+1 ,y ≡ k
n+1 ) =

C−
j,k ,

∇2C(x,y) + (ωc − ω)n2C(x,y) = P (x,y), (7)

where P (x,y) = ε[δ(x − 1
n
,y − 1

n
) + (−1)nδ(x − 1 + 1

n
,y −

1 + 1
n

)] is the source term resulting from the driving. Since the
dissipation effects in the matrix X can be neglected, the bound-
ary conditions are C(0,y) = C(x,0) = C(1,y) = C(x,1) = 0.
Using the method of mirror images the problem can be un-
folded into an infinite plane, where the source term becomes a
grid of quadrupoles P (x,y) → ε

∑∞
j,k=−∞

∑1
ν=0(−1)νnq(x −

2j − ν,y − 2k − ν). The solution is

C(x,y) = ε

∞∑
j,k=−∞

1∑
ν=0

(−1)νn

n2
G(x − 2j − ν,y − 2k − ν),

(8)

where G(x,y) is the Green’s function of Eq. (7) for a single
quadrupole source q(x,y) ≡ 2δ′(x)δ′(y) at the origin, where
δ′(x) denotes the derivative of Dirac’s function in the sense
of distribution. For the critical frequency ω = ωc the Green’s
function is particularly simple (and n independent):

Gc(x,y) = 4xy/[π (x2 + y2)2]. (9)

For ω < ωc, we can use heuristic arguments, combining
integral representation of the sum (6) and stationary-phase
integration leading to a universal asymptotic n scaling of the
covariances,

|C−
j,k| = O(n−1/2), if j,k ∝ n. (10)

III. RESULTS

The main quantity we are interested in is the current in
the middle of the chain, j�(n+1)/2�, and its scaling with n. The
scaling tells us how much the disturbance from the driving
at the chain ends influences the bulk. In Fig. 1 we show the
current’s dependence on the driving frequency ω, which turns
out to be the most important parameter in the system, which
can qualitatively change the transport. For small couplings ε,
shown in the top frame of Fig. 1, one can see that overall the
current decays with ω; however, for ω < ωc, there are many
very narrow resonances. Looking at the theoretical formula
(6), valid for small ε, it is easy to understand where these
resonances come from. They arise from points where the
denominator λp + λm is very small, which happens when
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FIG. 1. Dependence of the current in the middle of the chain on
the driving frequency ω. (Top) For small coupling ε = 0.01,n = 257,
many resonances are visible. (Bottom) For strong coupling ε = 1 we
have a smooth dependence. For ω > ωc (bottom inset) the current
decays exponentially with n.

ω = ωp−m ≡ εp + εm, with εm = 4 cos am being the energies
of free fermionic modes. The width of resonances scales as
ω ∼ ε/n, and within the resonance region |ω − ωp−m| <

ω the scaling of covariances is |C−
j,k| = O(ε0n−1) rather

than O(ε1n−1/2) (10). For larger couplings (bottom frame in
Fig. 1) the resonances merge into a smooth curve. We can also
see that for ω > ωc the current decays very rapidly with ω and
n, so there the system becomes an insulator for n → ∞. At
ω = ωc we have a nonequilibrium phase transition. The value
of ωc = 8 is also given by the bandwidth of the XX chain or,
in the physical picture, an insulating regime appears because
fermions do not have enough time to reach the neighboring
site before the sign of the driving reverses. Next, we show in
Fig. 2 the spatial dependence of the magnetization 〈σ z

k 〉 and
the spin current 〈jk〉 along the chain. Note that ρ(t) is time
dependent, even after a long time, so the continuity equation
reads iω〈σ z

k 〉 = 〈jk−1〉 − 〈jk〉. In addition to the amplitudes,
shown in Fig. 2, there is also a nontrivial dependence of phases
on the spatial position k of each of these quantities. We should
note that none of the qualitative features depends on the value
of ε (for more, see Appendix A). At the transition point ω = ωc

the correlations can be for large n approximately calculated
by summing over only two nearest quadrupoles in (8) and (9),
resulting in

Cc(x,y) ≈ ε

n2
[Gc(x,y) + (−1)nGc(x − 1,y − 1)]. (11)

The difference between this theoretical dependence and the
exact values is shown in Fig. 2 and is small. For ω < ωc the
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FIG. 2. (Color online) Magnetization profiles (left column) and
spin current profiles (right column) for n = 257, ε = 0.1, and three
different ω. At the critical ωc = 8, the profiles agree with the
theoretical estimate (11) (relative error is always less than 10%).
Dashed line for ω = 8.1 is exp (−k/ξ ) with ξ = 1√

ω−ωc
≈ 3.16.

main wavelength visible in magnetization and current profiles
is determined by the closest resonance.

To assess the nature of spin transport at various values of ω

we have studied dependence of the spin current in the middle
of the chain on the system size n. Above the transition point
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FIG. 3. (Color online) Scaling of the current in the middle of
the chain on n. (Top left) ω > 8, (top right) ω = 8, (bottom) ω = 1.
Note that the scaling for the critical ω, being either ∼1/n2 or ∼1/n3,
depends on the parity of the system size. For ω < ωc the dependence
on n is for small ε not monotonic ∼1/

√
n; however, oscillations

get smaller for larger ε: “Numeric” points are numerically exact
solutions and “analytic” are weak-coupling summation of Eq. (6).
For ω > ωc the current scales as ∼exp (− n

2ξ
) with the evanescence

length ξ = 1√
ω−ωc

(inset).
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ŽNIDARIČ, ŽUNKOVIČ, AND PROSEN PHYSICAL REVIEW E 84, 051115 (2011)

ω > ωc the dependence is exponential, |j(n+1)/2| ∼ exp (− n
2ξ

),

as shown in Fig. 3, with ξ = 1√
ω−ωc

, obtained, for example,
from Eq. (7) (for another approach, see the Appendixes). At
the critical point ω = ωc the scaling of the current in the
middle of the chain depends on the parity of n. For even
n it is ∼1/n2, while it is ∼1/n3 for odd n. This can be
theoretically seen from Eq. (11): For odd n two quadrupoles
are subtracted, leading to a subleading-order scaling along the
skew diagonal of Cj,k . For ω = ωc the system is therefore
also an insulator in the thermodynamic limit; however, the
limit is reached in an algebraic way. In a way, the most
interesting regime is for ω < ωc. If, when one increases n

one “sits” at a certain resonance (thereby changing ω with
n), ωp−m = εp + εm, and one at the same time also lets
ε → 0, the scaling is |j(n+1)/2| ∼ 1/n, simply because only
the resonance term in Eq. (6) contributes. However, the limit
n → ∞ and at the same time ε → 0, while ω depends on n,
is rather artificial. More important is the limit when one fixes
ω and ε, letting only n → ∞. The results, shown in Fig. 3
for extremely large n ∼ 109, indicate that the average decay
of the current is |j(n+1)/2| = 4|C−

(n+1)/2,(n+1)/2+1| ∼ 1/
√

n, as
argued analytically (10). Such anomalous scaling, although
being rather common in classical systems, has been observed
only recently in a quantum setting, namely, in the isotropic
Heisenberg model [15].

IV. SPATIAL DEPENDENCE OF CORRELATIONS

A. Critical ωc

At the critical driving frequency ω = ωc the spatial depen-
dence of C−

j,k does not show any oscillations, as is the case for
ω < ωc. In Fig. 4 we show a density plot of |C−

j,k| for ω = 8
and n = 257 as well as n = 256. One can nicely see very
high intensity near the two opposite corners, reflecting the fact
that the correlations can be approximately described by two
quadrupole sources. For odd n these sources are subtracted,
resulting in a suppressed correlations along the skew-diagonal,
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FIG. 4. (Color online) Exact correlations at the nonequilibrium
phase transition point, ω = 8. The coupling is ε = 0.1. The C−

j,k

is approximately given by two quadrupole sources at two opposite
corners (high intensity in the figure). For odd n (left panel) two
quadrupole sources are subtracted; for even n (right panel) they are
added.
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FIG. 5. (Color online) Correlations |C−
j,k|/ε for n = 257, ε =

0.001. (Left panel) An out-of-resonance ω = 6.163 with an essen-
tially “random” structure of C; (right panel) ω = ω2–9 ≈ 7.975,
which is on the resonance, resulting in a simple form C ∼
| sin (2πx) sin (9πy) + sin (9πx) sin (2πy)|.

leading there to a ∼1/n3 scaling. For even n, though, the
quadrupoles are added, resulting in higher correlations scaling
as ∼1/n2 along the skew diagonal. Also compare these plots
with the cross sections along the diagonal (magnetization) and
near-diagonal (current) shown in the Fig. 2.

B. Correlations for ω < ωc

In Fig. 5 we show the expectations of all nonzero two-point
observables, that is, C−

j,k , at smaller frequency than ωc. We can
see that the structure of correlations can be quite different at
different frequencies.

Below the transition point and for small ε the correlations
are dominated by resonances, for which the condition ω =
ωp−m = εp + εm (εp = 4 cos p π

n+1 ) is fulfilled. As explained,
the position of resonances is different for even and odd sizes
n because in one case only even p + m are allowed while in
the other only odd p + m occur. This is illustrated in Fig. 6.
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FIG. 6. Resonances are for odd and even n at different positions.
Current at the middle of the chain is for n = 256 two orders of
magnitude larger than for n = 257 because we are close to ωc = 8,
where one scales as ∼1/n2, while the other is ∼1/n3. Both data are
for ε = 0.01.
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FIG. 7. (Color online) Transition to the theoretical correlation function (12) at high resonant frequencies. On the left a case of the
2–9 resonance is shown, while the right pictures show the 5–6 resonance. The top middle picture shows the theoretical resonance
shape Eq. (12) for p = 2, m = 9. See text for more details. Color scale is adjusted between the plots for better detail; all is for
n = 257.

If the driving frequency ω is equal to some resonant
frequency ωp−m, where p + m = n (mod 2), and if ε is
sufficiently small, the spatial pattern of correlations is given
by the theoretical formula

|C−
j,k| ∝ | sin (pπx) sin (mπy) + sin (mπx) sin (pπy)|. (12)

This form comes due to a combination of two eigenfunctions.
How small must the coupling be for this to happen is a
nontrivial question. It depends on how well the resonance in
question is resolved. For instance, the density of resonances
is, in general, higher at smaller ω. This means that in order
to resolve a resonance one will typically need a smaller ε at
smaller frequencies than, for instance, just below the critical
frequency. We illustrate this phenomenon in Fig. 7. Two
resonances are shown: the resonance 5–6 at ω5–6 ≈ 7.981 92
is well separated from the others, while the 2–9 resonance at
ω2–9 ≈ 7.974 82 is very close to the ω6–7 ≈ 7.974 81. In fact,
in the plot of |j(n+1)/2| on ω these two resonances cannot be
resolved on the scale of the plot. Because of that, at large
ε = 1 the spatial dependence of correlations is a kind of
merger of resonances ω2–9 and ω6–7. The theoretical small-ε
shape of the resonance is resolved only around ε = 0.001. The
spatial pattern of the resonance ω5–6 is, on the other hand, well
resolved already at large ε = 1.

For small ω the transition to theoretical |C−
j,k| typically

happens at smaller couplings. This is shown in Fig. 8, where
we show the 3–82 resonance. This resonance is the closest
to the frequency ω = 6.163, whose correlations have been
shown in Fig. 5. We can see that one needs ε = 0.0001 in

order to reach Eq. (12). The shape of correlations at general
small frequencies and large couplings typically looks rather
“random,” similar to plots at ε = 1.0 or ε = 0.01 in Fig. 8.

V. OTHER RESERVOIRS

The physical phenomenon described for our exactly solv-
able model, that is, a phase transition with ω, is robust to small
changes of the model. For instance, in this section we show
that similar transition is obtained also for a system coupled
to the so-called two-spin baths, in each of which one has 16
Lindblad operators acting on two boundary sites (simulating
finite-“temperature”). The physical picture, explaining why
the phase transition occurs, is clear. If driving is faster than
the fastest time scale in the systems—the nearest-neighbor
coupling (hopping strength)—then the system is an insulator.
We therefore conjecture that the phenomenon is robust to,
for instance, changes of the reservoir. The only necessary
ingredient is that one has reservoirs of magnetization, or, in
fermionic picture, of particles. The advantage of reservoirs
studied in the present work, that is, with Lindblad operators
L ∼ σ±, is that we are able to analytically solve for the
nonequilibrium steady state. For other types of reservoir
Lindblad operators the system is not quadratic in fermionic
variables anymore and exact solution is, in general, not
possible. Nevertheless, to test our conjecture we performed
numerical simulations with time-dependent density matrix
renormalization group (tDMRG) method. We used the so-
called two-spin reservoirs, in which there are 16 Lindblad
operators acting on two spins at each chain end. Details

051115-5
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FIG. 8. (Color online) Resonance ω3–82 at various ε. This res-
onance is the closest to ω = 6.163 shown in Fig. 5. We plot
|Cj,k|/ε.

of our implementation can be found in Ref. [16]. Because
experimental realization, for instance with ions, is easier for
short chains we choose a short chain of length n = 8 and
n = 16, in order to demonstrate that the phase transition
can be seen already in small systems. Results of numerical
simulations are shown in Fig. 9. First, we cross-checked our
analytical results for Lindblad operators L ∼ σ± presented
in this work with the results of tDMRG simulations (open
symbols). By comparing two points at ω ≈ 6 and ω ≈ 8.4
one can see a large drop in the current around ωc = 8. Using
a two-spin bath one can achieve a nonequilibrium steady
state with nonzero average energy density. Assuming that
the state is locally close to a canonical one, one can ascribe
temperature to the nonequilibrium steady state by comparing
the average energy density with the canonical one [17]. In
our simulations (solid symbols in Fig. 9) the energy density
in the steady state is 〈σ x

j σ x
j+1 + σ

y
j σ

y
j+1〉 ≈ −0.26, which

corresponds to the canonical expectation value at temperature
T ≈ 7.6. The nonequilibrium steady state of the analytical
solution has, on the other hand, zero average energy density
and can be described as a state at an infinite temperature.
Observing data points for two-spin bath and n = 16 (solid
circles) at ω ≈ 6 and at ω ≈ 8.4, we can see that even for
a nonsolvable finite-temperature NESS there is still a two
orders of magnitude drop in the current as one increases the
driving frequency beyond ωc. Phase transition is therefore
quite robust and is not only a property of our solvable
model.

 0.0001
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 0.1

 0  2  4  6  8  10  12  14

|j n
/2

|

ω

n=8
n=16

2-spin, n=8
2-spin, n=16

FIG. 9. (Color online) Spin current in the middle of the chain
for different frequencies. Symbols, squares for n = 8 and circles for
n = 16, are results of tDMRG simulations, two full lines are analytic
results for L ∼ σ±. Open symbols are tDMRG simulation of the
system studied in the present work (L ∼ σ±), while solid symbols are
for a two-spin bath, simulating finite-temperature reservoirs. ε = 1,
μ0 = 0.2.

VI. EXPERIMENTAL IMPLEMENTATION

One way of implementing various quantum models is
via a rapidly developing field of simulating physical sys-
tems with cold atoms or ions. All ingredients necessary
to implement our model, such as the exchange interaction
between nearest neighbors, have already been achieved [18].
Simulating the Lindblad equation, for instance in order to
dissipatively prepare a given pure state [19,20], is by now
also quite established. We here sketch the implementation
with ions, although other realizations, for instance with
atoms in an optical lattice [21], go along similar lines. The
method would actually be very similar to the one used in
Refs. [20,22], where a master equation with the Lindblad
operator L′ = 1

2σ z
1 (1 − σ x

1 σ x
2 σ x

3 σ x
4 ) has been implemented

on a system of four ions. In our model we instead need
L = σ+

1 . The difference from Refs. [20,22] would be that to
implement L one has to apply an entangling Mølmer-Sørensen
gate [23] just on two ions (ancilla and one system’s site)
instead of on five ions (for a description, see, for example,
Appendix B in Ref. [22]). This can be seen by writing
L = σ+

1 = 1
2σ x

1 (1 − σ z
1 ). Up to a trivial rotation around the

y axis this is similar to L′. Phase transition could be detected
by simply measuring the state (magnetization) of ions. Another
feasible way to implement our model is in a mesoscopic
setting with electrons [24]. One would need a quantum wire
(coupled quantum dots, molecular wire, etc.) coupled to
electron reservoirs. By varying electrochemical potential in
the reservoirs, for instance by an external gate potential or
a laser pulse, one can achieve a time-dependent occupation
of reservoirs, which would correspond to our magnetization
reservoirs in the spin language. In fact, a somewhat related
model of tight-binding electrons in an ac electric field
[3] has been studied extensively by approximate theoreti-
cal and numerical methods (see, e.g., [25] and references
therein).
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VII. CONCLUSION

We have analytically solved a system of 1D spinless
fermions under harmonic ac driving at the lattice ends. With
the driving frequency there is a transition from a system with
a ballistic transport for ω = 0 to the one with anomalous
transport for ω < 8, which at the critical frequency ω = 8
changes to an insulator.
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APPENDIX A: DEPENDENCE ON
THE COUPLING STRENGTH

The coupling strength ε between baths and the system is a
rather trivial parameter that does not affect the main qualitative
features of the transport. It, of course, influences the size of
correlations Cj,k . In Fig. 10 we show the dependence of the
current in the middle of the chain, j(n+1)/2 on ε. The functional
form is always very similar to the one at ω = 0, which is
known exactly [5,6], and is 〈jk〉 = 4

ε+ 1
ε

. More important is

the influence of the value of ε on the width of resonances and
whether the latter are isolated or not, which is, in turn, reflected
in the spatial pattern of Cj,k .

APPENDIX B: EXACT SOLUTION OF
THE WEAK COUPLING LIMIT

The stationary correlation matrix C− is obtained from the
continuous Lyapunov equation

{A,C−} = −4εS, A = 2(J + iεR) − ω

2
1, (B1)

with J being an n × n matrix with the only nonzero el-
ements Jk,k+1 = Jk+1,k = 1, while the n × n matrices S,R

 0
 0.1
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 0.3
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 0.5
 0.6
 0.7
 0.8
 0.9

 1
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FIG. 10. Dependence of the current in the middle of the system on
the coupling strength ε. For all ω the overall functional dependence is
similar to the one at ω = 0 (dashed curve), only the size of the current
changes (note different prefactors for ω �= 1.0); all is for n = 257.

have all elements equal to zero except R1,1 = Rn,n = S1,1 =
(−1)nSn,n = 1. The matrix A consists of a term J, which
corresponds to kinetic energy of the system, a coupling term
R, that corresponds to the dissipation to the environment, and
one additional term, which comes from the time dependent,
oscillatory part of the correlation matrix. The source term
S is determined by the driving, that is the difference in the
chemical potentials between the left and the right reservoirs.
Equation (B1) is straightforwardly solved by the following
ansatz:

C− =
∑
j,k

�j,k�
right
j ⊗ �

right
k , (B2)

where �
right
j denotes the j th right eigenvector of A with the

corresponding eigenvalue βj , A�
right
j = βj�

right
j . Then, by

plugging the ansatz into Eq. (B1) we get the expression for
the coefficients �j,k ,

�j,k = − 4ε

βj + βk

� left∗
j · S� left∗

k . (B3)

We find the eigenvectors and the eigenvalues perturbatively
in ε and calculate only the leading contribution to the
correlation matrix C−. The leading-order eigenvectors and the
corresponding eigenvalues are

ψ
(0)
j,k =

√
2

n + 1
sin ajk, β

(0)
j = ω

2
− 4 cos aj , (B4)

where ak ≡ πk
n+1 . For ω < ωc ≡ 8 the sum of the eigenvalues in

the denominator of the ansatz (B2) can vanish; hence, we need
to take into account the first order correction to the eigenvalues
as well,

β
(1)
j = − 8iε

(n + 1)
sin2 aj . (B5)

Combining Eqs. (B2), (B3), (B4), and (B5) we immediately
get the correlation matrix in the leading order in ε,

C−
j,k = −32ε

n∑
p,m = 1

p + m = n(mod 2)

sin ap sin am sin ajp sin akm

(n + 1)2(λp + λm)
,

(B6)

where λm = β(0)
m + β(1)

m .

APPENDIX C: EXACT SOLUTION OF
THE WEAK COUPLING LIMIT FOR ω � ωc

In the case ω > ωc the ansatz (B2) has no singularities and
becomes analytic also in the zeroth order in ε, that is, by taking
λm ≈ β0

m, and for all system sizes n. Therefore, we can find
the solution of Eq. (B1) using a different approach. First, we
simplify the continuous Lyapunov equation (B1),

2{J,C−} − ωC− = −4εS. (C1)
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The exact solution of Eq. (C1) is sought in the form of a
perturbative ansatz

C− =
∞∑

j=0

1

ωj
Cj . (C2)

The straightforward recursive solution is

Cj = {2J,Cj−1}, C0 = 4εS
ω

. (C3)

From the recursion (C3) it is possible to calculate each term
in the solution (C2) explicitly. After a tedious calculation we
then rewrite the correlations as follows:

C−
j,k = 4ε

∞∑
l,m=−∞

1∑
ν=0

(−1)νn

n2
Gj−2l−ν,k−2m−ν, (C4)

where

Gj,k = jkω−j−k�(j + k − 1)�(j + k + 1)

× 4F̃3

[
j+k−1

2 ,
j+k

2 ,
j+k+1

2 ,
j+k+2

2

j + 1,k + 1,j + k + 1
;

16

ω2

]
, (C5)

by means of the standard � function �(x) and generalized
hypergeometric function 4F̃3. Note that for large system sizes
n � 1 and for elements of the covariance matrix lying near
the diagonal |j − k| � n we can approximate

C−
j,k ≈ ε

n2
[Gj,k + (−1)n Gj−1,k−1]. (C6)

From the approximate solution (C6) it is possible to extract the
scaling of the elements near the diagonal in the limit j � 1.
We find that C−

j,j+1 ∝ e−j/ξ , where ξ = 1√
ω−ωc

.
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[6] M. Žnidarič, J. Phys. A 43, 415004 (2010).
[7] K. Temme et al., e-print arXiv:0912.0858.
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M. Žnidarič, New J. Phys. 12, 043001 (2010).
[17] M. Žnidarič et al., Phys. Rev. E 81, 051135 (2010).
[18] S. Trotzky et al., Science 319, 295 (2008); J. Simon et al.,

Nature (London) 472, 307 (2011); M. Lubasch et al., e-print
arXiv:1106.1628.

[19] B. Kraus et al., Phys. Rev. A 78, 042307 (2008); S. Diehl et al.,
Nat. Phys. 4, 878 (2008); F. Verstraete et al., ibid. 5, 633 (2009).

[20] J. T. Barreiro et al., Nature (London) 470, 486 (2011).
[21] H. Weimer et al., e-print arXiv:1104.3081.
[22] M. Müller et al., e-print arXiv:1104.2507.
[23] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999).
[24] S. Kohler et al., Phys. Rep. 406, 379 (2005).
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