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Quantization of a Billiard Model for Interacting Particles
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We consider a billiard model of a self-bound, interacting three-body system in two spatial dimens
Numerical studies show that the classical dynamics is chaotic. The corresponding quantum s
displays spectral fluctuations that exhibit small deviations from random matrix theory predictions. T
can be understood in terms of a new type of scarring caused by a one-parameter family of orbits
the collinear manifold.

PACS numbers: 05.45.Mt, 03.65.Ge, 03.65.Sq
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The field of quantum chaos has reached a matu
state for two-dimensional systems. It is well known tha
quantum spectra and wave functions of classically chao
systems exhibit universal properties (e.g., spectral flu
tuations) [1] as well as deviations (e.g., scars of period
orbits) [2,3] when compared to random matrix theor
(RMT) predictions of the Gaussian orthogonal ensemb
(GOE). Recent experimental and theoretical efforts aim
the investigation of chaos in higher dimensional system
As examples, we mention experiments in elastomechan
[4], physics of resonant cavities [5], the first quantization
of three-dimensional billiards [6,7], the construction o
high-dimensional chaotic billiards with no dispersing
elements [8], and chaos in many-body systems [9]. T
study of such systems is interesting because their ph
space structure is much richer than that of two-dime
sional ones, and qualitatively new features appear.
particular, invariant manifolds in billiards [7] and system
of identical particles [10] may lead to an enhanceme
in the amplitude of wave functions [11,12] provided tha
classical motion is not too unstable in their vicinities.

It is the purpose of this Letter to investigate a new typ
of wave function scarring in an interacting self-bound few
body system. We choose a model system that is realized
a convex billiard with no dispersing elements. This mod
system turns out to be simple enough to be understo
in classical and quantum mechanics, yet it captures t
important feature of self-bound many-body systems: a
attractive two-body force.

This Letter is organized as follows. First we stud
the classical dynamics of our billiard model. Second
we compute highly excited eigenstates of the correspon
ing quantum system and compare the results with RM
predictions.

Recently, a self-bound many-body system realized
a billiard has been proposed in the framework of nucle
physics [13]. Let us consider the corresponding three-bo
system with the Hamiltonian

H �
3X

i�1

�p2
i

2m
1

X
i,j

V �j�ri 2 �rjj� , (1)

where �ri is a two-dimensional position vector of theith
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particle and�pi is its conjugate momentum. The two-body
potential is

V �r� �

Ω
0 for r , a
` for r $ a .

(2)

The particles thus move freely within a convex billiard in
six-dimensional configuration space and undergo elas
reflections at the walls. Besides the energyE, the total
momentum �P and angular momentumL are conserved
quantities which leave us with three degrees of freedom
In what follows we consider the case�P � 0, L � 0.

To study the classical dynamics it is convenient to fi
the velocity �y2

1 1 �y2
2 1 �y2

3 � 1. We want to compute the
Lyapunov exponents of several trajectories. To this pu
pose we draw initial conditions at random and compu
the tangent map [14] while following their time evolution.
To ensure good statistics and good convergence, we f
low an ensemble of7 3 104 trajectories for105 bounces
off the boundary. All followed trajectories have positive
Lyapunov exponents. The ensemble averaged value
the maximal Lyapunov exponent and its rms deviation a
la � 0.3933 6 0.0015, while the second Lyapunov ex-
ponent is also always positive. Thus, the system is chao
for practical purposes. However, we have no general pro
that no stable orbits exist. The reliability of the numeri
cal computation was checked by (i) comparing forwar
with backward evolution, (ii) observing that energy, tota
momentum, and angular momentum are conserved to h
accuracy during the evolution, and (iii) using an alternativ
method [15] to determine the Lyapunov exponent.

The considered billiard possesses two low-dimension
invariant manifolds that correspond to symmetry plane
The first “collinear” manifold is defined by configu-
rations where all three particles move on a line. Th
dynamics inside this manifold is governed by the one
dimensional analog of Hamiltonian (1). After separatio
of the center-of-mass motion, one obtains a two-dime
sional billiard with the shape of a regular hexagon. Th
system is known to bepseudointegrable [16]. To study
the motion in the vicinity of the collinear manifold, we
compute thefull phase space stability matrix for several
periodic orbits inside the collinear manifold which come in
© 2000 The American Physical Society
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one-dimensional families and can be systematically enu-
merated using the tiling property of the hexagon. All
considered types of orbits except two are unstable in the
transverse direction: (i) The family of bouncing ball
orbits (i.e. two particles bouncing, the third one at rest
in between) is marginally stable (parabolic) in full phase
space. (ii) The family of orbits depicted in Fig. 1 is stable
(elliptic) in two transversal directions and marginally
stable (parabolic) in the other 10 directions of 12-dimen-
sional phase space. Though this behavior does not spoil
the ergodicity of the billiard, one may expect that it causes
the quantum system to display deviations from RMT
predictions. Note that this family of periodic orbits differs
from the bouncing ball orbits which have been extensively
studied in two- and three-dimensional billiards [6,17]
since (i) it is restricted to a lower dimensional invariant
manifold, and (ii) it is elliptic (complex unimodular pair
of eigenvalues) in one conjugate pair of directions.

The second invariant manifold is defined by those con-
figurations where two particles are mirror images of each
other while the third particle is restricted to the motion on
the (arbitrarily chosen) symmetry line. Inside this mani-
fold, one finds partly regular and partly chaotic dynamics.
However, the motion is infinitely unstable in the transverse
direction due to nonregularizable three-body collisions.

The quantum mechanics is done using the coordinates

�x � � �r1 1 �r2 1 �r3��
p

3 ,

r cos
u0

2

µ
cos�f 2 w0�2�
sin�f 2 w0�2�

∂
� � �r1 2 �r2��

p
2 , (3)

r sin
u0

2

µ
cos�f 1 w0�2�
sin�f 1 w0�2�

∂
� � �r1 2 �r2 2 2 �r3��

p
6 ,

Here r, u0, and w0 describe the intrinsic motion of the
three-body system while �x and f are the center of mass
and the global orientation, respectively. In a second trans-
formation we apply a rotation of p�2 around the abscissa
corresponding to spherical coordinates �r, u0, w0�, namely,

FIG. 1. The motion inside the collinear manifold corresponds
to the motion inside a hexagonal billiard. The parabolic-elliptic
family of periodic orbits is shaded, and five of its members are
represented by lines.
tanw � 2 cotu0� cosw0 and cosu � sinu0 sinw0 and ob-
tain for the Laplacian in the subspace �P � 0, L � 0,

D �
≠2

≠r2 1
3
r

≠

≠r

1
4

r2

∑
≠2

≠u2 1 cotu
≠

≠u
1

1
sin2u

≠2

≠w2

∏
. (4)

Products of Bessel functions and spherical harmonics,

ck,l,lz �r, u, w� � �kr�21J2l11�kr�Ylz

l �u, w� , (5)

are eigenfunctions of the Laplacian (4), i.e.,
Dck,l,lz �r, u, w� � 2k2ck,l,lz �r, u, w� with the usual re-
lation between wave vector and energy k � h̄21�2mE�1�2.
Figure 2 shows a picture of the billiard taking
�r, u, w� as spherical coordinates. The billiard pos-
sesses a D3h symmetry. In the fundamental domain
�u, w� [ �0, p�2� 3 �2p�6, p�6� the boundary is given
by

rB�u, w� � a�1 1 sinu sin�w 1 p�3��21�2. (6)

The collinear manifold is the equatorial plane u � p�2.
The second invariant manifold is given by the vertical sym-
metry planes f � 6p�6. Note that, in this representation,
classical geodesics of the billiard between two successive
collisions are not straight lines since the centrifugal po-
tential is stronger than in the Euclidean case. In what
follows we restrict ourselves to the fundamental domain
and choose basis functions that fulfill Dirichlet bound-
ary conditions. These states are symmetric under particle
exchange.

We are interested in highly excited eigenstates. These
may be accurately computed numerically by using the
scaling method developed in Ref. [18] and applied to a
three-dimensional billiard by one of the authors [11]. This
method works efficiently only when a suitable positive
weight function is introduced in a boundary integral. To
this purpose we note that the radial part of (4) looks simi-
lar to a four-dimensional Laplacian. Extending the results
of Refs. [18,11] to four dimensions yields the appropriate
weight function, which has a remarkably simple form in

FIG. 2. Billiard shape after separating off the center of mass
motion and rotational degree of freedom.
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our coordinates; namely, we minimize the following func-
tional:

f�Ck� �
Z 1

0
d cosu

Z p�6

2p�6
dw r4

B�u, w�

3 jCk���rB�u, w�, u, w���j2,

where the wave function is expressed in terms of scaling
functions (5), Ck �

P
l cl,lz ck,l,lz . Because of our particu-

lar choice of boundary conditions, we consider only the
terms for which l 1 lz is odd and lz � 3m, and truncate
at l � lmax � ka�2 1 Dl � ka�2.

We have computed three stretches of highly excited
states. They consist of 7430, 1813, and 2362 consecu-
tive eigenstates with 120 , ka , 235, 290 , ka , 300,
and 393 , ka , 400, respectively. The last two stretches
comprise levels with sequential quantum numbers around
20 000 and 45 000, respectively. The completeness of the
series was checked by comparing the number of obtained
eigenstates with the leading order prediction from the Weyl
formula d̄�k� � c�24p2�21�ak�2, c � 0.513 49.

Figure 3 shows that the nearest neighbor spacing distri-
bution agrees very well with RMT predictions already for
the lower energy spectral stretch 120 # ka # 235. The
other series show well agreement, too. As for the long-
range spectral correlations, the number variance S2�L� de-
viates from RMT predictions for interval length of more
than ten mean level spacings which we believe is due
to the parabolic-elliptic family of periodic orbits in the
collinear manifold (Fig. 1). The deviation from RMT
decreases with increasing k. For the highest spectral
stretch (ka � 400) the number variance increases linearly,
S2�L� � S

2
GOE�L� 1 ´L up to L # 250, with ´ � 0.04.

This finding is consistent with the model of a statisti-
cally independent fraction ´ of strongly scarred states [11].
S2�L� reaches its maximum and begins to oscillate at the

FIG. 3. Integrated nearest neighbor spacing distribu-
tion I�S� �

RS
0 ds P�s� with the GOE value subtracted,

I�S� 2 IGOE�S�, for the set of N � 7430 consecutive levels
with 120 , k , 235 (full line). The dashed curve is the
estimated statistical error s �

p
I�S� �1 2 I�S���N and the

dotted curve is the difference for the commonly used Wigner
surmise IWig�S� � 1 2 exp�2pS2�4�. Note that the deviations
from RMT are not visible in the histogram for P�S�.
264
saturation length L� which scales as L� ~ k2 in agreement
with the prediction of Ref. [19].

The length spectrum D�r�, i.e., the cosine trans-
form of the oscillatory part of the spectral density
dosc�k� �

P
n d�k 2 kn� 2 d̄�k�, gives further informa-

tion about long-range spectral fluctuations. For finite
stretches of consecutive levels in the interval �k1, k2�,
one uses a Welsh window function w�k; k1, k2� �
�k2 2 k� �k 2 k1���6�k2 2 k1�3� in the actual computa-
tion and obtains D�l� �

Rk2

k1
dk w�k; k1, k2� cos�kr�dosc�k�

(see, e.g., [6,11]). Figure 4 shows that orbits of length
r �

p
2 a and its integer multiples cause dominant peaks

in the length spectrum.
To investigate the observed deviations from RMT pre-

dictions in more detail, we consider the inverse partici-
pation ratio (IPR) of the wave functions in the angular
momentum basis (5). This basis is particularly conve-
nient and suitable since periodic orbits correspond to sets
of isolated points within this representation. Let c

�n�
l,lz

de-
note the expansion coefficients of nth eigenstate Ckn . We
compute the IPR over a set of N consecutive eigenstates
as IPR�l, lz� � N

P
n jc

�n�
l,lz

j4��
P

n jc
�n�
l,lz

j2�2. The IPR is the
first nontrivial moment of the distribution of the expansion
coefficients c

�n�
l,lz

and measures the inverse fraction of basis
states that build up a wave function [3]. One has IPR � 1
for a wave function that has equal overlaps with all basis
states and IPR � N for a wave function that coincides with
a basis state. The predicted RMT value for ideally quan-
tum ergodic states is IPRGOE � 3. Figure 5 shows the IPR
for the two sets of eigenstates with 170 , k , 200 and
290 , k , 300, respectively. The agreement with RMT
predictions is rather good in both cases. This confirms
that the billiard under consideration is dominantly chaotic
and ergodic. However, the IPR is enhanced in the region
around l � lz � ka�3, thus indicating some degree of lo-
calization. This is a robust phenomenon (present at all en-
ergy ranges), although the region of enhancement shrinks
with increasing k. This finding is compatible with the ex-
pectation of uniform quantum ergodicity in the semiclas-
sical limit. Note that the region l � lz corresponds to the

FIG. 4. Length spectrum D�r� for the long spectral sequence
with 120 , k , 235. The dashed vertical lines denote the in-
teger multiples of the period of the parabolic-elliptic family.
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FIG. 5. IPR �l, lz � 3m�, for 2052 states with 170 , ka ,
200 (left) and for 1813 states with 290 , ka , 300 (right). Dif-
ferent levels of greyness are used for IPR values on consecutive
intervals of width 0.5. The dominating light grey corresponds
to the interval �2.75, 3.25� around the RMT value 3; darker grey
indicates some degree of localization.

vicinity of the collinear manifold. Note further that the
orbits belonging to the parabolic-elliptic family depicted
in Fig. 1 have length

p
2 a and angular momenta in the

region l�ka � lz�ka [ �1�2
p

6, 1�
p

6�. This is precisely
the region where the IPR exhibits its enhancement while
the orbits’ lengths coincide with the prominent peaks
of the length spectrum in Fig. 4.

Thus, the deviations from RMT predictions observed for
the spectrum and for the wave functions are associated with
the family of parabolic-elliptic periodic orbits inside the
collinear manifold. The special stability properties of this
family lead to scars in the wave functions of the quantum
system. This is an exciting new type of scars of invari-
ant manifolds. It complements results previously found in
helium [20], a three-dimensional billiard [11], and in in-
teracting few-body systems [12]. Note that the family of
parabolic bouncing ball orbits inside the collinear mani-
fold does not cause statistically detectable scarring. The
orbits of this family correspond to points in angular mo-
mentum space with l � lz , ka�2

p
6 and do not exhibit

an enhancement in the IPR since the classical motion is
too unstable in their vicinity.

In summary, we have investigated an interacting three-
body system realized as a convex billiard with no dispers-
ing elements. Numerical results show that the classical
dynamics is dominantly chaotic and no deviation from er-
godic behavior is found. This is interesting with respect
to recent efforts in constructing high-dimensional chaotic
billiards. While the spectral fluctuations of the quantum
system agree with RMT predictions on energy scales of
a few mean level spacings, they exhibit interesting devia-
tions on larger energy scales and in wave function inten-
sities. These deviations are a manifestation of a new type
of scars of a family of periodic orbits inside the collinear
manifold.
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