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We discuss the stability of quantum motion under system’s perturbations at the light of the cor-
responding classical behaviour. In particular we focus our attention on the so called ”fidelity” or
Loschmidt echo, its relation with correlations decay, and discuss the quantum classical correspon-
dence. We then report on the numerical simulation of the double-slit experiment, where the initial
wave-packet is bounded inside a billiard domain with perfectly reflecting walls. If the shape of
the billiard is such that the classical ray dynamics is regular, we obtain interference fringes whose
visibility can be controlled by changing the parameters of the initial state. However, if we mod-
ify the shape of the billiard thus rendering classical (ray) dynamics fully chaotic, the interference
fringes disappear and the intensity on the screen becomes the (classical) sum of intensities for the
two corresponding one-slit experiments. Thus we show a clear and fundamental example in which
transition to chaotic motion in a deterministic classical system, in absence of any external noise,
leads to a profound modification in the quantum behaviour.

PACS numbers: 05.45.Ac,05.45.Mt,03.67.Lx

I. INTRODUCTION

As it is now widely recognized, classical dynamical
chaos has been one of the major scientific breakthroughs
of the past century. On the other hand, the manifesta-
tions of chaotic motion in quantum mechanics, though
widely studied [1, 2], remain somehow not so clearly un-
derstood, both from the mathematical as well as from
the physical point of view.

The difficulty in understanding chaotic motion in
terms of quantum mechanics is rooted in two basic prop-
erties of quantum dynamics:

(1) The energy spectrum of bounded, finite number
of particles, conservative quantum systems is discrete.
This means that the quantum motion is ultimately quasi-
periodic, i.e. any temporal behaviour is a discrete super-
position of finitely or countably many Fourier compo-
nents with discrete frequencies. In the ergodic theory
of classical dynamical systems, such a quasi-periodic dy-
namics corresponds to the limiting case of integrable or
ordered motion while chaotic motion requires continuous
Fourier spectrum [3].

(2) Quantum motion is dynamically stable, i.e. ini-
tial errors propagate only linearly with time [4]. Linear
instability is a typical feature of classical integrable sys-
tems and this contrasts the exponential instability which
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characterizes classical chaotic systems.

Therefore it appears that quantum motion always ex-
hibits the characteristic features of classical integrable,
regular motion which is just the opposite of dynamical
chaos. However, it has been shown that this apparently
paradoxical situation can be resolved with the introduc-
tion of different time scales inside which the typical fea-
tures of classical chaos are present in the quantum motion
also. Since these time scales diverge as Planck constant ~

goes to zero, no contradiction arises with the correspon-
dence principle [5].

It has been remarked that, while exponential separa-
tion of orbits starting from slightly different initial con-
ditions is associated to classical chaos, the situation in
quantum mechanics is drastically different. Indeed the
scalar product of two states 〈ψ1|ψ2〉 is time independent.
This has led to the introduction of fidelity as a measure
of stability of quantum motion [8]. More precisely one
considers the overlap of two states which, starting from
the same initial conditions, evolve under two slightly dif-
ferent Hamiltonians H and Hε = H + εV . The fidelity is
then given by f(t) = |〈ψ| exp(iHεt/~) exp(−iHt/~)|ψ〉|2.
The quantity f(t) can be seen as a measure of the so-
called Loschmidt echo: a state |ψ〉 evolves for a time t
under the Hamiltonian H, then the motion is reversed
and evolves back for the same time t under the Hamil-
tonian Hε and the overlap with the initial state |ψ〉 is
considered.

However, we would like to stress that, in principle, such
difference between classical and quantum mechanics ac-
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tually does not exists. The Liouville equation, which de-
scribes classical evolution, is unitary and reversible as the
Schrödinger equation. However, there exist time scales
up to which quantum motion can share the properties of
classical chaotic motion including local exponential in-
stability(see, e.g., Ref. [5]). Due to the existence of such
time scales, what may be different, and indeed it is, is
the degree of stability of dynamical motion. Indeed, as
clearly illustrated in the analysis of the Loschmidt echoes
with respect to variation of the wave-function [4] or vari-
ation of the Hamiltonian [13], quantum motion turns out
to be more stable than the classical motion.

The growing interest in quantum computers [6, 7] has
attracted recent interest in this quantity as a measure of
the stability of quantum computation in the presence of
hardware imperfections or noisy gate operations. Con-
fining ourselves to classically chaotic systems, the emerg-
ing picture which results from analytical and numerical
investigations [9–17] is that both exponential and Gaus-
sian decays are present in the time behavior of fidelity.
The strength of the perturbation determines which of the
two regimes prevails. The decay rate in the exponential
regime appears to be dominated either by the classical
Lyapunov exponent or, according to Fermi golden rule,
by the spreading width of the local density of states.

In addition, at least for short times, the decaying be-
havior depends on the initial state (coherent state, mix-
ture, etc.). While it can be true that, for practical pur-
poses, the short time behavior of fidelity may be the most
interesting one, it is also true, without any doubt, that
in order to have a clear theoretical understanding and
identify a possible universal type of quantum decay one
needs to consider the asymptotic behavior of fidelity. On
the other hand, in the regime of very small perturbation,
which may be of interest for practical quantum computa-
tion, one may in fact be interested also in the long-time
behaviour of fidelity for long times in the so-called linear
resposne regime.

This short review is composed of three parts. In sec-
tion II we discuss the problem of classical fidelity, namely
the stability of chaotic classical dynamics agains external
perturbations. We show quite clearly that short time-
decay of classical fidelity is giverned by exponential in-
stability (Lyapunov exponents), whereas long-time de-
cay is determined by the decay of correlations (Ruelle-
Pollicott resonances) of the underlying system. In Sec-
tion III we discuss the fidelity decay of generic quan-
tum systems. We explain the correspondece to classi-
cal fidelity for short times and outline diffrent regimes
of decay with respect to the scale of strength of per-
turbation. In Section IV we discuss another connection
between dynamical chaos and the quantum world, the so-
called chaos induced decoherence. We show by means of a
simple numerical experiment, namely the double-slit ex-
periment, that classical chaos suppresses coherence and
acts in a similar way as noise or external macroscopic
number of freedom which is usually invoked in order to
explain decoherence.

II. STABILITY OF CLASSICAL MOTION

UNDER SYSTEM’S PERTURBATIONS

In the paper [19], it has been shown that the asymp-
totic decay of classical fidelity for chaotic systems is not
related to the Lyapunov exponent: Similarly to correla-
tion functions, this decay can be either exponential or
power law. In the first case, the decay rate is determined
by the gap in the discretized Perron-Frobenius operator,
in the latter case the power law has the same exponent
as for correlation functions.

Let us consider the classical fidelity f(t) which can be
defined as follows:

f(t) =

∫

Ω

dxρε(x, t)ρ0(x, t), (1)

where the integral is extended over the phase space, and

ρ0(x, t) = U t
0ρ(x, 0), ρε(x, t) = U t

ερ(x, 0) (2)

give the evolution after t steps of the initial density
ρ(x, 0) (assumed to be normalized, i.e.

∫

dxρ2(x, 0) = 1)
as determined by the t-th iteration of the Frobenius-
Perron operators U0 and Uε, corresponding to the Hamil-
tonians H0 and Hε, respectively. The above definition
can be shown to correspond to the classical limit of quan-
tum fidelity [13, 15]. In the ideal case of perfect echo
(ε = 0), the fidelity does not decay, f(t) = 1. However,
due to chaotic dynamics, when ε 6= 0 the classical echo
decay sets in after a time scale

tε ∼
1

λ
ln
(ν

ε

)

, (3)

required to amplify the perturbation up to the size ν of
the initial distribution. Thus, for t À tε the recovery
of the initial distribution via the imperfect time-reversal
procedure fails, and the fidelity decay is determined by
the decay of correlations for a system which evolves for-
ward in time according to the Hamiltonians H0 (up to
time t) and Hε (from time t to time 2t). This is concep-
tually similar to the “practical” irreversibility of chaotic
dynamics: due to the exponential instability, any amount
of numerical error in computer simulations rapidly effaces
the memory of the initial distribution [4]. In the present
case, the coarse-graining which leads to irreversibility is
due not to round-off errors but to a perturbation in the
Hamiltonian.

In the following, we illustrate this general phenomenon
in standard models of classical chaos, characterized
by uniform exponential instability (the sawtooth map),
marginal stability (the stadium billard), or mixed phase
space dynamics (the kicked rotator).

The sawtooth map is defined by

p = p+ F0(θ), θ = θ + p, (4)

where (p, θ) are conjugated action-angle variables, F0 =
K0(θ − π), and the overbars denote the variables af-
ter one map iteration. We consider this map on the
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FIG. 1: Decay of the fidelity g(t) for the sawtooth map with
the parameters K0 = (

√
5 + 1)/2 and ε = 10−3 for different

values of L = 1, 3, 5, 7, 10, 20,∞ from the fastest to the slowest
decaying curve, respectively. The initial phase space density
is chosen as the characteristic function on the support given
by the (q, p) ∈ [0, 2π) × [−π/100, π/100]. Note that between
the Lyapunov decay and the exponential asymptotic decay
there is a ∝ 1/

√
t decay, as expected from diffusive behavior.

Inset: magnification of the same plot for short times, with the
corresponding Lyapunov decay indicated as a thick dashed
line.

torus 0 ≤ θ < 2π, −πL ≤ p < πL, where L is an
integer. For K0 > 0 the motion is completely chaotic
and diffusive, with Lyapunov exponent given by λ =
ln{(2 + K0 + [(2 + K0)

2 − 4]1/2)/2}. For K0 > 1 one
can estimate the diffusion coefficient D by means of the
random phase approximation, obtaining D ≈ (π2/3)K2

0 .
In order to compute the fidelity (1), we choose to perturb
the kicking strength K = K0 + ε, with ε¿ K0. In prac-
tice, we follow the evolution of 108 trajectories, which are
uniformly distributed inside a given phase space region
of area A0 at time t = 0. The fidelity f(t) is given by
the percentage of trajectories that return back to that re-
gion after t iterations of the map (4) forward, followed by
the backward evolution, now with the perturbed strength
K, in the same time interval t. In order to study the ap-
proach to equilibrium for fidelity, we consider the quan-
tity

g(t) = (f(t) − f(∞))/(f(0) − f(∞)); (5)

in this way g(t) drops from 1 to 0 when t goes from 0 to
∞. We note that f(0) = 1 while, for a chaotic system,
f(∞) is given by the ratio A0/Ac, with Ac the area of
the chaotic component to which the initial distribution
belongs.

The behavior of g(t) is shown in Fig. 1, for K0 =

(
√

5+1)/2 and different L values. One can see that only
the short time decay is determined by the Lyapunov ex-
ponent λ, f(t) = exp(−λt). In a recent paper[25] this
short-time Lyapunov decay of classical fidelity has been
explained theoreticall, and an interesting cascade of de-
cays with rates given by sums of largest Lyapunov expo-
nents has been predicted and found for multi-dimensional
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FIG. 2: Asymptotic exponential decay rates of fidelity for the
sawtooth map (K0 = (

√
5+1)/2, ε = 10−3) as a function of L.

The rates are extracted by fitting the tails of the fidelity decay
in the Fig. 1 (triangles) and from the discretized Perron-
Frobenius operator (circles). The line denotes the ∝ 1/L2

behavior of the decay rates, as predicted by the Fokker-Planck
equation.

systems. In our numerical example, the Lyapunov decay
is followed by a power law decay [17] ∝ 1/

√
Dt until the

diffusion time tD ∼ L2/D and then the asymptotic re-
laxation to equilibrium takes place exponentially, with a
decay rate γ (shown in Fig. 2) ruled not by the Lyapunov
exponent but by the largest Ruelle-Pollicott resonance
[20].

We determine numerically these resonances for the
sawtooth map using the method [21, 22], namely
by diagonalizing a discretized (coare-grained) classical
propagator[19].

In Fig. 2 we illustrate the good agreement between
the asymptotic decay rate of fidelity (extracted from the
data of Fig. 1) and the decay rate γ as predicted by
the gap in the discretized Perron-Frobenius spectrum.
We note that in the diffusive regime the classical mo-
tion can be described by the Fokker-Planck equation
(∂/∂t)R(p, t) = (D/2)(∂2/∂p2)R(p, t), where R(p, t) =
∫ 2π

0
dθρ(θ, p, t) and D ∝ K2

0 is the diffusion coefficient.

This gives an asymptotic relaxation rate γ ∝ K2
0/L

2,
in agreement with the numerical data of Fig. 2. How-
ever, the argument based on the gap in the discretized
Frobenius-Perron operator has a more general validity,
and applies also in situations in which there is exponen-
tial relaxation but no diffusion, for example in the saw-
tooth map with L = 1 (see Fig. 2).

We also point out that curves very similar to those
plotted in Fig. 1 are obtained in the presence of stochas-
tic noise, e.g. the backward evolution is driven by a
kicking strength K(t) = K0 + ε(t), with {ε(t)}t=1,2,...

uniformly and randomly distributed inside the interval
[−ε, ε]. This means that the effect of a noisy environment
on the decay of fidelity for a classical chaotic system is
similar to that of a generic static Hamiltonian perturba-
tion.



4

10-4

10-3

10-2

10-1

100

 1  10  100  1000

g(
t)

t

FIG. 3: Decay of fidelity for the stadium billiard with radius
R = 1 and length of the straight segments d0 = 2 (the per-
turbed stadium has d = d0 + ε, with ε = 2 × 10−3). The
initial phase space density was chosen to be a direct product
of a characteristic function on a circle in configuration space,
the center of which was at (0.5,0.25) as measured from the
center of the billiard and its radius was 0.1, while for mo-
menta the δ(|p| − 1) distribution was used. The dashed line
represents the expected ∝ 1/t decay of fidelity.

Further confirmation for the validity of the above illus-
trated scenario has been obtained by analyzing systems
in which the initial phase space distribution is located
inside a chaotic region and the asymptotic decay of cor-
relations is algebraic. The latter decay can be due to the
presence of arbitrarily long segments of regular motion in
the time evolution of chaotic orbits [23] or to the sticking
of trajectories in the vicinity of integrable components
in systems with mixed phase space dynamics [24]. In
the long time limit (t À tε) the fidelity decay at time
t is still related to the decay of correlations at time 2t.
Therefore, if correlations decay as t−α, fidelity decays
with the same exponent α. We have checked this expec-
tation for the stadium billiard (α = 1 [23], see Fig. 3)
and for the kicked rotator model (described by Eq. (4)
with F0 = K0 sin θ) in the regime with mixed phase space
dynamics (α ≈ 0.55 for K0 = 2.5, L = 1, see Fig. 4).

Finally we remark that the short time Lyapunov de-
cay of fidelity is by no means a typical feature of cor-
relation functions. This can be clearly seen in the dot-
dashed curve of Fig. 5, which represents the decay of the
correlator D(t) = (C(t) − C(∞))/(C(0) − C(∞)), with
C(t) =

∫

Ω
dxρ0(x, t)ρ(x, 0). Actually the short time de-

cay of D(t) is determined by the motion of the “center
of mass” of the initial distribution ρ(x, 0), a trivial ef-
fect which is suppressed in fidelity due to the backward
evolution.

In conclusion, in chaotic systems the asymptotic decay
of classical fidelity, exponential or power law, is analogous
to the asymptotic decay of correlation functions. It would
be interesting to understand what are the implications of
such connection for the decay of quantum fidelity.
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FIG. 4: Decay of fidelity for the kicked rotator with K0 = 2.5,
L = 1, and ε = 10−3 (full curve). The support of the initial
(characteristic) density is (q, p) ∈ [0, 0.2] × [0, 0.2]. The dot-
ted curve gives the exponential decay determined by the Lya-
punov coefficient (about 0.534), while the dashed line shows
the ∝ t−0.55 behavior. The decay of correlator D for the
same initial density and for twice the time t is also shown
(dot-dashed curve.

III. STABILITY OF QUANTUM MOTION

UNDER SYSTEM’S PERTURBATIONS

In this section we discuss the same question as in the
previous one, now in the light of quantum mechanics,
namely the stability of quantum motion against system’s
perturbation. We define the quantum fidelity in analogy
to (1) as

f(t) = |〈ψε(t)||ψ0(t)〉|2 (6)

where

|ψε(t)〉 = U t
ε |ψ〉, |ψ0(t)〉 = U t

0|ψ〉 (7)

are perturbed and unperturbed propagators, respec-
tively, generated by the hamiltonian Hε = H0 + εV ,
namely U t

ε = exp(−iHεt/~).
As it is discussed in more detail in contribution [26],

the quantum fidelity (6) is expected to follow the classical
fidelity (1) up to the Ehrenfest time barrier, which for a
chaotic system with effective Lyapunov exponent λ, reads
as t∗ = ln(1/~)/(2λ).

Obviously, for times shorter than t∗, decay of quan-
tum fidelity is determined by classical mechanics. For
intitial localized wavepackets |ψ〉 we expect initial expo-
nential decay of fidelity with perturbation independent
(lyapunov) expoent λ

fLyap(t) = exp(−λt). (8)

For sufficiently strong perturbation strength ε, namely
σ := ε/~ À 1, the quantum fidelity drops to a saturation
value 1/N (whereN is the dimension of the Hilbert space,
N ∼ ~

−d) before the Ehrenfest time t∗ is reached. This
regime is usually referred to as the Lyapunov regime of
fidelity decay and has been first described in Ref.[9].
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When the dimensionless parameter σ becomes less
than one, σ < 1, then one may start to use time-
dependent-perturation theory in order to calculate the
fidelity decay. This regime is usually referred to as the
Fermi-Golden-Rule regime, and in the case of classically
chaotic (mixing) dynamics, fidelity decays exponentially

fFGR(t) = exp(−Γt). (9)

The exponent Γ which can be understood also as
the width of the Local density of states [11], can be
computed[13] in terms of a 2-point time-correlation func-

tion of the perturbation C(t) = 〈V V (t)〉 − 〈V 〉2, V (t) =
exp(iH0t/~)V exp(−iH0t/~), namely as

Γ = ε2D, D :=

∫

∞

−∞

dtC(t). (10)

In fact, for sufficiently small effective Planck constant ~

the correlation function C(t) and diffusion constant D
can be computed in terms of classical mechanics.

However, this formula (9) works only for times shorter
than the Heisenberg time tH = 2π~ρ where ρ is the den-
sity of states. For longer times, quantum correlation
function C(t) starts to be dominated by quantum fluc-
tuations and another approach has to be used. If the
perturbation ε is so small that a significant decay of fi-
delity is taking place after the heisenberg time, then the
stationary perturbation theory may be used[12] in order
to derive a Gaussian decay of fidelity

fpert(t) = exp(−4ε2Dt2/~2) (11)

These universal laws of decay of quantum fidelity
have been derived for fully chaotic classical dynamics.
However, a correlation-function approach[13] which can
be used to derive Fermi-Golden-rule decay (9) can be
used generally, for example also for integrable or quasi-
integrable classical dynamcis. There, the absence of de-
cay of dynamical correlations, in a generic (regular) case,
yields quadratic decay of fidelity in the regime of linear
response, F (t) = 1−Cε2t2/~+O(ε4). For initial Gaussian
wave-packets one can even show that the global decay in
such a case is a gaussian

fregular = exp(−ε2Ct2/~) (12)

where the constant C can be computed solely from the
classical data, such as the classical limit of the pertur-
bation observable V and the parameters of initial wave-
packet.

Comparing the quantum fidelity decays for chaotic (9)
as compared to regular (12) classical mechanics, one finds
that the former decays on a time scale tch ∼ ~

2ε−2

whereas the latter decays on a time scale treg ∼ ~
1/2ε−1.

Therefore, for sufficiently small perturbation ε (for σ ¿
1) the asymptiotic fidelity decay for classically chaotic
dynamics is slower than for classically regular dynamics.
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FIG. 5: Fidelity for two coupled kicked tops, δ = 8 · 10−4 and
J = 200. The upper curves are for ε = 20 (mixing regime),
solid curve for a coherent initial state and dashed curve for
a random initial state, and the lower – dotted curve is for
ε = 1 (non-mixing regime) with a coherent initial state. The
exponential and gaussian chain curves give, respectively, the
expected theoretical decays (9) and (12).

This is not against a completely different classical be-
haviour, as this is true for time scales beyond the break-
ing time t∗ of quantum classical correspondence. The res-
olution of a seeming paradix is in the non-commutativity
of the limits ~ → 0 and ε→ 0.

Let make a short illustration in terms of a simple nu-
merical experiment. We will consider a system with two
degrees of freedom, a pair of coupled kicked tops, de-
scribed by two independent SU(2) variables (angular mo-

menta) ~J1 and ~J2.
A quantum unitary propagator, with some external

coupling parameter ε, for one-period of the kick reads

Uε = e−i π

2
J1ye−i π

2
J2ye−iεJ1zJ2z/J . (13)

where J1 and J2 are two independent quantum angular
momentum vectors. Perturbed propagator is obtained by
perturbing the parameter ε, so that Uδ = U(ε+ δ). The
generator of perturbation is therefore

V =
1

J2
J1zJ2z, (14)

The modulus of angular momentum J is fixed and equal
for both tops, and determines the effective value of
Planck constant ~ = 1/J . The total Hilbert space di-
mension is N = 1/(2J + 1)2.

We have chosen two regimes of qualitatively different
classical dynamics of the system, namely non-ergodic
(KAM) regime for ε = 1 where the vast majority of
classical orbits are stable, and the mixing regime for
ε = 20 where no significant traces of stable classical
orbits. As for initial states we take direct products of
SU(2) coherent states. centered at two points (ϑ1,2, ϕ1,2)
on the two spheres. In fig.5 we show the fidelity decay
at J = 200 and δ = 8 · 10−4 in non-ergodic and mix-
ing cases started from the coherent state with (ϑ1, ϕ1) =
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(ϑ2, ϕ2) = π(1/
√

3, 1/
√

2). In the most important quan-
tum regime, where t∗ ¿ t¿ tH, we find excellent agree-
ment between the theortical predictions (9) and (12) and
the numerics. In the ergodic-mixing regime (ε = 20) we
show for comparison also the fidelity decay for a random
initial state which is (due to ergodicity) almost identical
to the case of coherent initial state.

In this section we have shown that the behaviour of
quantum fidelity is, beyond the Ehrenfest time scale t∗,
drastically different that for a classical fidelity. In gen-
eral we may claim that quantum fidelity decays slower
than the classical fidelity. Recently, we have discovered
even more drastic particular situation, namely the phe-
nomenon of quantum freeze of fidelity[27] which takes
place for perturbations wit all diagonal elements iden-
tically vanishing in the eigenbasis of the unperturbed
Hamiltonian. Such cases can sometimes emerge natu-
rally due to symmetry.

IV. CHAOS INDUCED DECOHERENCE

In the previous sections we have discussed the stability
of quantum motion in the light of the corresponding clas-
sical motion. In this connection, the question whether,
in order to have the quantum to classical transition,
external noise (or coupling to external macroscopic
number of degrees of freedom) is necessary or not,
remains unclear. Indeed it is generally accepted that
external noise may induce the non-unitary evolution
leading to the decay of non-diagonal matrix elements
of the density matrix in the eigenbasis of the physical
observables, thus restoring the classical behaviour. On
the other hand it has also been surmised that external
noise, being sufficient, is not necessary. A new type
of decoherence – the dynamical decoherence– has been
proposed [5], without any noise and only due to the
intrinsic chaotic evolution of a pure quantum state. The
simplest manifestations of dynamical decoherence are
the fluctuations in the quantum steady state which,
in the quasi-classical region, is a superposition of very
many eigenfunctions. In case of a quantum chaotic
- ergodic steady state - all eigenfunctions essentially
contribute to the fluctuations and their contribution
is statistically independent[5]. This fact suggests the
complete quantum decoherence in the final steady state
for any initial state even though the steady state is
formally a pure quantum state. Yet this argument is
not completely convincing and a more clear evidence is
required. In a recent paper[29] this question has been
discussed by considering one of the basic experiments on
which rests quantum mechanics, namely a phenomenon
which, in the words of Richard Feynmann [28], ”...
is impossible absolutely impossible, to explain in any
classical way, and which has in it the heart of quantum
mechanics. In reality, it contains the only mystery.” :
the double slit experiment.

s

a

l Λ

absorber

screen

FIG. 6: The geometry of the numerical double-slit experi-
ment. All scales are in proper proportions. The two slits are
placed at a distance s on the lower side of the billiard

The following numerical, double-slit experiment has
been performed. The time dependent Schrödinger equa-
tion i~ ∂

∂tΨ(x, y, t) = ĤΨ(x, y, t), with Ĥ = p̂2/(2m), has
been solved numerically [30] for a quantum particle which
moves freely inside the two-dimensional domain as indi-
cated in fig. 6 (full line). Note that the domain is com-
posed of two regions which are connected only through
two narrow slits. We refer to the upper bounded region
as to the billiard domain, and to the lower one as the ra-

diating region. The scaled units have been used in which
Planck’s constant ~ = 1, mass m = 1, and the base
of the triangular billiard has length a = 1. The initial
state Ψ(t = 0) is a Gaussian wave packet (coherent state)
centered at a distance a/4 from the lower-left corner of
the billiard (in both Cartesian directions) and with ve-
locity ~v pointing to the middle between the slits. The
screen is at a distance l = 0.4 from the base of the trian-
gle. The magnitude of velocity v (in our units equal to
the wave-number k = v) sets the de Broglie wavelength
λ = 2π/k. In our experiment we have chosen k = 180
corresponding to approximately 1600th excited states of
the closed quantum billiard. The slits distance has been
set to s = 0.1 ≈ 3λ and the width of the slits is d = λ/4.
The wave-packet is also characterized by the position un-
certainty σx = σy = 0.24. This was chosen as large as
possible in the present geometry in order to have a small
uncertainty in momentum σk = 1/(2σx).

The lower, radiating region, should in principle be in-
finite. Thus, in order to efficiently damp waves at fi-
nite boundaries, we have introduced an absorbing layer
around the radiating region. More precisely, in the region
referred to as absorber, we have added a negative imagi-
nary potential to the HamiltonianH → H−iV (x, y), V ≥
0, which, according to the time dependent Schrödinger
equation, ensures exponential damping in time. In order
to minimize any possible reflections from the border of
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the absorber, we have chosen V to be smooth, starting
from zero and then growing quadratically inside the ab-
sorber. No significant reflection from the absorber was
detected and this ensures that the results of our experi-
ment are the same as would be for an infinite radiating
region.

While the wave-function evolves with time, a small
probability current leaks from the billiard and radiates
through the slits. The radiating probability is recorded
on a horizontal line y = −l referred to as the screen. The
experiment stops when the probability that the particle
remains in the billiard region becomes vanishingly small.
We define the intensity at the position x on the screen as
the perpendicular component of the probability current,
integrated in time

I(x) =

∫

∞

0

dt Im Ψ∗(x, y, t)
∂

∂y
Ψ(x, y, t)|y=−l. (15)

By conservation of probability the intensity is normal-
ized,

∫

∞

−∞
dxI(x) = 1, and is positive I(x) ≥ 0. I(x)

is interpreted as the probability density for a particle to
arrive at the screen position x. According to the usual
double slit experiment with plane waves, the intensity
I(x) should display interference fringes when both slits
are open, and would be a simple unimodal distribution
when only a single slit is open. This is what we wanted
to test with a more realistic, confined geometry. The
resulting intensities are shown in figs. 7, 8(red curves).

Indeed, a very clear (symmetric) interference pattern
was found, with a visibility of the fringes depending on
the parameters of the initial wave-packet. This can be
heuristically understood as a result of integrability of the
corresponding billiard dynamics. Namely, the classical
ray dynamics inside a π/4 right triangular billiard is reg-

ular representing a completely integrable system. We
know that each orbit of an integrable system is charac-
terized by the fact that, since the classical motion in 2N
dimensional phase space is confined onto an N invariant
torus, at each point in position space, e.g. at the po-
sitions of the slits, only a finite number of different mo-
menta (directions) are possible. Thus the quantum wave-
function, in the semiclassical regime, is expected to be lo-
cally a superposition of finitely many plane-waves[32] and
the interference pattern on the screen is expected to be
simply a superposition of fringes using these plane waves.
In our case of an integrable π/4 right triangular billiard,
different directions result from specular reflections with
the walls. In contrast to the idealized plane-wave ex-
periment in infinite domain where interference pattern
depends on the direction of the impact, the fringes here
were always symmetric around the center of the screen.
This is a consequence of the presence of the vertical bil-
liard wall, namely due to collisions with this wall each
impact direction (vx, vy) is always accompanied with a
reflected direction (−vx, vy). The pattern on the screen
is then a symmetric superposition of the two interference
images, one being a reflection (x → −x) of the other.
In this way one can also understand that the visibility

 0
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(I1 + I2)/2

FIG. 7: The total intensity after the double-slit experiment
as a function of the position on the screen. I(x) is obtained
as the perpendicular component of the probability current,
integrated in time. The red full curve indicates the case of
regular billiard, while the blue dotted curve indicates the case
of chaotic one. The green dashed curve indicates the averaged
intensity over two 1-slit experiments, with either the regular
or chaotic billiard (with results being practically the same,
see fig. 8).
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FIG. 8: The two pairs of curves represent the intensities on
the screen for the two 1-slit experiments (with either one of
the two slits closed). The red full curves indicate the case of
the regular billiard while the blue dotted ones indicate the
case of chaotic billiard.

of the interference fringes may vary with the direction of
the initial packet.

We also remark that the spacing between interference
fringes is in agreement with the usual condition for plane
waves that the difference of the distances from the two
slits to a given point on the screen is an integer multiple
of λ.

Let us now make a simple modification of our experi-
ment. We replace the hypotenuse of the triangle by the
circular arc of radius R = 2 (dashed curve in fig. 6).
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FIG. 9: Typical snapshots of the wave-function (plotted is
the probability density) for the two cases: (a) for the regular
billiard at t = 0.325, and (b) for the chaotic billiard at t =
0.275 (both cases correspond to about half the Heisenberg
time). The probability density is normalized separately in
both parts of each plot, namely the probability density, in
absolute units, in the radiating region is typically less than 1%
of the probability density in the billiard domain. The screen,
its center, and the positions of the slits are indicated with
thin black lines. Please note that the color code on the top
of the figure is proportional to the square root of probability
density.

This change has a dramatic consequence for the classical
ray dynamics inside the billiard, namely the latter
becomes fully chaotic. In fact such a dispersive classical
billiard is rigorously known to be a K-system [3]. Quite
surprisingly, this has also a dramatic effect on the result
of the double slit experiment. The interference fringes
almost completely disappear, and the intensity can be
very accurately reproduced by the sum of intensities
(I1(x) + I2(x))/2 for the two experiments where only a
single slit is open. This means that the result of such
experiment is the same as would be in terms of classical
ray dynamics. Notice however, that at any given instant
of time, there is a well definite phase relation between
the wave function at both slits. Yet, as time proceeds,

this phase relation changes, and it is lost after averaging
over time. This is nicely illustrated by the snapshots
of the wave-functions in the regular and chaotic case
shown in fig. 9. While in the regular case, the jets
of probability emerging from the slits always point in
the same direction and produce a clear time-integrated
fringe structure on the screen, in the chaotic case,
the jets are trembling and moving left and right, thus
upon time-integration they produce no fringes on the
screen[31].

The results of this numerical experiment can be
understood in terms of fast decay of spatial correlations
of eigenfunctions of chaotic systems. In the limit of
small slits opening d ¿ λ, the intensity on the screen,
according to simple perturbation expansion in the small
parameter d/λ, can be written as

I(x) = I1(x) + I2(x) + C(s)f(x), (16)

where f(x) is some oscillatory function determining the
period of the fringes, and C(s) is the spatial correlation
function of the normal derivative of the eigenfunctions
Ψn of the closed billiard at the positions (−s/2, 0) and
(s/2, 0) of the slits, written in the Cartesian frame with
origin in the middle point between the slits. In particu-
lar, C(s) = α

∑

n |cn|2∂yΨn(−s/2, 0)∂yΨn(s/2, 0), where
cn are the expansion coefficients of the initial wave-
packet in the eigenstates Ψn, and α is a constant such
that C(0) = 1. Note that this eigenstate correlation
function C(s), which also depends on the initial state
through the expansion coefficients cn, is directly pro-
portional to the visibility of the fringes. One may use
well known random plane wave model for chaotic bil-
liards [32], in combination with a method of images to ac-
count for the boundary condition, to show that quantum
chaotic eigenstates exhibit decaying correlations with
C(s) = J1(ks)/(ks) where J1 is a first order Bessel func-
tion, whereas for regular systems C(s) typically does
not decay (but oscillates) so it produces interference
fringes. In our case of half-square billiard we find, for

large k, C(s) = e−σ2
k
s2/2(k2

x cos(kys) + k2
y cos(kxs))/k

2.
The Gaussian prefactor can easily be understood, namely
there is no interference if the size of the wave-packet is
smaller than the slit-distance, or equivalently, if uncer-
tainty in momentum σk is much larger than 1/s.

Disappearance of interference fringes can be directly
related to decoherence. If A is a binary observable
A ∈ {1, 2} which determines through which slit the par-
ticle went, then C(s) is proportional to the non-diagonal
matrix element 〈1|ρ|2〉 of the density matrix in the eigen-
basis of A, and is thus a direct indicator of decoherence.

The result presented here provides therefore, from one
hand, a vivid and fundamental illustration of the manifes-
tations of classical chaos in quantum mechanics. On the
other hand it shows that, by considering a pure quantum
state, in absence of any external decoherence mechanism,
internal dynamical chaos can provide the required ran-
domization to ensure quantum to classical transition in
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the semiclassical region. The effect described in this let-
ter should be observable in a real laboratory experiment.

V. CONCLUSIONS

In this short paper we have presented twofold illustra-
tions of real, observable effects quantum chaos. On one
hand, we have shown that sensitivity to system’s pertur-
bations is clearly connected with the nature of the un-
derlying classical dynamics. The concept of classical and

quantum Loschmidt echoes have been relatively new but
may have important implications in statistical physics
and in the field of quantum information and quantum
computation. On the other hand, we have shown that
quantum chaos can act also as a source of noice produc-
ing effects equivalent to decoherence, namely destroying
interference fringes in a double slit experiment.
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[27] T. Prosen and M. Žnidarič, New J. of Phys. 109 (2003);

Phys. Rev. Lett. (2005) at press

[28] R. P. Feynman, “Lecture Notes in Physics”, Vol. 3,
Addison-Wesley, 1965, p.1-1.

[29] G. Casati and T. Prosen, Quantum chaos and the double-
slit experiment. quant/ph

[30] We have implemented an explicit finite difference nu-
merical method with λ/h ≈ 12 mesh points per de
Broglie wave-length λ where h is the stepsize of the
spatial discretization. The stability of the method was
enforced by using unitary power-law expansion of the
propagator, namely Ψ(t + τ) =

Pn

j=0

1

n!
(− iτ

~
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