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Abstract. We study quantum transport properties of an open Heisenberg XXZ
spin 1/2 chain driven by a pair of Lindblad jump operators satisfying a global
‘micro-canonical’ constraint, i.e. conserving the total magnetization. We will
show that this system has an additional discrete symmetry that is specific to the
Liouvillean description of the problem. Such symmetry reduces the dynamics
even more than would be expected in the standard Hilbert space formalism
and establishes existence of multiple steady states. Interestingly, numerical
simulations of the XXZ model suggest that a pair of distinct non-equilibrium
steady states becomes indistinguishable in the thermodynamic limit, and exhibit
sub-diffusive spin transport in the easy-axis regime of anisotropy � > 1.
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1. Introduction

Simulating interacting quantum many-body systems in-, and in particular, out-of-equilibrium is
at the forefront of current experimental and theoretical research (see e.g. [1, 2]). While it has
been recognized that treating large isolated quantum-many-body systems (with generic physical
properties) poses a formidable task to any method of theoretical description or simulation, it
has soon become apparent—first within the community of quantum optics [3]—that often a
macroscopic number of observables can be treated as quantum noise, and that the behavior
of a few essential physical observables can be extracted in terms of the formalism of open
quantum systems [4, 5]. From a mathematical physics point of view most notable is perhaps the
discovery by Lindblad, Gorini, Kossakowski and Sudarshan [6, 7], that within the Markovian
approximation any time-development of an open system’s (reduced) density operator ρ(t),
acting on an N -dimensional Hilbert space H describing the (slow) degrees of freedom of
interest, can be described by the quantum Liouville equation in the form

ρ̇(t) = L̂ρ(t) ≡ −i[H, ρ(t)] +
N

2−1�

m=1

�
Lmρ(t)L

†
m

− 1
2
{L

†
m

Lm, ρ(t)}
�

, (1)

where [A, B] ≡ AB − B A, {A, B} ≡ AB + B A, H is the Hermitian Hamiltonian operator and
Lm is a set of at most N

2 − 1 so-called Lindblad operators, all over H. We use units in which
h̄ = 1. L̂ can be understood as a (super)operator acting on the space B(H) of bounded operators
over Hilbert space H. The space B(H) shall also be considered as a Hilbert space itself,
equipped with the Hilbert–Schmidt inner product. The Liouvillian flow (1) is the most general
one which is (i) local-in-time, (ii) respects the positivity ρ(t)� 0 and (iii) conserves the trace
tr ρ(t) ≡ 1 and forms the so-called quantum dynamical semi-group. However, the approach of
open-quantum-system has only quite recently been applied to the non-equilibrium problems of
condensed matter physics [8–15], such as the controversial quantum transport problem in one
dimension [16–18].

The central object of concern in physics applications is the fixed point of dynamical
semigroup, ρ∞ = limt→∞ρ(t), or the null-vector of Liouvillian

L̂ρ∞ = 0, (2)

which shall be termed non-equilibrium steady state (NESS). This state is relevant in the
asymptotic long-time limit of the evolution of the system, and does not decay despite the
dissipative nature of the Lindblad equation. The interesting case, when the fixed point is a
pure state ρ∞ = |ψ∞��ψ∞| is of particular appeal in quantum optics and quantum information
theory [19], where such a state |ψ∞� is called a dark state. A sufficient condition for the existence
of a dark state is that |ψ∞� is an eigenstate of H and is annihilated by all jump operators,
Lm|ψ∞� = 0. Dark states are also known as examples of decoherence-free states, and are of
importance in quantum computing [20].

We note that the Lindblad equation (1) can in general describe the system coupled to several
thermal (or chemical, magnetic) baths at different values of the thermodynamic potentials, hence
the resulting asymptotic states ρ∞ can be considered as intrinsically non-equilibrium.

Of central importance is the understanding and control of uniqueness of NESS, for example
the applications in quantum memories [21] which could be realized in terms of possibly
degenerate (non-unique) NESSs. Another potentially very interesting application of non-unique
(multiple) steady states of Liouvillean quantum dynamics could be in detecting non-equilibrium
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quantum phase transitions, or regions of criticality [24]. Importantly, multiple fixed points of
dynamical semigroups are also a crucial part of the concept of decoherence-free subspaces [20],
one of the key ideas for fighting errors in quantum computation. Precise conditions for the
uniqueness of NESS, i.e. that ρ∞ does not depend on ρ(0), were established a while ago
[22, 23]. Essentially, it follows from Evans theorem [22] that NESS is unique if and only if
the set of operators {H, Lm, m = 1, 2, . . .} generates the entire multiplicative operator algebra
B(H). On the other hand, the situations where NESS is not unique have been systematically
much less explored. For example, in the case of the existence of a discrete symmetry, of either
(i) Liouvillian L̂ as a whole, or (ii) of all members of the set {H, Lm, m = 1, 2, . . .} one might
expect non-unique NESSs classified by the eigenvalues of the symmetry operation.

In this paper, we will analyze how the existence of symmetries can allow us to treat the
transport problem in a boundary-driven open anisotropic Heisenberg XXZ spin 1/2 chain with
a micro-canonical constraint, i.e. enforcing the exact conservation of total spin (magnetization).
Quite interestingly, our numerical results suggest that the two NESSs corresponding to the
zero magnetization sector characterized by the eigenvalue of the parity-like symmetry become
indistinguishable in the thermodynamic limit, and that in the easy-axis regime (of anisotropy
� > 1) the spin transport becomes sub-diffusive (insulating in the thermodynamic limit), quite
different from the results [25, 26] for the un-constrained boundary-driven XXZ chain. This
seems consistent with a recently claimed co-existence of diffusive and insulating transport in a
gapped XXZ model [27]. In the appendix, we provide a general mathematical prescription on
how in both cases (i) and (ii) of the previous paragraph the symmetry can be facilitated to reduce
the problem and block-diagonalize the matrix of the Liouvillian superoperator, whereas only in
the second case (ii) is the non-uniqueness of NESS guaranteed by the existence of a symmetry
operator and distinct Liouvillian fixed points can be labeled by the eigenvalues of the symmetry
operation.

2. Symmetric boundary-driven open XXZ spin chains

In order to study a simple system that does not have a unique NESS and to provide some
additional insight into the debate on quantum transport in one dimension [16, 27], we shall
discuss a finite open anisotropic Heisenberg XXZ spin 1/2 chain on n sites, with the Hamiltonian

H =
n−1�

i=1

�
σ x

i
σ x

i+1 + σ
y

i
σ

y

i+1 + �σ z

i
σ z

i+1

�
. (3)

σ
x,y,z
i

designate a set of standard Pauli matrices corresponding to physical sites i = 1, 2, . . . , n

and acting on a Hilbert space H= (C2)⊗n of dimension N = 2n. We couple the chain to
magnetic reservoirs only through the boundary spins i = 1 and i = n.

Two cases can be considered:

(i) Firstly, we take a set of four Lindblad operators

L
w
1 =

�
�(1 − µ)σ +

1 , L
w
3 =

�
�(1 + µ)σ +

n
,

L
w
2 =

�
�(1 + µ)σ−

1 , L
w
4 =

�
�(1 − µ)σ−

n
,

(4)
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where two real parameters � > 0 and µ ∈ [0, 1] designate, respectively, the strength

of coupling to a pair of magnetic reservoirs and strength of (non-equilibrium) driving.

σ±
i

= (σ x

i
± iσ

y

i
)/2 are the spin-flip operators.

(ii) Secondly, we consider a pair of Lindblad operators

L
s

1
= �(1 − µ)σ +

1
σ−

n
, L

s

2
= �(1 + µ)σ−

1
σ +

n
, (5)

again parameterized by two coupling parameters �, µ having the same interpretation as

above. We note that the Liouvillian flow (1) equipped with (5) strictly conserves the total

magnetization M =
�

n

i=1
σ z

i
, at the expense of non-local coupling between the first and the

last sites. In fact, we can imagine Lindblad operators here as incoherent quantum jumps

that transfer spin-excitations between i = 1 and i = n sites, while conserving total number

of spin-excitations (quasi-particles). Alternatively, such a model can be interpreted as a

spin ring where hopping is fully coherent on bonds (1, 2), (2, 3), . . . , (n − 1, n), while it is

fully dissipative (and asymmetric for µ �= 0) on one bond (n, 1), and is a particular case of

quantum exclusion process complementing the one presented in [28] (see also [29, 30]).

We note that the quantum transport models described by the Hamiltonian (3) and

dissipators (4) or (5), can be considered as out of equilibrium steady state models with minimal

incoherent input, namely with incoherent processes taking place only on the boundary, or on the

single bond.

Let P be a permutation operator that exchanges the site i with n − i + 1 for all i . In fact,

P can be written as a unitary operator over H with explicit representation in the computational

basis (eigenbasis of σ z

i
, �z

i
|a1, a2, . . . , an� = (1 − 2ai)|a1, a2, . . . , an� for ai ∈ {0, 1}) as

P =
�

(a1,a2,...,an)∈{0,1}n

|a1, a2, . . . , an��an, an−1, . . . , a1| (6)

and can be interpreted as a parity operator. Combining it with spin flips on all sites we define

another unitary (parity-like) operator S as

S = P

n�

i=1

σ x

i
. (7)

Clearly, S is a Z2 symmetry of the Hamiltonian, as [H, S] = 0 and S
2 = 1.

In case (i) with (4) one notes that SL
w

1
S

† ≡ ŜL
w

1
= L

w

4
and ŜL

w

2
= L

w

3
hence the Liouvillian

flow (1) exhibits a weak symmetry in the sense of equation (A.1). Precisely the same case

of symmetrically boundary-driven XXZ chain (3), (4) has been discussed in several recent

papers [25, 31–35] and has been shown to exhibit interesting non-equilibrium transport

properties. In this case, one can use Evans theorem [22] in order to prove that NESS is

unique. The number of invariant subspaces is nS = 2, with symmetry S eigenvalues s1 = +1

and s2 = −1. Let the complete set of four symmetry adapted operator sub-spaces now be

suggestively denoted as {sα, sβ} ≡ Bα,β . As pointed out in the appendix (also explaining the

notation), the symmetry Ŝ can still be used in order to reduce the Liouvillian to two blocks B1 =
{+1, +1} ⊕ {−1, −1} and B2 = {+1, −1} ⊕ {−1, +1}, which have roughly similar dimensions for

large n.

Let us now focus on case (ii). S now becomes a strong symmetry (equation (A.2)) of

the flow (1), (5) as ŜL
s

m
= L

s

m
for m = 1, 2. In this case, however, we have an additional

strong (continuous, U (1)) symmetry, generated by magnetization operator SM = e
iϕM

, where
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M =
�

n

j=1

�
z

j
, as also ŜM L

s

m
= L

s

m
and ŜM H = H . We shall say that the flow (1), (5) obeys

a micro-canonical constraint. Thus, we can use theorem A.1 of the appendix in order to

prove the existence of a pair of distinct NESSs for each eigenvalue of total magnetization

sz ∈ {−n, −n + 2, . . . , n − 2, n}, i.e. we have a 2n − 1-dimensional convex set of fixed points of

the Liouvillian flow.
2

From the quantum transport point of view the most interesting is the zero

magnetization sector, we will in the following fix sz = 0 and assume the size n to be even. There

we have a line of degenerate NESS parameterized by a number from a unit interval u ∈ [0, 1]

ρ∞(u) = uρ1

∞ + (1 − u)ρ2

∞, ρ1

∞ ∈ {+1, +1}, ρ2

∞ ∈ {−1, −1}. (8)

2.1. Numerical results and transport properties

Let us now turn to the physical properties of our micro-canonically constrained open XXZ

chain, in particular to the steady state spin current and magnetization profiles. The spin current

operator corresponding to the bond (i, i + 1) is defined as

ji = σ x

i
σ

y

i+1
− σ

y

i
σ x

i+1
= 2i(σ−

i
σ +

i+1
− σ +

i
σ−

i+1
) (9)

and obeys the operator continuity equation of the form
d

dt
(σ z

j
/2) = i[H, σ z/2] = ji − ji−1, for

i = 2, 3, . . . , n − 1. Steady state expectation values shall be denoted as J = � ji� (which does

not depend on site index i due to continuity equation), and Mi = �σ z

i
�, where �•� ≡ tr (•)ρ∞.

We have checked that the fixed point problem for Liouvillian flow (1), (5) does not admit a

closed form solution of a matrix product operator form of small finite rank as in the weakly

symmetric case [34], thus we had to resort to numerical simulations. Of course, we optimized

our calculations by restricting the Liouvillean to diagonal blocks L̂|{+1,+1} (for ρ1

∞) and L̂|{−1,−1}
(for ρ2

∞). For n = 4, 6, 8 and 10 sites, we used exact numerical diagonalization, while for n =
12, 14 and 16 we used a wave-function Monte-Carlo approach called the method of quantum

trajectories, as outlined in the appendix of [32] (see also [14]). An efficient Trotter expansion

of the propagator e
iHδt with complex coefficients [36] has been employed. The stochastic time-

dependent Schrödinger equation has been simulated until the current was equal on all bonds,

and the statistical error was small, both within the accuracy better than 1%.

We consider three characteristic values of the anisotropy parameter: � = 1/2, � = 1 and

� = 2, where the linear-response-transport in the grand-canonical ensemble (or in an open

chain without the micro-canonical constraint) has been found to be, respectively, ballistic [34],

anomalous (super-diffusive/sub-ballistic) [35] and diffusive [18, 26]. On the other hand, linear-

response transport in the micro-canonical ensemble in the latter case (� = 2) has been suggested

to be sub-diffusive (insulating) [37]. We chose the bath-coupling parameters as � = 1, µ = 0.2,

which put our setup in a near-linear-response regime; however, we also tried other values of

bath parameters and the results did not change qualitatively. By considering a large driving

parameter close to the maximum µ ≈ 1, we have found negative differential conductance for

both symmetry subspaces (for n = 8), consistent with the behavior found in the unconstrained

model [31, 32].

The spin chain with four sites is particularly interesting as the subspace {−1, −1} is one-

dimensional, i.e. the NESS in this subspace has to be a pure state, i.e. a dark state. Being a

2
The dimension of the convex set of NESS, is by 1, smaller than the number of distinct symmetry labeled fixed

points 2n due to the trace constraint tr ρ = 1.
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Figure 1. We plot negative current −J against spin chain length n for � =
1/2 (a), � = 1 (b) and � = 2 (c), and for NESSs from both symmetry
subspaces, {+1, +1} (red/squares) and {−1, −1} (blue/circles). Data for n � 10
are numerically exact, while for n � 12 the statistical/Trotter error is always
smaller than the size of the symbols. In panel (d), we plot the case � = 2 in the
log–log scale, suggesting the fast decay of J (n). The two eye-guiding dashed
lines have slopes −2.68 (red) and −1.44 (blue).

pure state it cannot support current (J = 0) and has a vanishing magnetization on all four sites.
Explicitly, the dark state then is of the form

|ψ∞� = 1√
2

(|0110� − |1001�) (10)

and does not depend on any system’s parameters, �, � and µ. We did not find any dark states
of our flow (1), (5) for n � 6.

In figure 1, we display the behavior of the steady state current J versus the chain length
n for the two distinct steady states ρ(1)

∞ and ρ2
∞ in the spaces {+1, +1} and {−1, −1}. We find a

general trend of convergence of the two curves which suggest that the current might not depend
on the symmetry sector in the thermodynamic limit and would therefore be unique. The same
applies to magnetization profiles displayed in figure 2. This implies a kind of ergodicity and
suggests physical irrelevance of the symmetry S in the thermodynamic limit. Furthermore, in the
regime � = 1/2 the current J (n) tends to converge to a constant suggesting ballistic behavior,
for � = 1 J (n) seems to slowly (perhaps slightly super-diffusively) decrease with n, while for
� = 2, J (n) decreases fast. As far as our numerics can suggest it seems that in the regime
� = 2, the decrease of J (n) is definitely much faster than 1/n, which is compatible with the
suggested insulating behavior [37]. In figure 2, we make a detailed analysis of the magnetization
profiles in both symmetry sectors, and for different system sizes. We find, consistently, that the

New Journal of Physics 14 (2012) 073007 (http://www.njp.org/)
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Figure 2. The magnetization profiles for various values of � = 1/2, 1, 2 in

the {+1, +1} subspace, (a–c), respectively, and comparing different chain sizes

(see the legends inside plots), and similar for the {−1, −1} subspace in the

lower row of plots (g–i). In the middle row of plots (d–f) we compare, again

for � = 1/2, 1, 2, and for the largest system size attainable, the magnetization

profiles from the two symmetry sectors (red/blue).

profiles in the regimes � = 1/2, � = 1 and � = 2, display ballistic, (slightly super-)diffusive

and sub-diffusive (insulating) behavior, respectively. It is perhaps interesting to remark that in

the isotropic case � = 1, for the largest system size that we could simulate, the profile seems

to be almost perfectly linear, which might also be compatible with thermodynamically normal

diffusive behavior in this regime (perhaps related to [38]).

In figure 3, we focus on the dependence of the relaxation rates of ρα(t) to the

respective steady state ρα
∞ on the chain length n. The relaxation rate is determined as

the Liouvillean spectral gap R = minλ j �=0(Re λ j), where λ j denotes the eigenvalues of the

Liouvillian superoperator L̂ in the respective symmetry subspace ({+1, +1} or {−1, −1}). We

find consistently that in the {+1, +1} sector the spectral gap always quickly decays with n,

perhaps faster than n−3
, which is the gap-scaling derived analytically or numerically suggested

for some integrable spin chains with boundary driving [13, 35]. On the other hand, we are

unable to conclude anything meaningful on the scaling of the gap in the {−1, −1} symmetry

sector, where the behavior of R(n) may not even be monotonic. To complement the spectral

information we plot in figure 4 the set of all Liouvillian eigenvalues λ j which lie sufficiently
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Figure 3. The scaling of the spectral gap R with the system size n in the log–log

scale, for the three values of anisotropy � = 1/2 (a), � = 1 (b) and � = 2

(c), and for the two symmetry subspaces, {+1, +1} (red/squares) and {−1, −1}
(blue/circles). The dashed lines indicate the slope −3.

Figure 4. The full Liouvillian spectra {λ j} for the case of � = 2 and for three

different chain sizes n = 6 (a), n = 8 (b) and n = 10 (c), and for the two

symmetry subspaces, {+1, +1} (red/squares) and {−1, −1} (blue/circles). We

plot just a small part of the complex plane close to the imaginary line (i.e. plotting

just the smallest rates corresponding to longest-lived modes).

close to the imaginary line (i.e. with sufficiently small damping rates −Reλ j ). Further, we

considered the density distribution of Liouvillian spectrum projected onto the real line, in fact a

cumulative distribution W (r) =
�

λ j
θ(r − Re λ j)/

�
λ j

1 giving the probability that a randomly

picked damping rate is larger than −r . Here θ(r) designates a Heaviside step function. The plot

of W (r) for the two symmetry sectors shown in figure 5 in the easy-axis regime � = 2 suggests

the existence of two pseudo-gaps, particularly clearly for the {−1, −1} symmetry sector.

3. Discussion and conclusion

We have presented a small but potentially very useful observation on the symmetry reduction

of the Lindblad master equations describing Markovian open quantum systems. We classified
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Figure 5. The cumulative distribution W (r) of the case � = 2, n = 10, i.e.
the probability that the randomly chosen decay rate −Re λ j is larger than −r ,
for the two symmetry subspaces, {+1, +1} (red) and {−1, −1} (blue). Note the
occurrence of two pseudo-gaps (strips in complex plane with very few—rarely
distributed decay modes), particularly visible in the data for {−1, −1}.

quantum Liouvillian symmetries as weak or strong, depending, respectively, on whether only
the generator of master equation as a whole commutes with the symmetry operation, or whether
each of the Lindblad (jump) operators, and the Hamiltonian, commute with the symmetry
individually. We have shown that only existence of a strong symmetry implies non-trivial
symmetry reductions inside the space of steady states (fixed points of the Markovian semi-
group). We have also provided a non-trivial example of our construction in the context of
quantum transport problem for the strongly interacting XXZ spin-1/2 chain. Namely defining
an open XXZ chain with a micro-canonical constraint, we have shown that it exhibits a
strong parity-type symmetry and outlined numerical computation of distinct steady states and
the corresponding physical observables. Our numerical results seem to suggest that micro-
canonically constrained open XXZ chain exhibits sub-diffusive (thermodynamically insulating)
behavior in the gapped Ising-like (easy-axis) phase.

We note that both weak and strong symmetries can provide practical advantage in the
description of quantum Liouvillian flows, as they both allow to block-diagonalize and hence
reduce the dimension of the Liouvillian. One can also have a combination of both, namely
independent generators of weak and strong symmetries, or non-Abelian symmetries of either
type. In particular, the study of non-Abelian Liouvillian symmetries should be an important line
of future research.
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Appendix. Symmetry reductions of quantum Liouvillian dynamics

Let us consider two cases of symmetric Lindblad master equations with two different kinds of

dissipators of the flow (1):

(i) For the first kind, which we will call a weak symmetry, we assume that there exists a unitary

operator S over H, such that

L̂(Sx S
†) = S(L̂x)S

†, (A.1)

for any x ∈ B(H).

(ii) For the second kind, which we will call a strong symmetry, we assume that a unitary

operator S over H commutes with each member of the set {H, Lm, m = 1, 2, . . .}
individually

[S, H ] = 0, [S, Lm] = 0, m = 1, 2, . . . (A.2)

Clearly (ii) implies (i), but not vice versa.

We continue by fixing some notation. Let sα = e
iθα , α = 1, 2, . . . , nS denote distinct

eigenvalues of S, and let Hα be the corresponding mutually orthogonal eigenspaces, so that

we have a complete symmetry decomposition of the Hilbert space

H=
nS�

α=1

Hα. (A.3)

The adjoint representation of S on Hilbert space B(H) shall be denoted as Ŝ,

Ŝ(x) = Sx S
†. (A.4)

The spectrum of a super-operator Ŝ is formed of all possible products sα s̄β = e
i(θα−θβ )

, since

Ŝ(|ψ��φ|) = sα s̄β |ψ��φ| for any |ψ� ∈Hα, |φ� ∈Hβ . Let s
�
ν , ν = 1, 2, . . . , n

Ŝ
denote the distinct

eigenvalues of Ŝ, denoted such that s
�
1
= 1, and s

�
ν �= 1 for all ν �= 1. Note that the following

bounds always hold

nS � n
Ŝ
� nS(nS − 1). (A.5)

The lower bound n
Ŝ
= nS is reached when {sα} are roots of unity, i.e. in the case ofZnS

symmetry

obeying S
nS = 1. The upper bound n

Ŝ
= nS(nS − 1) is reached when there is no arithmetic

structure in the spectrum {sα} which may happen when S generates a continuous group of

symmetry transformations. Let

B(H) =
n

Ŝ�

ν=1

Bν (A.6)

be the corresponding symmetry decomposition of the operator space B(H), where the

Ŝ-eigenspaces Bν are mutually orthogonal in the Hilbert–Schmidt sense.

Clearly, having a weak symmetry (A.1) is equivalent to having commuting superoperators

L̂Ŝ = ŜL̂, (A.7)

which means that the Liouvillian is block diagonalized with respect to the decomposition (A.6),

namely

L̂Bν ⊆ Bν, (A.8)
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i.e. all spaces Bν are invariant w.r.t. the flow (1). Note that only B1 contains operators with non-

vanishing trace, thus it should contain the fixed point ρ∞ ∈ B1 due to trace preservation. We

remark that under the conditions of the Evans theorem [22] NESS can be unique despite the

existence of a weak symmetry, as is the case in example (i) outlined in section 2.

Let us now assume the existence of a strong symmetry. In this case we can prove the

following useful result.

Theorem A.1. Existence of a unitary operator S with the property (A.2) implies:

(i) Liouvillian L̂ can be block-decomposed into n2

S
invariant subspaces

L̂Bα,β ⊆ Bα,β,

where Bα,β = {|ψ��φ|; |ψ� ∈Hα, |φ� ∈Hβ}, for α, β = 1, 2, . . . , nS.
(ii) We have at least nS distinct fixed points (NESSs), which we can label by sα, namely each

diagonal operator space contains at least one fixed point,

ρα
∞ ∈ Bα,α,

for α = 1, 2, . . . , nS.

Proof. Let us write the super-operators of left and right multiplications with the symmetry

operator ŜL(x) ≡ Sx , ŜR(x) ≡ x S†
, for any x ∈ B(H). Since, clearly, [ŜL, ŜR] = 0, the spaces

Bα,β can be considered as the joint eigenspaces of both ŜL and ŜR. Namely ŜL(|ψ��φ|) =
sα|ψ��φ|, ŜR(|ψ��φ|) = s̄β |ψ��φ|, for any |ψ� ∈Hα, |φ� ∈Hβ . Equation (A.2) implies

commutativity [L̂, ŜL] = 0, [L̂, ŜR] = 0, implying that any Bα,β is also invariant subspace of

L̂ proving point (i) of the theorem.

To prove (ii) we note again that operators with non-vanishing trace can only be contained in

diagonal spaces Bα,α, due to mutual orthogonality ofHα. Hence starting from some ρα(0) ∈ Bα,α

with tr ρα(0) = 1 (say ρ(0) = P�/ tr P� where P� is the orthogonal projector to the subspace

Hα), the flow (1) yields a fixed point ρα
∞ in Bα,α for any α = 1, . . . , nS. Again according to the

Evans theorem [22] this fixed point can be unique, or further degenerate. In any case, we have

at least nS distinct steady states, which may be labeled by the symmetry eigenvalue sα. ��
Clearly, the direct sum of all invariant subspaces gives the entire operator space

B(H) =
nS�

α=1

nS�

β=1

Bα,β, (A.9)

and the quotient invariant spaces (A.6) are given by partial direct sums

Bν =
sα s̄β=s�

ν�

α,β

Bα,β . (A.10)

We remark that (non-positive) initial conditions ρ(0) supported in the non-diagonal

invariant spaces Bα,β , α �= β, which have vanishing trace, could in principle provide extra

degeneracy of the null space of L̂, i.e. an extra dimension of the convex set of NESSs, or

simply complete the description of the relaxation process for a general initial condition ρ(0).
In other words, we do not see any argument which would forbid the spectra of block-operators

L̂|Bα,β
to contain 0 even for α �= β, although this should be—if possible at all—an exceptional

(non-generic) situation.
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