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Momentum Conservation Implies Anomalous Energy Transport in 1D Classical Lattices
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Under quite general conditions, we prove that for classical many-body lattice Hamiltonians in one
dimension (1D) total momentum conservation implies anomalous conductivity in the sense of the diver-
gence of the Kubo expression for the coefficient of thermal conductivity,k. Our results provide rigorous
confirmation and explanation of many of the existing “surprising” numerical studies of anomalous con-
ductivity in 1D classical lattices, including the celebrated Fermi-Pasta-Ulam problem.
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Since the pioneering work of Fermi, Pasta, and Ula
(FPU) revealed the “remarkable little discovery” [1] tha
even in strongly nonlinear one-dimensional (1D) class
cal lattices recurrences of the initial state prevented t
equipartition of energy and consequent thermalization, t
related issues of thermalization, transport, and heat c
duction in 1D lattices have been sources of continuing i
terest (and frustration) for several generations of physicis
The complex of questions following from the FPU stud
involves the interrelations among equipartition of energ
(is there equipartition? in which modes?), local therm
equilibrium (does the system reach a well-defined tempe
ture locally? if so, what is it?), and transport of energy
heat (does the system obey Fourier’s heat law? if not, w
is the nature of the abnormal transport?). In sorting throu
these questions, it is important to recall that the study
heat conduction (Fourier’s heat law) is the search for
nonequilibrium steady state in which heat flows across t
system, but the situation is usually analyzed, using t
Green-Kubo formalism of linear response [2], in terms
the correlation functions in the thermal equilibrium (gran
canonical) state. A series of reviews spread over nea
two decades has provided snapshots of the understan
(and confusion) at different stages of this odyssey [3–8

Much of the past effort has been devoted to attempts
verify Fourier’s law of heat conduction

� �J� � 2k=T , (1)

where in 1D the gradient is replaced by the derivative wi
respect tox. Here,k is the transport coefficient of therma
conductivity. Strictly speaking,k is well defined only for
a system that obeys Fourier’s law and where alinear tem-
perature gradient is established (for small energy gradie
such that relative temperature variation across the chain
small; in generalk is a function of temperature, of course)
In the literature the dependence ofk�L� on the sizeL of the
system/chain has also been used to characterize the
gree of) anomalous transport. However, the definition ofk

for an anomalous conductor, where no internal temperat
gradient may be established, is ambiguous. Typically, o
defines it in the “global” sense, ask�L� � kG � JL�DT ,
whereDT is the total temperature difference between th
two thermal baths. However, if the temperature gradie
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is not constant across the system, and/or if there are fini
temperature gaps between the thermal baths and the ed
of the system due to system-bath contact, one should d
fine and study a localk, k � kL � J

=T , where=T is the
local thermal gradient. A very wide range of results ha
been produced by previous studies of different system
(1) In acoustic harmonic chains, rigorous results [9] esta
lish that no thermal gradient can be formed in the system
with the result that formallykG � L1, which can be un-
derstood heuristically by the stability of the linear Fourie
modes and the absence of mode-mode coupling. (2) In t
“Toda lattice,” an integrable lattice model [3,10], in which
the resultkG � L1 [11], can be understood in terms of
stable, uncouplednonlinear modes, the solitons, which are
a consequence of the system’s complete integrability [7
(3) In nonintegrable models with smooth potentials, in
cluding (i) the FPU system, leading eventually to claim tha
chaos was necessary and sufficient for normal conducti
ity (kG � kL � L0) [8], a claim that has been countered
by convincing numerical evidence for anomalous conduc
tivity in FPU chains (kL � L0.4) [12,13]; (ii) the diatomic
(and hence nonintegrable) Toda lattice, where initial nu
merical results claimingkL � L0 [14] have recently been
refuted by a more systematic study showingkL � L0.4

[15]; and (iii) the “Frenkel-Kontorova model,” where re-
cent studies have shown that (at least for low temperature
kL � L0 [16]. (4) In nonintegrable models with hard-
core potentials, including (i) the “ding-a-ling” model [17],
(ii) the “ding-dong” model [18], and (iii) even simpler
single particle chaotic billiard model [19], where numerics
show convincingly thatkL � kG � L0.

This bewildering array of results has recently been pa
tially clarified in a series of independent but overlapping
studies. The numerical studies of Hu, Li, and Zhao [16
and of Hatano [15] show thatoverall momentum conserva-
tion appears to a key factor in anomalous transport in 1
lattices. Lepri, Livi, and Politi [20,21] and Hatano [15]
have argued that the anomalous transport in momentu
conserving systems can be understood in terms of low fr
quency, long-wavelength “hydrodynamic modes” that exis
in typical momentum conserving systems and that hydro
dynamic arguments may explain the exponents observ
in FPU [20,21] and diatomic Toda lattice [15].
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In the present Letter, we extend and formalize these re-
cent results and resolve finally at least one important as-
pect of conductivity in 1D lattices: namely, we present a
rigorous proof that in 1D conservation of total momentum
implies anomalous conductivity provided only that the av-
erage pressure is nonvanishing in thermodynamic limit.

We consider the general class of classical 1D many-body
Hamiltonians,

H �
N21X
n�0

µ
1

2mn
p2

n 1 Vn11�2�qn11 2 qn�
∂

, (2)

where Vn11�2�q� is an arbitrary (generally nonlinear) in-
terparticle interaction. Note that the potential, Vn11�2, de-
pends only on the differences between two adjacent sites;
in particular, there is no “on-site” potential, UOS�qn�, de-
pending on the individual coordinates. The (finite) system
is considered to be defined on a system of length L � Na
with periodic boundary conditions �qN , pN � � �q0, p0�,
where the actual particle positions are xn � na 1 qn. In
our analysis the masses mn, as well as interparticle po-
tentials Vn11�2�q�, can have arbitrary dependence on the
sites n, though the examples studied in literature to date
have mostly had uniform potentials Vn11�2�q� � V �q� and
uniform, mn � m, or dimerized m2n � m1, m2n11 � m2,
masses. We require only that the Hamiltonian (2) be in-
variant under translations qn ! qn 1 b for arbitrary b.
This requires UOS�qn� � 0 [16]. Note that we may write
the Hamiltonian in Eq. (2) as H �

PN21
n�0 hn11�2, where

hn11�2 is the Hamiltonian density,

hn11�2 �
p2

n11

4mn11
1

p2
n

4mn
1 Vn11�2�qn11 2 qn� . (3)

Our aim is to estimate k, the coefficient of thermal con-
ductivity, which is given by the Kubo formula [22]

k � lim
T!`

lim
L!`

b

L

Z T

2T
dt �J�t�J�b . (4)

Here we have written the canonical average of an observ-
able A at inverse temperature b as �A�b �

R
Pndpn dqn 3

A exp�2bH��
R

Pn dpn dqn exp�2bH�. The order of
limits in Eq. (4) is crucial to the precise definition of k

[2]. In Eq. (4), J �
PN21

n�0 jn is the total heat current, and
jn is the heat current density [16], given by

jn � �hn11�2, hn21�2	

�
pn

2mn

V 0

n11�2�qn11 2 qn� 1 V 0
n21�2�qn 2 qn21�� ,

(5)

where �, 	 is the usual canonical Poisson bracket.
Using Eqs. (3) and (5), we find that current density

given by (5) satisfies the continuity equation
�hn11�2 � �H, hn11�2	 � jn11 2 jn . (6)

In some references, e.g., Ref. [16], inessentially different
(nonsymmetric) definition of the local heat current jn has
been used which satisfies a continuity equation (6) with a
2858
slightly different (nonsymmetric) form of the Hamiltonian
density (3). However, the two definitions of the local heat
current sum up to identical total current J.

Our ensuing analysis is similar to that used by Mazur
[23], with a crucial difference: we will average correlation
functions over a finite rather than infinite time domain, T .
We start with an elementary inequality. For an arbitrary
observable X�t� � X
�qn�t�, pn�t�	�, we haveZ `

2`
dt gT �t� �X�t�X�b $ 0 , (7)

where gT �t� is a suitable L2��� window function of effec-
tive width T , which has the following properties:

�i�
Z `

2`
dt gT �t� � T ;

�ii�
Z `

2`
dt g2

T �t� � T ;

�iii� g̃�v� :�
Z `

2`
dt gT �t�eivt . 0 for all v .

The natural choice satisfying these conditions is a Gauss-
ian, gT �t� �

p
2 exp
22p�t�T �2�. Using elementary

Fourier analysis, the above inequality (7) is easily proved
by rewriting it asZ

dv g̃T �v� �SX�v��b $ 0 , (8)

where SX�v� � limT!`
1
T j

RT
0 dt eivtX�t�j2 is the power

spectrum of the signal X�t�. Obviously, SX�v� . 0, and,
given (iii), the inequality of (7) and (8) is clearly fulfilled.
We now write the observable X as X � A 1 aB, a [ �.
Optimizing with respect to the parameter a, we arrive at
the Schwartz-like inequalityµZ

dt gT �t� �A�t�A�b

∂
3

µZ
dt gT �t� �B�t�B�b

∂
$

µZ
dt gT �t� �B�t�A�b

∂
. (9)

The above inequality is of quite general use. We imple-
ment it by taking A � J and B � P, where P �

PN21
n�0 pn

is the total momentum. For Hamiltonians of the form (2),
P is an integral of motion �P � �H, P	 � 0 due to transla-
tional symmetry. Since P�t� � P, the inequality (9) readsZ

dt gT �t� �J�t�J�b $ T
�JP�2

b

�P2�b

. (10)

The right-hand side of Eq. (10) can be easily evalu-
ated: �P2�b � m̄N�b, where m̄ � �1�N�

PN21
n�0 mn, and

�JP�b � b21
PN21

n�0 �V 0�qn11 2 qn��b , since we have in
general that �A��qn	�B��pn	��b � �A��qn	��b�B��pn	��b .
�V 0

n11�2�qn11 2 qn��b is an average force between par-
ticles n and n 1 1, i.e., the thermodynamic pressure,
and does not depend on n. [In thermal equilibrium
the average net force on particle n vanishes and hence
�V 0

n21�2�qn 2 qn21��b � �V 0
n11�2�qn11 2 qn��b .] The
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pressure can be rewritten through the usual thermody-
namic definition

f �
≠F
≠L

�
1
N

≠F
≠a

�
1
N

N21X
n�0

�V 0
n11�2�xn11 2 xn 1 a��b ,

where exp�2bF� �
R

Pn dpn dqn exp�2bH�. Inserting
the above and multiplying with b�L, we find that inequal-
ity (9) reads

b

L

Z
dt gT �t� �J�t�J�b $

T
am̄

f2. (11)

Since the Kubo formula can be equivalently written
in terms of the window function as k � 221�2 3

limT!`

R
dt gT �t�C�t�, where C�t� � limL!`�J�t�J�b�L,

since limT!` gT �t� �
p

2, and implementing in the above
result (11) the two limits as indicated in (4), we have
proved our main result.

Theorem.—In momentum conserving systems of type
(2), if the pressure is nonvanishing in the thermodynamic
limit, limL!` f . 0, then the thermal conductivity di-
verges and k ! `.

Therefore, we find anomalous energy transport as a
simple consequence of the total momentum conservation.
The only case in which the pressure is expected to vanish
at any temperature is when the forces between particles
at zero temperature equilibrium are zero [V 0

n11�2�0� �
0] and the interparticle potentials are all even functions
[Vn11�2�q� � Vn11�2�2q�] so that the forces are also ex-
pected (and found numerically for b FPU problem) to
average to zero for arbitrary canonical thermal fluctua-
tions. This is, indeed, the case for the b FPU problem,
where Vn11�2�q� � 1

2q2 1
1
4bq4 [13,21], and there the

integrated correlation function diverges for more subtle
(dynamical) reasons (the slow asymptotic power-law de-
cay of current-current correlation function �t20.6).

Even if the zero temperature equilibrium forces vanish
V 0

n11�2�0� � 0, we still have nonvanishing finite tempera-
ture pressure (due to “ thermal expansion” of a system con-
fined to a fixed volume L � aN) whenever interparticle
potentials are not even. This is the case for the a FPU
model, Vn11�2�q� � 1

2q2 1 1
3aq3, for the modified di-

atomic Toda lattice [15], Vn11�2�q� � exp�2q� 1 q, and
for the diatomic hard-point 1D gas [15,24] Vn11�2�q� �
�0 if q . 2a; ` if q # 2a	. For the usual diatomic Toda
lattice [15], Vn11�2 � exp�2q�, the pressure is nonvanish-
ing even at zero temperature, since V 0

n11�2�0� fi 0.
To augment and illustrate our analytic discussion, we

have simulated numerically the current-current autocorre-
lation function �J�t�J�b�L in a generic anharmonic chain,
namely, in the “ab” FPU model with Vn11�2�q� � 1

2q2 1
1
3aq3 1

1
4bq4 where we take a � 2, b � 4, mn � a �

1, and microcanonical ensemble of initial conditions with
the energy per particle E�N � 1. In Fig. 1 we compare
1
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FIG. 1. Current-current autocorrelation function in the “ab”
FPU model with a � 2, b � 4, and E�N � 1. We show nu-
merical data microcanonically averaged over 500 pseudorandom
initial conditions for three different sizes N � 16, 32, 64 and
compare it to the squared pressure f2 (dotted line).

the results for N � 16, 32, 64 with the equilibrium value
of the squared pressure f2 � 0.964 . . . . We have also
checked numerically that for the symmetric interparticle
potential (same as above except with a � 0) the pressure
indeed vanishes and the current-current correlation func-
tions decay asymptotically as �t20.6 (in agreement with
results of Refs. [20,21]).

Given that momentum conservation implies anomalous
conductivity, it is natural to ask whether the converse
is true: namely, does anomalous conductivity imply that
the model conserves momentum? Two counterexamples
show that this result is not true. First, if one considers
a linear chain of optical phonons—so Vn11�2 � �qn11 2

qn�2 and UOS � q2
n —one can show [25] by a straight-

forward extension of the arguments of Ref. [9] that this
momentum nonconserving model nonetheless has anoma-
lous transport. Similarly, there is a momentum noncon-
serving integrable model due to Izergin and Korepin [26]
that also shows anomalous conductivity [25]. Finally, let
us stress that in 1D lattices the nature of dynamics, whether
it be completely integrable, completely chaotic, or mixed,
does not affect our result: if total momentum is conserved
and the canonical average of the pressure does not vanish,
the transport is anomalous. We shall address the central
issue of the necessary and sufficient conditions for normal
transport in a forthcoming paper [25].
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