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We study the Loschmidt echo F�t� for a class of dynamical systems showing critical chaos. Using a kicked
rotor with singular potential as a prototype model, we found that the classical echo shows a gap �initial drop�
1−Fg, where Fg scales as Fg�� ,� ,��= fcl��cl��3−� /��; � is the order of singularity of the potential, � is the
spread of the initial phase-space density, and � is the perturbation strength. Instead, the quantum echo gap is
insensitive to �, described by a scaling law Fg= fq��q=�2 /�� which can be captured by a random matrix theory
modeling of critical systems. We trace this quantum-classical discrepancy to strong diffraction effects that
dominate the dynamics.
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Systems with a phase transition were always a fruitful
subject of study for many areas of theoretical and experimen-
tal physics. Specifically in the field of random media, the
celebrated Anderson metal-insulator transition �MIT� �1� has
been an exciting subject of research for more than 50 years.
On the other hand, quantum chaos brought up a connection
between quantized chaotic systems and localization ideas
emerging from solid-state physics �2�. It has been shown that
quantum suppression of classical diffusion is a result of wave
interference phenomena of similar nature as the ones respon-
sible for the Anderson localization in random media. Quite
recently the connection between the two fields was further
strengthen with the observation that certain non-
Kolmogorov-Arnold-Moser dynamical systems exhibiting
classically anomalous diffusion can have statistical proper-
ties resembling the ones of media at MIT �3,4�. This phe-
nomenon is referred to as critical chaos. Some of these prop-
erties include, quantum anomalous diffusion �5�, multifractal
wave functions �6�, critical spectral �7�, and delay time sta-
tistics �8�. Many of these properties can be exactly derived
using nonconventional ensembles of random matrices with
variance decaying from the diagonal in a power-law fashion
�1,3,9�, which in turn model a variety of systems �10�.

Most of the above studies discuss the stationary properties
of critical systems. On the other hand this knowledge is often
not sufficient for a complete description of the dynamics.
This need led us in recent years to focus on new measures
that efficiently probe the complexity of quantum time evolu-
tion. One such measure is the so-called Loschmidt echo �LE�
which probes the sensitivity of quantum dynamics to exter-
nal perturbations �for recent reviews see �11��. The recent
literature on the subject is quite vast and ranges in areas as
diverse as atomic optics �12–14�, microwaves �15�, elastic
waves �16�, quantum information �17�, and quantum chaos
�18–23,25,26�. Formally, the LE, F�t�, is defined as

F�t� = ���0�eiH0te−iH�t��0��2, � = 1, �1�

where H�=H0+�W is a one-parameter family of the Hamil-
tonians, H0 is the unperturbed Hamiltonian, W represents a
perturbation of strength �, and ��0� is an initial state.

For a noncritical quantum system with a chaotic classical

counterpart, the decay of the LE depends on the strength of
the perturbation parameter �. Three regimes have been iden-
tified: the standard perturbative, the Fermi golden rule, and
the nonperturbative regime. The first two can be described by
linear-response theory leading to a decay which depends on
the perturbation strength � as F�t�	e−��t�2

and F�t�	e−�2t,
respectively �19,22�. In the nonperturbative regime, the LE
initially follows a Lyapunov decay F�t�	e−�t, with a rate
given by the Lyapunov exponent � of the underlying classi-
cal system �18,19�, whereas for longer times �beyond the
so-called Ehrenfest time� the LE decays in accordance with
the classical autocorrelation function �23�. This behavior
matches the decay of the classical echo according to the cor-
respondence principle.

In this Rapid Communication we make the first step in
understanding the echo decay of dynamical systems with
critical chaos. The focus of the presentation is on the non-
perturbative regime where our study revealed a result �see
Fig. 1�: we have discovered the appearance of an echo gap
�initial drop of LE� 1−Fg for initial states which are distrib-
uted in the parts of phase-space where the Hamiltonian func-
tion exhibits singularities. We have found that at the shortest
classical time scale t* �mean free time between singular scat-
tering events� Fg=F�t*� scales as

Fg��,�,�� = 
 fcl��cl� where �cl = C
�3−�

�

fq��q� where �q = C
�2

�
, � �2�

where the subindices q /cl indicate the quantum/classical
scaling function for Fg. In Eq. �2�, � is the order of singu-
larity of a nonanalytical potential, � is the characteristic
spread of the phase-space density of the initial classical or
quantum state �e.g., its Wigner function�, and the constant C
only depends on details of H0 �24�. Moreover, we found that
the scaling function f��� behaves asymptotically as
f��→0�	�. The above scaling laws were derived based on
the analysis of classical dynamics and confirmed nicely by
numerical simulations.

The apparent deviation of the quantum echo behavior
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from its classical counterpart �see Eq. �2�� can be seen as a
violation of the quantum-classical correspondence �QCC�;
the latter being confirmed in all previous fidelity studies. We
have found that the origin of this anomalous behavior is due
to strong diffraction effects which dictate the wave dynamics
for the class of dynamical systems we investigate in this
Rapid Communication.

Below we consider a class of parametric kicked rotors
�KR� defined by the time-dependent Hamiltonian �4�

H0 =
p2

2
+ K0V�q��

n

��t − nT� , �3�

where �p ,q� is a pair of canonical variables and T and K0 are
the period and the strength of the kicking potential, respec-
tively. The class of KRs that we will study below has a
potential which is given by

V�q� = 
�q�� for � � 0

log�q� for � = 0.
� �4�

The �=0 case corresponds to MIT �4� and will be investi-
gated below in detail. The classical dynamics is described by
the following map:

pn+1 = pn − K0V��qn�, qn+1 = qn + Tpn+1, �5�

where all variables are calculated immediately after one
map iteration and V�� �V�q�

�q . The domain of q is within
the interval −	
q
	. The map �Eq. �5�� can be

studied on a cylinder p� �−� ,��, which can also be closed
to form a torus of length 2	L, where L is an integer. For
K0�0 the motion is chaotic �see inset of Fig. 2�
with a �local� Lyapunov exponent given by ��q�
=2 log�1+K0 / �2q2�+�K0 /q2+ �K0 / �2q2��2� for q�0.

The quantum evolution is described by a one-step unitary

operator Û0 acting on the wave function ��q�:

U0 = exp�− i
n̂2/2�exp�− ikV�q��, � = 1, �6�

where n̂=−i� /�q, −N /2�n�N /2, 
= �2	L /N�T, and
k= �N /2	L�K0. Optionally, we define an effective Planck
constant �eff=2	L /N. The classical limit corresponds to
N→�. Without loss of generality we will assume below that
T=1. It was shown in �4� that for −0.5���0.5 the eigen-
functions of the above unitary operator are multifractal while
the levels resemble the statistical properties of disordered
systems at MIT.

For the echo calculation, we perturbed our system with
the following �smooth� potential W�q�=cos q. Correspond-
ingly the perturbed quantum kicking parameter is �=� /�eff.
Quantum mechanically, the initial preparation is a Gaussian
wave packet centered along the line of singularity, i.e.,
�q0 , p0�= �0, p0�. The linear width 2� of the packet is taken to
be minimal �i.e., 2�=�p=�q=��eff /2�, where we perform
an averaging over different p0’s in order to eliminate fluctua-
tions. The corresponding classical initial preparation is given
by a uniform distribution of trajectories located inside a box
of area A=2��2�	�eff. We then define the classical LE,

Fcl�t=n�, as the overlap of the initial area A0 with the area Ãf
obtained by evolving A0 for n iterations of the perturbed map
and then reversing the evolution for n iterations with the
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FIG. 1. �Color online� Quantum �red dashed line� and classical
�black solid line� LE F�t� for the KR with V�q�=log�q� and K0=1 in
the nonperturbative regime: �a� torus geometry with L=1, N=217,
and classical perturbation �=10−4 �corresponding to ��2.0�. The
width of the initial preparation is ��0.04275. �b� Cylinder geom-
etry, with L=103, N=216, and classical perturbation �=0.4 �corre-
sponding to ��4.17�. One observes that after the initial Lyapunov
decay �inset; the dashed line indicates an average Lyapunov decay�,
F�t� follows a power law decay given by the autocorrelation func-
tion �4,23�. Here we have ��0.15. In both cases we have used
more than 107 trajectories for the classical calculation, while an
averaging over 800 initial Gaussian wave packets centered at dif-
ferent momenta p0 and q0=0 has been done in the quantum calcu-
lation. The filled circles indicate the first �classical or quantum�
nontrivial time step of Fg=F�n=2�. The statistical errors are smaller
than the symbol size.

FIG. 2. �Color online� Classical echo map �Eq. �8�� for the
�=0,K0=1 singular potential �cylinder geometry with L=103�. The
initial preparation is a box of size �=	 /300 around �0,0�. The
evolution snapshot is for the shortest nontrivial time scale n=2. The
thick dashed �red� line is the theoretical prediction of Eq. �9�. Upper
left inset: The Wigner function representation �torus geometry� of
the quantum echo map. The light areas correspond to negative
phase-space densities indicating diffraction phenomena. Lower
right inset: a typical phase space for K0=1 �20 trajectories involved
up to time 105 iterations of the map�.
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unperturbed one. We have also checked that the results re-
main qualitatively the same when we chose an initial classi-
cal distribution to be a Gaussian density, equivalent to a
Wigner function of the quantum Gaussian wave packet.

We start our analysis with the classical derivation of Eq.
�2�. To this end we consider the classical echo dynamics
�27�. We denote by �0�p ,q� the forward symplectic map
defined in Eq. �5�, while by ��=�0 � P� we denote the cor-
responding perturbed forward map. In this notation
P��p ,q�= (p+� sin�q� ,q) is a symplectic map generated by
the perturbation �perturbation map�. In this framework, the
n-step echo map is defined as

�n
E � �0

−n � ��
n = P̃�

�n−1� � P̃�
�n−1� � ¯ � P̃�

�0�, �7�

where the perturbation map is written in the interaction pic-

ture, i.e., P̃�
�n���0

−n � P� ��0
n. Explicitly, �pn+1

E ,qn+1
E �

= P̃�
�n��pn

E ,qn
E�, where

pn+1
E = pn

E + � sin��0
n�pn

E,qn
E��q

���0
n�pn

E,qn
E��q

�qn
E ,

qn+1
E = qn

E − � sin��0
n�pn

E,qn
E��q

���0
n�pn

E,qn
E��q

�pn
E . �8�

For singular potentials and initial conditions close to singu-
larity, we express the phase-space shift produced by the echo
map after the second iteration step:

�p2
E = p2

E − p0
E � − � sin�q1�K0V��q0� ,

�q2
E = q2

E − q0
E � − � sin�q1� , �9�

where q1 is given by the map �Eq. �5�� with the initial con-
dition �p0

E ,q0
E�= �p0 ,q0�. Due to the fact that the initial con-

ditions are populating a box centered on the singularity line,
we can assume that sin�q1� is a pseudorandom variable with
density P�x�sin�q��= �1 /	��1−x2�−1/2. The accuracy of our
assumption is tested in Fig. 2, where we compare the enve-
lope of the shift in momentum as it is given by Eq. �9� with
the exact echo dynamics.

For a given q0 �and assuming ����, the probability to
return to the initial phase-space box is estimated as

P�q0� =
1

	

�

� + �K0�V��q0��
, �10�

provided that the typical echo shift �p2 is much larger than
�. The echo probability is just the integral of P�q0� over the
initial interval q0� �−� ,��:

Fcl
g =

1

2�
�

−�

�

P�q0�dq0 �
1

2	�K0
�

−�

� dq0

�V��q0��
. �11�

For the specific family of singular potentials discussed in
this Rapid Communication, the above relation gives us

Fcl
g = 


1

3	K0

�3

�
for � = 0

1

	K0���� − 1���3 − ��
�3−�

�
for � � 0.� �12�

Our results in Eq. �12� are nicely confirmed in Fig. 3,
where we are plotting the echo gap for various � ,� and �
values by making use of the rescaled variable �cl given by
Eq. �2�. Strictly speaking, the above results are applicable
only for the case where Fcl

g �1. Nevertheless, our numerics
indicate that the scaling behavior Eq. �2� continues to apply
for values of Fcl

g 	1.
We have also tested the results of the classical analysis

against the quantum echo gap. A complete breakdown of the
QCC is observed after the shortest nontrivial time scale �two
iteration steps�. This is associated with the fact that the
Ehrenfest time for our system tE	 log�heff� /��q0�→0 when
q0→0 �28�. Weak correspondence is restored for longer
times when the echo dynamics spreads ergodically resulting
in a vanishing measure of the critical line at q0=0.

In Fig. 3 we observe that although the � dependence of the
quantum Fg is captured by the classical calculations, both the
�	�� and the � dependence differ drastically. The latter can
be explained by a random phase kicked rotor �RPKR� with
singular potential, which is simply given by Eq. �6� and re-
placing the eigenvalues of 
n̂2 /2 by random phases. This
indicates that the appearance of a gap is insensitive to clas-
sical dynamics and thus can be captured by a random matrix
theory �RMT� modeling which preserves the power-law band
structure of the evolution operator. Thus the fidelity gap is a
universal phenomenon of critical systems described by these
RMT models and can be used as an alternative criterium to
level or wave-function statistics �1,4–7�.

We argue that the violation of the QCC is due to domi-
nating diffraction effects that appear as a consequence of the
singular potential. This is illustrated in the inset of Fig. 2
where we show the Wigner function �computed according to
Ref. �29�� of the echo map for the first nontrivial time step.
One observes the appearance of nonclassical regions in the
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FIG. 3. �Color online� The Fg for various � ,� ,�’s of the KR
defined by Eqs. �3� and �4�. In �a� we report the classical Fg against
the scaling variable �cl �see Eq. �2��, while in �b� we report the
corresponding quantum Fg vs the scaling variable �q �see Eq. �2��.
At the same subfigure we report the results for the RPKR resulting
from the model �Eq. �6�� by a randomization of the phases of the
kinetic part of U0. In the insets we report a magnification of the
main panels in the regime of Fg�1. In all cases an excellent data
collapse is observed.
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phase space where the Wigner function takes negative val-
ues.

In conclusion, we find that the LE of dynamical systems
exhibiting critical chaos decays instantaneously with a gap
that scales inverse proportionally to the strength of the per-
turbation. The order of the potential singularity is encoded in
the scaling properties of the classical echo gap, while the
corresponding quantum gap is insensitive to it and its scaling

properties are described by an RMT modeling of critical sys-
tems. This deviation is explained in the basis of strong dif-
fraction which is a dominating mechanism of short-time
echo dynamics.
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