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The channel induced by a complex system interacting strongly with a qubit is calculated exactly under

the assumption of randomness of its eigenvectors. The resulting channel is represented as an isotropic

time-dependent oscillation of the Bloch ball, leading to non-Markovian behavior, even in the limit of

infinite environments. Two contributions are identified: one due to the density of states and the other due

to correlations in the spectrum. Prototype examples, one for chaotic and the other for regular dynamics are

explored.
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Introduction.—Complex quantum systems are of para-
mount importance in the description of correlated many-
body systems, such as the ones encountered in condensed
matter, as well as few or single body chaotic systems. The
exact description of such complex systems is often not
possible because it is either unfeasible due to many degrees
of freedom involved, or impossible becausewe do not know
all the details of the microscopic model. Frequently we are
also interested only in the dynamics of few degrees of
freedom within a larger system. Unfortunately though,
even in this case exact solutions are very rare. Under certain
conditions, which are fulfilled inmany important situations,
one can use approximate methods. Such is the case if the
central system of interest is only weakly coupled to the
environment with fast decaying correlations. This leads
to the description with a relatively simple Markovian
Lindblad master equation [1], implying a system without
memory in which information flows only out from the
central system. While specific models are known in which
the reduced dynamics is not Markovian, general under-
standing is still lacking. Such questions resulted in a flurry
of recent studies of non-Markovian behavior [2–5] and
characterization of reduced dynamics in general [6,7].

In the present work we shall derive an exact description
of the reduced dynamics of a single qubit immersed in a
complex system, undergoing unitary evolution. Our goal is
to characterize the one-qubit channel induced by this uni-
tary evolution. We shall assume that the eigenvectors of the
Hamiltonian governing such evolution can be well de-
scribed by a random unitary matrix. This is a very good
approximation if the system is quantum chaotic [8], but is
also valid under more general circumstances.

Our main result can be expressed in a very simple
geometrical picture. The derived one-qubit channel can
be imagined as an isotropic shrinking of the Bloch ball.

The radius of this Bloch ball however does not decrease
monotonically with time but instead oscillates, causing
non-Markovian behavior. The oscillations are due to
(i) diffraction on the spectral density and, (ii) due to
correlations between eigenenergy levels. Surprisingly, the
first contribution will in general lead to non-Markovian
behavior even for an infinite environment. Comparing the
contribution due to eigenenergy correlations leads us to
conclude that in the setting studied, chaotic systems dis-
play stronger non-Markovian behavior than regular ones,
as quantified by measures proposed in [3,4]. We also show,
via exact expressions, that the channel is self-averaging for
large sizes, meaning that non-Markovian behavior can be
observed in individual system instances.
Setting.—We study a system of dimension N, divided

into a single qubit and the rest, acting as an environment to
which the qubit is strongly coupled. The evolution of the
total system is determined by a Hamiltonian H. The only
requirement on H is that the statistical properties of its
eigenvectors are described by a random unitary matrix,
which is connected to a maximum entropy principle [9].
This is conjectured to happen for chaotic systems in
the semiclassical limit, and is true, by construction, for
the random matrix ensembles [10] suitable for describing
statistical properties of quantum chaotic systems [8]. In
quantum information language we want to characterize the
quantum channel acting on the qubit. Once this is done we
can study, for instance, whether the channel is Markovian
or not.
Assume that the initial state of the system is a factoriz-

able state, with a projector in the environment. Other
choices of initial states will be discussed later. The state
at later times is thus simply

�ðtÞ
qubit ¼ trenv½Ut�ð0Þ

qubit � jc envihc envjU�t�; (1)
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where Ut ¼ expð�iHtÞ (we set @ ¼ 1). This induces a

completely positive map �ðtÞ
qubit ¼ �ðtÞð�ð0Þ

qubitÞ. The matrix

representation of this linear map in the basis of Pauli
matrices is simply

�ðtÞ
j;k ¼ 1

2 tr½�j�ðtÞð�kÞ�; (2)

where i; j ¼ 0; . . . ; 3 with �j ¼ f�x; �y; �z;1g.
Analytic derivation.—We are interested in obtaining

explicit expressions for Eq. (2). WritingH in its eigenbasis
as H ¼ WdiagðEiÞWy, where W is the unitary matrix of

eigenvectors of H, we are interested in properties of �ðtÞ
for a unitarily invariant ensemble of Hamiltonians where
W is a random unitary matrix. We shall calculate the

average values of all matrix elements of channel �ðtÞ as
well as its fluctuations. One finds that given the invariance
ofH under unitary rotations, the average channel, i.e., after
averaging over the unitarily invariant Haar measure of W,
denoted by h�iU, must acquire a diagonal form in the Pauli
basis (which can also be checked by an explicit calcula-
tion). Such channel is called the depolarizing channel in

quantum information. The matrix h�ðtÞ
j;kiU is therefore di-

agonal with time-dependent elements

�ðtÞ :¼ h�ðtÞ
0;0iU ¼ h�ðtÞ

1;1iU ¼ h�ðtÞ
2;2iU: (3)

Trace preservation means that h�ðtÞ
3;3iU ¼ 1 and

h�ðtÞ
3;j¼0;1;2iU ¼ 0. All the physical information about the

average channel, like the presence of non-Markovian
effects, is contained in �ðtÞ, which is the radius of the
evolved Bloch sphere of the qubit. The calculation of �ðtÞ
proceeds by separating the dependence ofUt on the spectra
Ej and its eigenbasis W, Ut ¼ Wdiag expð�iEjtÞWy,
to obtain

�ðtÞ ¼ e�iðEk�EjÞthW0�;kW
�
00;kW

�
1�;jW10;j

þW0�;kW
�
10;kW

�
1�;jW00;jiU;

where we have used both Einstein’s summation convention
and tensorial notation. Latin indices run over the whole
system, whereas Greek ones run over the system minus the
qubit. One can then average over the unitary Haar measure
of W using the exact formulas in [11], obtaining an exact
expression

�ðtÞ ¼ N2jfðtÞj2 � 1

N2 � 1
; (4)

with fðtÞ ¼ 1
N

P
j expð�iEjtÞ being the Fourier transform

of the level density. The details of the calculation are to be
found in the additional material [12].

The evaluation of the fluctuations of matrix elements is
of interest, as it indicates how a single member of the
ensemble will resemble the behavior of the ensemble
average. Its calculation involves eight-point correlations
of W, and the Weingarten function for permutations on

four elements, which we have calculated [13]. Let us define

by �2
j;k ¼ h½�ðtÞ

j;k�2iU � h�ðtÞ
j;ki2U the standard deviation of

matrix element �ðtÞ
j;k. Again, due to the symmetry there are

only three different fluctuations: those of diagonal matrix
elements, those of off-diagonal elements in a 3� 3 block

�ðtÞ
j;k and those of �ðtÞ

i;3. The exact expressions to all orders

in 1=N is given in the additional material [12], here we
only give the leading terms in 1=N, which are

�2
i;i ¼ �2

i;3 ¼
1þ ðf�ðtÞ2fð2tÞ þ fðtÞ2f�ð2tÞÞ� 3jfðtÞj4

2N
;

�2
i;j�i ¼

1þ jfðtÞj4 � ðf�ðtÞ2fð2tÞ þ fðtÞ2f�ð2tÞÞ
2N

; (5)

with i, j ¼ 0, 1, 2. Eqs. (4) and (5) constitute our main
result.
In the above results we have taken the initial state of the

environment to be a projector. Because of the unitary
invariance we can choose for jc envihc envj any state.

Because h�ðtÞ
j;kiU is linear in the initial state, any convex

sum of projectors, i.e., a density matrix of the environment,
will also lead to the same average channel. Fluctuations
though, which are not linear in the initial state, do change.
In particular, the size of the fluctuations will scale as
�1=ðNrÞ, if r is the rank of the initial state of the environ-
ment. For instance, if the initial state of the environment is
an identity matrix, corresponding to the environment at
high temperature, the fluctuations scale as �1=N2 instead
of �1=N as for the projector, meaning that self-averaging
is stronger.
A random matrix example.—We illustrate the above

results by taking H from the Gaussian Unitary Ensemble
(GUE). This kind of Hamiltonians have been successfully
used to describe a wide range of physical systems includ-
ing chaotic systems, condensed matter systems and quan-
tum environments [8,10,14]. For t ! 1 the induced

channel �ðtÞ is closely related to the so-called random
quantum channel, in which Ut is replaced by a random
unitary. Random quantum channels are useful in quantum
information theory [15] and have been used to prove that
the conjecture about superadiativity of channel capacities
is false [16]. Because the joint probability distribution of
eigenvalues is known for GUE we can perform explicit
averaging over the spectrum, obtaining an expression for
the average fðtÞ; note that due to self-averaging for large N
the average behavior is observed also in individual

samples. As �ðtÞ is quadratic in fðtÞ it can be expressed
in terms of one- and two-point correlations, which are
known exactly for any dimension [10]. Strength of the
interaction is fixed by hjHi;jj2i ¼ 1

N , resulting in the spec-

tral span of 4 (determining the shortest time scale) and
the Heisenberg time being 2N (giving the longest time
scale, i.e., the inverse level spacing). The level density
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is R1ðEÞ ¼ P
N�1
j¼0 ’2

j ðEÞ, where ’jðxÞ ¼ e�Nx2=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jj!

ffiffiffiffiffiffiffiffiffi
2�=N

pp
H jðx

ffiffiffiffiffiffiffiffiffi
N=2

p Þ and H j are Hermite polynomials. The clus-

ter function, giving correlations between different
levels, is for GUE T2ðE1; E2Þ ¼ ðPN�1

j¼0 ’jðE1Þ’jðE2ÞÞ2.
One can show that N2hjfðtÞj2iGUE¼NþR

dE1dE2

e�iðE1�E2Þt½R1ðE1ÞR1ðE2Þ�T2ðE1;E2Þ�, which can be
evaluated explicitly for any N. Let us define b2ðtÞ ¼
ð1=NÞRdE1dE2e

�iðE1�E2ÞtT2ðE1; E2Þ and b1ðtÞ ¼
ð1=NÞRdEe�iEtR1ðEÞ. Normalization is such that

b1ð0Þ ¼ 1 and b2ð1Þ ¼ 0. The final formula is

h�ðtÞiGUE ¼ N2b21ðtÞ þ Nð1� b2ðtÞÞ� 1

N2 � 1
: (6)

Each of the contributions approach a simple expression in

the limit N ! 1: limN!1b1ðtÞ ¼ J1ð2tÞ
t , while the leading

order of the form factor 1� b2ðtÞ is t=2N for t < 2N and 1
otherwise.

We can see that there are two contributions to h�ðtÞiGUE.
The first one comes from the Fourier transformation of the
energy density. The second one, given by the form factor
and being due to eigenenergy correlations, is of the order
1=N compared to the first one, and is therefore important
for moderate N. For large N the second term can be
neglected in Eq. (6), giving limN!1h�ðtÞiGUE ¼
½J1ð2tÞ=t�2. The form of h�ðtÞiGUE for small and large N
in shown in Fig. 1(b). There we also show fluctuations,
which can be for large N obtained by using fðtÞ � J1ð2tÞ=t
in Eq. (5). The fluctuations decay with the system size as
�1=N. Therefore, for sufficiently large system the fluctua-
tions are smaller than h�ðtÞiGUE, i.e., the dynamics is self-
averaging. Even taking a single member H of the GUE
ensemble one gets the average behavior h�ðtÞiGUE, as can
be seen in Fig. 1 for N ¼ 12 000. If we would take the

initial state of the environment to be the maximally mixed
state, instead of jc envihc envj, similar self-averaging would

be achieved already for N � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 000

p � 100, which is
about 7 qubits.
Poisson example.—As a second example we show one

still possessing unitary invariance, but having Poissonian
eigenenergies with no correlations [17], and with a flat
level density, being a model for regular systems. The
calculation goes exactly as in the previous example.
Taking into account that there are no correlations among
different levels and the spectral density is flat
(T2ðE1; E2Þ ¼ 0, R1ðEÞ ¼ N�ðjE� 2jÞ=4, where � is
the Heaviside step function), we get [see Fig. 1(a)]

h�ðtÞiPoisson ¼ N

N þ 1

�
sinð2tÞ
2t

�
2 þ 1

N þ 1
: (7)

Non-Markovian behavior.—Having calculated �ðtÞ,
one can immediately draw conclusions about the non-
Markovian behavior of the channels. Consider the map

that takes a state from a time t to tþ �, �ðt;tþ�Þ ¼
�ðtþ�Þ½�ðtÞ��1. This is, in general, not a physical map,
which implies that the trace one operator associated via
the Jamiołkowski isomorphism J is not a physical state.
In [4], the deviation of positivity for such operators is taken
as a measure of non-Markovian behavior M1. We define

gðtÞ	 lim
�!0þ

kJ ð�ðtþ�;tÞÞk1�1

�
¼
�3 _�ðtÞ
2�ðtÞ if _�ðtÞ>0
0 otherwise

; (8)

which will be positive whenever �ðtÞ increases (the details
are presented in the supplementary material [12]).
With this figure of merit one can calculate the values of
M1 ¼

R1
0 gðtÞdt. A different criterion is based on the

evolution of distinguishability of states with time [3] and
is defined as M2 ¼ max�0;1ð0Þ

R
�>0 dt�ð�0; �1; tÞ, where

�ð�0ðtÞ; �1ðtÞÞ is derivative of the trace distance between
�0;1ðtÞ. The states �0;1 that maximize such quantity for our

channel are any two orthogonal pure states, say �i ¼ jiihij.
In such case �iðtÞ ¼ 1
�ðtÞ�x

2 and M2 ¼ 2
R

_�>0 dt _�ðtÞ.
The last measure to be examined quantifies non-
Markovian behavior via the nonmonotonicity of entangle-
ment decay of our qubit with an ancilla qubit [4] and
is as such, as we will see, weaker than M1;2: M3 ¼R

_C>0 dt½dCð�ðtÞÞ=dt�, where C is a measure of entangle-

ment (to be taken here as the concurrence [18]), �ð0Þ is a
Bell state in the two qubits and the quantum channel acts
on a single qubit. The concurrence for the corresponding
state will be in our case Cð�ð�ÞÞ ¼ maxf0; ð3�� 1Þ=2g.
The final result is M3 ¼ 3

2

R
_�>0;�>1=3 _�dt. In Table I we

report several values of all three measures for different
environments. We can see that both M1;2 indicate non-

Markovian behavior exactly at times when �ðtÞ increases,
in other words, when the Bloch ball expands. If we
explicitly write M1 ¼ 3=2

P
lnð�ðtfÞÞ� lnð�ðtiÞÞ and

M1 ¼ 2
P

�ðtfÞ � �ðtiÞ, where both summations are
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FIG. 1 (color online). (a) Theoretical dependence of �ðtÞ for
Poisson example, Eq. (7) for N ¼ 4, 8, and 1. (b) Same three
sizes for GUE example, Eq. (6). We also show three diagonal
elements of �ðtÞ for one instance of N ¼ 12 000 (three thin blue
curves) and theoretical fluctuations, displayed around N ¼ 1
theory as a gray shadow.
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over all intervals [ti, tf] on which �ðtÞ increases, it is also
easy to understand why the behavior of M1;2 is different

with N. Because of the divergence of logarithm at 0, the
behavior of M1 is dominated by values of �ðtiÞ which
decrease with N, eventually becoming 0 for N ! 1,
causing the increase of M1 with N. On the other hand
M2 is dominated by terms �ðtfÞ that decrease with N see

Fig. 1(b). For Poisson example M2 increases due to a
trivial N=ðN þ 1Þ prefactor. Looking back at our results
and the two examples of a GUE and Poissonian ensemble,
we can see that for small times non-Markovian behavior is
due to diffraction on the spectral density. Provided the
spectral span � is finite, there will always be oscillations
in �ðtÞ on the time scale 1=�, causing non-Markovian
behavior. How fast these oscillations decay with time
depends on the singularity at the spectral edge—sharper
features lead to slower decay of oscillations with time. In
condensed matter systems singularities at spectral edges
(van Hove singularities) are quite common. Surprisingly,
non-Markovian behavior is present even for an infinite
environment, where one would perhaps expect that there
is no ‘‘back-flow of information’’ from the environment to
the qubit. For smaller systems the term with the two-point
correlations also leads to non-Markovian effects. Indeed,
for chaotic systems 1� b2ðtÞ increases with time, leading
to an additional increase of �ðtÞ. This contribution occurs
on the time scale of the inverse level spacing. Interesting to
note is, that comparing the GUE case, mimicking chaotic
systems, with the Poissonian for regular dynamics, shown
in Fig. 1, one can conclude that non-Markovian effects are
stronger in chaotic systems than in regular ones. This is
yet-another example of a counter intuitive behavior of
quantum chaotic system. Another is their stability, where
quantum chaotic systems can be less sensitive to perturba-
tions than regular ones [19].

Conclusion.—We analytically calculate a quantum chan-
nel describing the reduced dynamics of a single qubit
within a larger system. Unitary evolution by unitarily in-
variant Hamiltonian leads to simple diagonal channel that
can be visualized as an isotropically oscillating Bloch ball.
The average value of the diagonal matrix element has
two contributions: (i) one from the Fourier transformation
of the energy density, and (ii) from correlations between
eigenenergies. Provided there is some eigenenergy

repulsion, as is the case in quantum chaotic systems, the
second contribution will lead to semiclassically small non-
Markovian behavior. This effect is stronger for more cha-
otic systems. The contribution due to energy density in
general leads to non-Markovian effects even in the limit
of an infinite environment. We also calculate channel fluc-
tuations, showing that the dynamics is self-averaging for
large systems. This means that non-Markovian effects
should be observable already in small individual systems,
making it an exciting experimental challenge.
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Chruściński et al., Phys. Rev. A 83, 052128 (2011).

[6] M.M. Wolf and J. I. Cirac, Commun. Math. Phys. 279,
147 (2008).
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