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Abstract. A new method for exact quantization of gemeral bound Hamiltonian systems is
presented. It is the quantum analogue of the classical Poincaré surface-of-section (sos) reduction
- of classical dynamics. The quantum Poincaré mapping is shown to be the product of the
two generalized (non-unitary byt compact) on-shell scattering operators of the two scattering
Hamiltonians which are obtained from the original bound one by cutting the f-dimensional
configuration space (cs) the along the (f - 1)-dimensional configurational sos and attaching
the flat quasi-ene-dimensional waveguides instead. The quantum Poincaré mapping has fixed
points at the eigenenergies of the original bound Hamiltonian. The energy-dependent quantum
propagator (£ — H)~! can be decomposed in terms of the four energy-dependent propagators
which propagate from and/or to €s to and/or from configurational $0s (which may generally be
composed of many disconnected parts).
I show that in the semiclassical limit (& — 0) the guantum Poincaré mapping converges to
the Bogomolny’s propagator and explain how the higher-order sermiclassical corrections can be
obtained systematicalty,

1. Introduction

Over the last decade or two there has been an increasing interest in efficient quantization
procedures for simple (having only few freedoms) but nonlinear (possibly chaotic)
Hamilionian systems. Here I consider bound and autoromous Hamiltonian systems with
f freedoms. Directly solving the time-independent Schridinger equation in f-dimensional
configuration space (CS) or the equivalent eigenvalue problem for the Hamiltonian matrix in
an appropriate basis is the first but certainly not the best idea. A question was raised in [7]
as to whether there exists a quantum analogue of the surface-of-section (S0S) reduction of
classical dynamics [5] which reduces smooth bound and antonomous Hamiltonian dynamics
over 2f-dimensional phase space to a discrete Poincaré mapping over only 2f - 2}-
dimensional 508.

In the case of quantum billiard systems in two dimensions (f = 2) we have the so-
called boundary integral method which reduces a iwo-dimensional Schriidinger equation to
a one-dimensional integral equation. Its kernel can be interpreted as the quantum bounce
map which is a special case of Poincaré mapping. Smilansky and coworkers [2, 14] have
developed a more general scattering approach for quantization of billiards. They construct
exact quantum Poincaré mapping for two-dimensional billiards with respect to the arbitrary
line of section as the product of the two scattering matrices of the two opened billiards.
These methods are typicaily much more efficient than the direct diagonalization, since the
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dimension of the matrices they use is typically of the order of the square root of the
dimension of the original Hamiltonian matrix. On the other hand Bogomolny succeeded
in constructing an approximate semiclassical Poincaré mapping with respect to an arbitrary
configurational surface of section for an arbitrary autonomous Hamiltonian. In this paper
I present the generalization of the scattering approach for quantization of almost arbitcary
bound Hamiltonians and show that it reduces to the Bogomolny's theory in the semiclassical
limit # — 0.

In section 2 I construct the quantum Poincaré mapping and prove that the eigenenergies
of the original Hamiltonian correspond to the fixed points of quantum Poincaré mapping. I
also prove theoretically a perhaps even more interesting $05 decomposition of the resolvent
of the Hamiltonian. Here I also study the semiclassical limit of newly defined propagators
and explicitly calculate the leading-order and next-to-leading order terms while I explain how
higher-order corrections (in powers of /1) can be obtained systematically. The symmetries
of quantum Poincaré mapping are discussed and it is explained how the SOS quantization
condition can be used very efficiently in practical calculations, especially for the generic class
of the so-called semi-separable systems. In section 3 I formulate an abstract quantum S03
method which can be applied to arbitrary boundary-value differential equation problems.
Then I apply an abstract theory to the case of the energy-dependent Schriédinger equation of
section 2 and more general cases of non-relativistic or even relativistic systems (described
by the Dirac equation) coupled to arbitrary external gauge fields. In section 4 the method
is generalized to the case of non-simply but multiply-connected €S08. In section 5 I discuss
the meaning and applicability of the new results and reach conclusions. Some preliminary
results of this project have already been reported [, 10].

The idea behind the proofs of the major results, although they are technically quite
complex, is very simple. We assume that a bounded energy-dependent (stationary)
Schrddinger equation with the prescribed values of the wavefunction on (f — 1)-
dimensional configurational SOS has unique solutions on both sides of ¢S with respect to
the configurational 508. Then we study the (quantization) conditions under which these two
solutions may be matched smoothly to give an eigenfunction over the entire CS, such that
it is continuous and continuously differentiable on the configurational SOS. I have tried to
argue in an intuitive physical way as much as possible, however, the use of some technical
mathematical tools and formulations is unavoidable. Nevertheless, the results are believed
and shown to be comrect on intuitive physical grounds but the proofs are not yet fully
rigorous.

2. Surface-of-section quantization

2.1. Notation

The basic results of this paper are most beautifully and compactly written in terms of some
new physical quantities whose mathematical definitions and notation are described in this
subsection.

We study autonomous and bound (at least in the energy region of our concern)
Hamiltonian systems with few, say f, freedoms, living in an f-dimensional conrfiguration
space (CS) C. One should also provide a smooth (f — 1)-dimensional submanifold of Cs
C which shall be called the configurational surface of section (C508)t and denoted by Sp.

f The more gencll-al case of a (2 f —2)-dimensional 50 in a 2 F-dimensional phase space which is not perpendicular
to Cs cannot be meated within the present approach except in the cases where one can change the phase space
coordinates by means of an appropriate canonical transformation,
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In this section we only consider the case of simply-connected CSOS whereas in section 4
we study the case of more general multiply-connected CS0S. We choose the coordinates in
Cs, g = (z, y) € C in such a way that the CSOS is given by a simple constraint y = 0,
or & = (S, 0). These coordinates need not be global, ie. they need not cover the whole
Cs, but they should cover the open set which includes the whole CS0S Sy, This means that
every point in Sy should be uniquely represented by C50S coordinates = € & which may
be more general than Buclidean coordinates R/ (e.g. (f — 1)-dim sphere S1). In this
section we shall assume that S is an orientable manifold so that it cuts the 5 C in two
pieces which will be referred to as upper and lower and denoted by the value of the binary
index o =4, } (see figure 1). In arithmetic expressions the arrows will have the foliowing
values = +1, { = —1. My approach presented in this section applies t0 a quite general
class of bound Hamiltonians whose kinetic energy is quadratic, at least perpendicularly to .
CS0s, -

H= —z-i;pi +H (P, 2, 3)- (L
In the following sections we generalize this class to include Hamiltonians having coordinate-
dependent mass (which arise in the curvilinear coordinates which must be used in the case
of non-flat C508) and/or terms linear in p, (which appear, for example, due to the presence
of a magnetic field).

In quantum mechanics, the observables are represented by self-adjoint operators in a
Hilbert space H of complex-valued functions ¥(g) over the ¢s C which obey boundary
conditions W(8C) = 0 and have a finite L2-norm fc dg W (q)|* < co. We shall use the
Dirac notation. A pure state of a physical system is represented by a vector (ket{¥)) which
can be expanded in a convenient complete set of basis vectors, .2, position eigenvectors
lg) = [z, y), |¥) = f.dg|g}{gl¥) = f,dg¥(g)lg) (in a symbolic sense, since |g) are
not proper vectors, but such expansions are still meaningful iff ¥{q) = (g{¥) is square
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Figure 1. The geometry of the two-dimensional cs of a typical bound system, (a) with simply
connected €s0s. Isopotential contours are shown. The product of classical or quantal scattering
mappings of the two scattering systems shown in (b) ard (c) is equal to the classical or quantal
Poincaré mapping of a bound system (a).
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integrable i.e. a L?(C)-function). Every ket|¥) € H has a corresponding vector from the
dual Hilbert space ', that is bra (W] € H', (¥lq} = {g[¥)*. We shall the use mathematical
accent " to denote linear operators over the Hilbert space . Operators of S80S coordinates

& and Py, defined byt
(=, y|2|¥) = z¥(z, y) (z, y|pg |V} = —ihdp ¥ (z, ¥}

can also be viewed as acting on functions ¥ (2) of = only and therefore operating in some
other, much smaller Hilbert space of square-integrable complex-valued functions over a
CS0S Sp

{wlEly} = zy () {wlpg|¥} = —ihdxy ().

Vectors in such a reduced SOS-Hilbert space, denoted by £, will be written as |4} and
linear operators over £ will have a mathematical accent ” like the restricted position & and
momentum P.p. Bigenvectors |} of the S0S-position operator & provide a useful complete
set of basis vectors of £. The quantum Hamiltonian can be written as

A

n? A 5
H=——8+H()  HQ)=H(-k,)). @

The eigenstates of the treduced inside-cS0S Hamiltonian H'(0) = H'(0)| testricted to the
50s-Hilbert space £, [n} e L

H'(O)|n} = E.|n} (3

which are called Sos-eigenmadves, provide a useful (countable n = 1,2, ...) complete and
orthogonal basis for £ since H’'(0) is a self-adjoint operator with discrete spectrum when
its domain is restricted to L.

The major problem of bound quantum dynamics is to determine the eigenenergies E
for which the Schrddinger equation

(x, YIHH(E)) = EY¥(z, y, E) )

has non-tﬁvial nommalizable solutions—zigenfunctions ¥(z, y, E).

2.2. Scattering formulation

In this subsection I will introduce our basic tools using the powerful quantum mechanical
time-independent multichannel scattering theory {8, 15].

To connect bound Hamiltonian dynamics and scattering theory one should make the
following very important step. Cut one part of CS off along €508 and attach a semi-infinite
separable (flat along the y-axis) waveguide instead (see figure 1). Thus we introduce two
scattering Hamiltonians

g o | ~E2mE+ () oy >0 )
- (h2/2m)32 + B0 oy <0.

Every wavefunction inside the waveguide (cy < 0) at energy E can be separated as the
superposition of products of a bound state (SOS-eigenmode n) in the z-direction and free
motion in the y-direction,

{z|n) e (B

t Inthe case of the non-Euclidean sos they should be replaced by the generators of the corresponding Lie algebra.
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with the corresponding wavenumber determined by the energy difference E — E, available
for the motion perpendicular to the CS05

2
nlE) = | 25 (E —E}).

For any value of energy E, there is typically a finite number of the so-called open
or propagating 50S-eigenmodes—channels with real wavenumbers for which E, < E,
and infinitely many closed chamnnels with imaginary wavenumbers for which E, > E.
The scattering wavefunction W, (x, y, E) at a given energy E {or complex-conjugated
wavefunction ¥i(z,y, E*) = (W.(z,y, E*))*) satisfying the Schridinger equation
H, H; |V, (E)) = E|¥,(E)) can be uniquely parametrized by the vector [} from the SOS-
Hilbert space L (or by vector {y*] from the dual S0s-Hilbert space £). |} € £ essentially
parametrize the incoming waves

in — m iokn(E)y
vira, y, E) Z{wlnh/ el

which uniquely determine the whole scattering wavefunction. Therefore the wave operators
can be defined, namely Q’ (E) which map from £ to H (or P’ (E) which map from H to £)
and whose Kernels are given by the scattering wavefunctlons (or their complex conjugates)

(a| OL(E)y} = ¥y (g, E) (6)
{Y*IPL(E)lq) = Wi(g, E*). )

On the o-side of C8 (oy = 0) the scattering wavefunction satisfies the ordinary Schrodinger
equation (4) whereas in the waveguide (oy < 0) it is a superposition of incoming and
scattered waves

~=im

Vo, 3, B) = Y5 3 {alnli; VB[O 6y + e TR EN T 1)
] nl
= Y g gy KB 4 ROV, () ®

LI!: (m, ” E*) - / ;lm {w*i[cialz(E)y + f‘a (E) e—-io’I?(E)_)']E—I,IZ(E)[m} . (9)

For the sake of compact notation we have introduced the wavenumber operator

KB =) ku(E)n)(n] = ,!Zh—’;“-(ﬂ ~ H'(0). (10)

T3 (E) is the generalized scattering matrix since it also includes closed (non-propagating)
modes and T, (E) is the corresponding scattering operator over L

T,(E) = Z AR (i

Here I have to make three 1mportant notes:

o the conjugated energy E™ is used in the argument of the complex-conjugated .
wavefunction (7) in order to make all the relevant operators, e.g. P,(E), complex
analytic functions of E rather than E*.

o The sos-states |¥*} and |} are generally different.



4138 T Prosen

e The equation (9) is non-trivial and does not follow from (8) but it is a consequence of
the Hermitian symmetry of the scattering Hamiltonians H,, as will be shown in the next

paragraph.

Let us now consider the resolvents of the scattering Hamiltonians (5) with outgoing
boundary conditions

N 1 ;> . "
Go(B) = = f dr el E-B (. L 410)7). (12)
0
It is convenient to introduce a hybrid representation of these scattering Green functions
denoted by G (y,¥, E) € L (being a matrix element in the y-variable and an operator in
the z-variable) defined as
{@|Gs 3., B’} = (2, y|Go (BN, ¥') - (13)

Inside the waveguide (oy < 0, oy’ < 0) these hybrid Green functicns satisfy the following
‘free-motion’ Schriidinger equations in both arguments:

82G, (v, ¥, E) + KX(E)G. (3., E) = —a(y ) (14)
82Go (., E) + Go (3, ¥, BYRXE) = Faty —¥). (15)

The general solution of this linear system (in the wéveguide) is given by the sum of
particular ‘free-motion’ solution

Grree(r, ¥'s EY = % E~V(E) K ENy—Y| 172 (E)
and general solution of the homogeneous system satisfying outgoing boundary conditions

Go(3, Yy E) — Gree(y, ¥, B)== e Ry e~ RE» f o= KB R=112(E) (16)

Their sum {mIG (v, 0, E) satisfies the Schrodinger equation (4) on the o-side (gy 2 (), so
comparing it locally, at ¢y = 40, with wavefunctions {8) yields

Yo (x, y, E) =

I} x .
m{lee(}‘-O, EYKV*(E) |y} oy 20 an

and determines the free operator valued parameter, A= f‘,,(E). Thus the waveguide
expression for the hybrid scattering Green function reads (oy < 0, oy’ £ 0)

Ga(y ¥, E) =2 K-uz( E)[ i%(ENy—y1 +e—1aK(E))T (E) e--mrK(E)) ] K-m( E). (18)

Since G(0, ¥, E)|x} satisfies conjugated Schrédinger equation, there exist S0s-states |1*}
such that

7 . .
vz, y, EY) = ﬁ{W*IKW‘(E)Gs(U, ¥, E)lz} oy 20 (19}

and equation (9) follows.
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2.3. 508 energy quantization

Now I shall formulate an exact energy quantization condition for the original Hamiltonian
matrix H solely in terms of the scattering operators T, (E).

Theorem la. Every encrgy E for which the operator 1- T¢(E)T¢(E) {where the order of
the arrows may be reversed) is singular is

e either eigenenergy of the original Ha.mﬂtonian H,
e or it is a threshold energy for opening of a new channel,
e or both.

More precisely: the dimensions of the left and right null-space of an operator I—ﬂ (E )Tv} (E)
are the same
dr(E) = dimker(l — T},(E)T1(E)) = dimker(l — T (E)Ts (E))} (20)

and the following inequality for dr(E} in terms of the dimension of the null space of
operator E — H, dy(B) = = dim ker(E — 4 }, and the dimension of the null space of operator
K2%(E), dx(E) = dimker K2(E), holds

max{dy (E), dx(EY} < dr(E) € dy(E) +dx(E). (21
Proof. Letvdr(Eo) sos-states {1 n} € £, n = 1,...,dr(Ep) span the null space of
1 - T (Eg)T1{Eq) <

_ (1 - T (E)TH{E)) It n} = 0. (22)

Then one may define another set of dr(Eg) SOS states || n} € £ by the prescription

N n} =T, (Eo)l4 n) (23)
‘in terms of which the equation (22) may be rewritten as a relation symmetric to (23)

[t n} =T (Bl n}. A (24)
Each of these vectors |1 n} lies either in the null space or in the image of RK2(Ey), since

£ = ker K*(Eo) & K*(Ep)L

where KX(E)L = ker K2(E)* since K2(E) is self-adjoint. Let the first mg vectors
4 ml,m=1,...,mg licinker KZ(E) In order to make sure that scattenng wavefunctions
(8) and (9) have a regular limit £ — Ep, since K~Y2(E) is becoming singular if
ker K2(Ep) # @, one should demand

A+T(EDig} =0 (Il + T (Ee)) =0 (25)
for any |¢} € ker K2(Eq), so ker K2(Ep) is invariant under T, (Eo) and T.f(Ep) '

T, (Eo) ker K*(Eg) = T1(Eo) ker K*(E) = ker K*(Ep) .
From equation_ (25) we also see that ker K %(Eg) < ker(l — fl(Eg)f‘T(Eo)), so |t m} span

the entire space ker K 2(Eo) and so dg (Eo) = mg < dr(Eq). Therefore the image K 2ENL
is also invariant under T, (Ep) and Tf(Eg), so the counterparts || [} of the remammg
dr(Ep) — dg(Ep) sos-states |1 [}, | = dg(Eo) + 1,...,dr(Ep) from the image KU E)
also lie inthe image KX(E)L. In the image one can deﬁne the inverse of K2(Ey) and the
inverse of its fourth root, namely K~'2(Ep). Using equations (23) and (24) one can write

(1+FHENIH 1 = (1+ Ty (B I}
(1= T E))It 1} = —(1 — T E)IL 1}
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which can be rewritten using the values of the wavefunctions and their normal derivatives
on the cs0s (from (8)

(z, 010 (E)|) = ——m‘t{ KVHE)1 + T.(E)) v} (26)
3yiz, 10, (B¢} lymo = a@-{wﬂim(m(l - T.(E)v} 27

as the continuity of the wavefunctions and their normal derivatives on the CSOS
(x, 0104 (Eo)lt I} = {=, 010/, (Eo)l{ 1}
3yiz, Y104 (E)t Bymo = 8y {z Y1O', (Eo). L}ly—o

which are built up from the pairs of scattering wavefunctions

(=, }’IQ’ (Eo)I1 I} y>0
(. 10, (Eald 1} y<o0.”

dy(Eyp), the maximal number of such linearly independent eigenfunctions W(z, y) is at
least dr(Eq) — dx(Eo) since due to completeness of SOS eigenstates [n} the mapping
Q" (Ep) is injective on the image K?(Ep)L. But this number, dy(Ep), can be larger than
dr (Eg) — dK (Ep) (but not larger than dr (Ep)) since there may be some states from the null
space of E2(E,) for which the limits £ — Ep of (26) and (27) of the upper (& =1) and
fower (o =) part accidentally match. Therefore we have proved an inequality (21) :

Analogously, one can show that the d7.(Ep) ba31$ vectors {La* e L n=1,...,d7(Ep)
of the left null space

{4 n*l(1 - T (E) T (E)) = 0 \ (29)

are mapped onto conjugated basis of eigenfunctions under the propagator f’; (Eo)

Ynlz, y) = { (28)

{1 1 B(Elz, ) y>0

{1 n*|P{(Ep)lz, ¥) y<0 (30)

‘I’,T(a:,)’)={

where the counterparts {t n*| are again defined as
{t 2*t = {4 n*IT,(Eo). 31

Generally, these conjugated wavefunctions are contmuous and differentiable on the CsOS
and are thus_eigenfunctions of the Hamiltonian B if lon*} € K¥(Eo)L, otherwise if
lon*} & ker K2(Eg) the continouity can be accidentally satisfied in the limit £ — Ej if
both contributions (upper and lower) coincide. This happens when the corresponding limits
for |on} (26} and (27) coincide since the two cases only differ by a complex conjugation.
So, the dimensions of left and right null space of 1 — TJ,(ED)TT(EO) should be the same
dr(Eo) = dy(Eo)-

The operator TUE) = i"],(E)fT(E) will be called a guantum Poincaré mapping and
is the product of the two guantized Poincaré scattering mappings. 'We have proved an
extremely efficient quantization condition (as we shall show later), namely, the energies
where the quantum Poincaré mapping has fixed points (eigenvalue 1) are either: (i)
eigenenergies of the Hamiltonian, H or (i) thresholds for opening of new channels E
{which are already known as a solution of (3} as a prerequisite of the method).
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2.4. SO5 decomposition of the resolvent of the Hamiltonian

The kernels of the scattering propagators {m|’f',, (B)iz"} will henceforth be called Csos—Csos
propagators. Then we also define: (i} The linear operator Q. (E) from £ to H and the linear
operator P, (E) from H to £ with the kernels

z 10, (B} = { @ACBW o> 32)
{wlpa(E)lm;y)= { ({)'!flPé(E)]w,}') g;’ig (33)

which are called CS0s—CS and CS-CS0S propagators, respectively, and (if) 2 linear operator
Go(E) over H with the kernel

L (@, y1G1(B)|@, ¥) y20,y >0
(z, y|Go(E)', ¥y = § (=, y|G (E)lx’, ¥} y<0, ¥ <0 (34)
: 0 yy' <0

which is called a CS—CS propagator (without crossing the CS0S in between).

Theorem 2a. The energy-dependent quantum propagator (i.e. the resolvent of the
Hamiltonian) G(E) (E — A y~1 can be decomposed in terms of the CS—CS propagator-—
with no intersection with the CSOS S{]—Go(E), €s—Csos propagator P, (E), CSOS-Cs
propagator 0. (E), and cSOS—CSOS propagator T «(E)

GE)=Go(EY+ Y . Q. (B — T_o (YL (E)) ' P_o(E)

+ Y QB — T (EYT(EN T ()P (E) . (35)

Quantities” {giGo(E)|g), (a|Q0-(E)Ia'}, (| P, (E)lq') and {z|T,(E)lz’} should be
interpreted as the probability amplitudes to propagate through the o-side of €8 from point
¢ in CS/x’ on CSOS to point g in CS/z on CS0S at energy E and without crossing Csos
in between. Then this decomposnmn formula can be understood intuitively by expanding
the operator (1 — T_, (E)T (E))~! in a geometric series and then using the basic postulates
of quantum mechanics about summation of the probability amplitudes of alternative events
(different number of crossings of Cs0s) and multiplication of the probability amplitudes of
consecutive events (sequential crossings of €S08) [3], since the system which propagates
from point g; to point g, in CS along continuous path can cross the CS0S arbitrarily many
times. (In fact, the number of crossings is even if g; and a5 lie on the same side of CSOS
and odd otherwise.) Two versions of the proof of this formula are given in [9, 10] while in
this paper the proof will be given for more general cases which include the present one in
the following two sections. ’

2.5. Semiclassical limit

In order to find explicit leading-order semiclassical expressions for the CS0S/CS—CSOS/CS
propagators it is convenient to express them first in terms of the scattering Green functions
in the hybrid representation (17)-(19)

. 2 . )
T,(E) = l—f_l—1’?‘”(!«:)((“;:r ©,0, E) — Guee (0, 0, B KV(E)
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(e, 10, (E) = 8(o)){z|G.(y, 0, EYEVU(E)

h
~f —im
ime(ay)ffl/z(ﬂ')éa(o- » Bz}

BBz, y) =

where the fourth propagator éu(y, ¥, E) is already defined in terms of the scattering
resolvents (34) and 6(y) is the well known Heaviside step function. Then define a linear
operator called half-derivative with the prescription

8;1'/2 et = gl/2 o8 Real’2 20 ’ (36)

which is a sensibly defined positive square root of the differential operator 9,. This is
a non-local operator which can be expressed explicitly for functions f(y) which increase
slower that the square root as y goes towards plus or minus infinity,

F0) = £6) ) = £
12 £ey) = ! IOy = ——= s
o= oo [ TIPSR o gy = [ oIS

respectively. Thus for an operator-valued exponential function, 8;." %eiky = IKV2eKy,
One may use the Schrddinger equation with proper boundary conditions (which were used
to derive (17} and (19)} to see that the scattering Green functions with one coordinate in
the waveguide may be written as exponential functions in that coordinate

Ga(y ¥, E) _ﬁ_"’K(E)rG +(0, ¥, E}
a(y »E)= o'(y 0, E)G-WK(E)}

Using the forms (16}, (37) and the definition of half-derivative one may rewrite the
propagators in a more useful form

if ey<0, 6y >0. (37

2
(T, (E)lee'y = —h—a‘.f’*affz(w, NG (B) - CeB)la, )T (38)
17‘19(0')’) 5172

(@ 10, B!} = 728, 516 (BN, Yy (39)
(@1 P (B, y) = &) 22, ¥16o (B2, 3) o 40)

From these formulae one can easily derive semiclassical approximations by using the
leading-order semiclassical approximation for the energy-dependent Green function (see

e.g. 6,11}

(qléU(E)qu) E Z B}(q’ q E) S,l'(q ¢I' E)/ﬁ—l”ﬂ?/z

2
(2rin)f+n/2

( aqaqlsj aanSj )
det 2
OgdgS;  9:S;

Dj(Q? q,, E) = Idetaﬁ} am'Sj(q: qf, E) I

whete the sum is taken over (usually finitely many) classical scattering trajectories labelled
by j with classical actions S;(g.q’, E) = f dg - p, and Morse indices v; which count
the number of conjugated points along the orblt j. pyj = 3S; and pl; = —3,.5; are the
perpendicular (w.r.t. CSOS) projections of the final and 1mt1al momenta Thus using the
definition (36) in the leading semiclassical order the half derivatives only cancel the square

Di(q, . E)
Touro I “n

Bj (Q? q” E) =
Ip)'j.pyj

172
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roots of y-momenta if one expresses the root of the (f + 1} x {(f + 1) determinant B; in
terms of the root of the (f — 1) x (f — 1) determinant Dy,

7 ~ 1 : 3
el T, (B) e’} = W Z D;(z,0,2,0, E) iSi{®.0.2 0. YR~y /2 42)
i
Ny, ~ ¥ 2rmé(oy) <= Di(z,y, 2,0, E _ -
(@, Y10 (B} & X 3 I > 7 ) eisy@.c 0.5 2 “3)
Pyi
- 2rmb (o D; o, 0z, v E _
{Z| P (B)lz, y) &= (inﬁ)(f/?-y) Z i( ” |1/g' ) 15 (T 0,2,y E) iy /2 @)
Pyj

In equation (42) the sum E; is restricted to only classical orbits which strictly leave €808 and
lie entirely on the o-side of CS. The “trivial’ clasgsical scattering orbits whose y-coordinates
are constantly zero are the only classical orbits of the semiclassical free Green function
Ges(E) and are thus cancelled in expression (38) for the propagator T, (F). The sums in
(43) and (44) contain only the classical orbits which lie entirely on the o-side of the ¢S with
one end point on the CSOS and the other end point lying in the o -side of ¢s. If there was a
classical orbit whose part would lie in the wavegiide then its y-coordinate should have an
extremum there which, however, is impossible since the classical motion in the waveguide
is free in the y-direction. The semiclassical expression for the CS—CS propagator without
crossing the €S0S is {z, y|Go(E)|2, y'), thus according to definition (34) it looks the same
as RHS of (41) where the sum now includes only the classical orbits which do net cross
¢$0s. The leading-order asymptotic results (42)~(44) agree with the semiclassical theory of
Bogommolny [1].

The higher-order semiclassical corrections to C$OS$/CS-CSOS/CS propagators can be
obtained ‘in a systematic way by (i) inserting a comected higher-order semiclassical
expression for the scatiering Green function (41) in the formulae (38)-(40) and (ii)
evaluating the half-derivatives in terms of a power series in 7. I will now show. briefly
how both steps can be performed systematically.

(i) The higher-order corrections to semiclassical energy-dependent Green function
(qléd(E)Iq’ } can be obtainedj by multiplying each term of (41) by a correction factor

2w
7 Z B elS;fﬁ—lU;ﬂ'/Z Zhn f] (q, q E)

{@1G(El) = = GrmyoIn

The corrections f,;f can be calculated by inserting the whole expression into the Schridinger
equation. Comparing the terms with equal powers of 2 and integrating along the orbit yields
the explicit recursion formulae for the semiclassical corrections

fo (Q'_,(f),Q’ E) =1
filg).4.B) = —( —yryay.a.E) Pf d'(~ )“”J“ft‘""’ BA; L (g;(). 4. E)

Ajfe. 4. E) =B (g, 4 E)3g [Bi(a, 4" Bf@d )]

where g;{f) denotes the classical orbit j with end points ¢’ and g. One must use the
sign factors (—)™ and the Cauchy principal value of the iniegzal in order to avoid infinite
contributions each time one passes a singularity—conjugated point.

1 A variant of this approach for a time-dependent quantum propagator {withont consideration of conjugated
points—short-time limit) has been developed by Roncadelli [13], whereas Gaspard and Alonso [4] used another
(path-integral) approach to derive an E-expansion of the Gutzwiller trace formul_a.



4144 T Prosen

(i) A half derivative of a term like &/S/% f, where we shall take § = §;, £ = B; fi,
may be represented as a power series

. 1 on A, a
31./2 eleﬁf _ elS/Fz hncnf
¥ ﬁ g{)

where €, are some linear operators independent of fi. Taking it twice, 3},’ 2 8)1./ 2= 8y, and
comparing the terms with the same power of 2 one obtains the set of equations which
determine the operators C,

€2 =i3,8

éoé] -+ éléo = a).

n
>l =0 nx2.
m=0

It is easy to see that C,, is an nth-order differential operator. For example, we give explicit
expressions for the first two

. N i928; i
=399 G =892 - ——3, 4
Co=( 'y ) 1= 'y ) 8(3)-5')2 26,5 y (45}

and the next-to-leading order semiclassical expression for the quantum CSOS—CSOS
propagator

w 1 S A .
{x|T; (E) lm’} = m Z Dj elé}/ﬁ—wjn-jz
j
. 3i9%S; 31928y iaD;  id,D;
x{1+n|fi+ i AW e A b B bt 46)
[ (1 8% 8p%  2pyD;  2p;D;

where all functions on RHS have arguments (z, 0, @', 0, E).

2.6. Symmetry of the C505—CSOS propagator

At a given value of energy E one can split the sos-Hilbert space on two orthogonal
components,
L = LD(E) @ ﬁc(E)

the (usually finite-dimensional) subspace of open channels and the (usually infinite-
dimensional} subspace of closed channels

Lo(EY ={|¥} € £, {¥IKXEYW} > 0}

Le(B) = {1y} € £, ($1K*E)y} < 0]

spanned by {|n}, E] £ E}, and by {[r}, E|, > E}, respectively.
A very useful piece of information about the CSOS—CS0S propagator which can be written

in a block form

¥ _ T:oo(E) I:oc(E)

&)= (Tc.,(E) ncw))
can be obtained by comparing the two expressions for scattering wavefunctions, the
conjugated equations (9) and (8). Comparing the values and normal derivatives on CS0S
one obtains two equations

NFEF £ T,)) = VEET/H (1 £ THiw*.
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Noting that K*1/2 E¥1/2t =(é :E) and performing some algebra yields

Too T, = ThToo = 1 ’ @7)
iToo T = Toc ' (48)
i1ie0 = Too 49)
ITcon =if, Toc = f - j"f (50)

This is the so-called generalzzed unitarity [14 12} of a CS05—CSOS propagator. Note that
the open-open part T°°(E) is indeed a unitary operator (47).

Now we give the representatlon of the CSOS—CSOS propagator in terms of what is
called the reactance matrix in scattering theory [8]. This also gives a practical recipe
for determining the CS0$—CSOS propagators T, «(E). Let Wo, (z, v, E) denote the unique
wavefunctions which satisfy the Schridinger equation (4) with boundary conditions

U, (, 0, E) = {z|n) Y, (2, 000, E) =

where the second condition should be taken on the boundary of CS if the latter is not infinite.
Then one can define the reactance operators R (E) with matrix elements

w (e
| R (E —_— o ,Ea‘l‘an E 51
URABI) = f & W@, 3, B Un@, ¥, Ellymo 5D

and show (using equation (8)) that the éSOS—CSOS propagators can be written as’

To(E) = (1 +iRe (E)(1 — iR, (E) ™, (52)
In the case of time-reversal symmeiry the. wavefunctions W, (2, ¥, E) are real and one can
use Green’s theorem to show that then the reactance matrix is symmetric

R (B)n} = (nIRAB)}  if Wanlw, y, E) = ¥}, (=, 3, E).
Using representation (52) this then means that the CS05-CS08 propagator is also symmetric
UL ENn) = (T (BN o {2llo(B)la'} = {2/| T, (E)lz}. (53)

2.7. Practical applications and semi-separable systems

Let us truncate the basis of £ to inciude all &, open channels of £, and the first &,
closed channels. The truncated {N = N, + N.)-dimensional matrices with matrix elements
{Z]f’a(E)[n} and {lléa(E)[n} will be denoted by T,(E) and R,(E), respectively. In
practice one should increase N, until numerical results converge, which is typically the
case [14,12, 11] for very small values of N, already, so in the semiclassical limit N ~ N,.
The practlcal $0$-quantization condition then reads

det(1 — T\ (ENT}(E)) =. : (54)
Using equation (52) this ¢ondition can be formulated in terms of reactance matrices
det(R4(E) + Ry (E)) =0. - (55)

In Vthe case 'of systems having z time-reversal symmetry (thét is if H(pg,z,y) =
H'(~py, z, y)) the reactance matrix (51) is a compiex—symmetnc matrix R, (E) = RT(E)
which is written in terms of a purely real matrix R, (E) via

ReB)= (g \/‘):i)éa(E)((‘, &)
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where the diagonal elements are N, and N, dimensional sub-matrices. The quantization
condition (35) can thus be expressed in terms of purely real symmetric matrices R, (E) =
RI(E) = R*(E)

det(Ry(E) + RL(E)) = 0. (56)

Equation (56) is much more efficient for numerical calculation of energy spectra (by
seeking its zeros) than the original quantization condition (54) since the former involves
real arithmetic [11].

There is a generic (in a sense of dynamics) class of the so-called semi-separable
systems for which reactance matrices can be calculated straightforwardly and hence the
quantization condition (56) can be easily implemented. A semi-separable system should
be separable (in (z, y) coordinates) on both sides of €308 (for y > 0 and y < 0) but
it can be discontinuous on csos (H'(—0) ¢ H'(+0)). Thus one has two complete sets
of normalized 50s eigenmodes, first |n},. are eigenstates of g {4-0), and second |n}- are
eigenstates of H'(—0). Since the system is separable on both sides one can explicitly
calculate the wavefunctions ¥,,(g, E) by separation of coordinates

Wen(@, ¥, ) = ¢4, (0, E){zin}s y>0
¥y (x, ¥, E) = ¢, (3, E)zin}- y=<0

where y-dependent parts should be normalized to give ¢y (0, £) = 1. We have the freedom
to cut C§ slightly above the discontinuity and choose a privileged set {n}; with wavenumbers
k,(E). Then we apply (51) to calculate real reactance matrices

Rynt(E) = [kn(E)| 7 8,64, (0, E)on
R(E) = —Veu( EYe(BE) VY~ clnlj}- 8,610, E) {jll}o..
i

The upper is diagonal while the lower includes transformations by means of real orthogonal
matrix with elements _{I[n}+ = {n|l}- which are typically easily calculated knowing the
two sets of SOs-eigenmodes. The author has applied this method for numerical calculation
of energy levels in the so-called semi-separable two-dimensional oscillator [11] which is a
generic nonlinear autonomous dynamical system with two freedoms. The method turned out
to be capable of yielding accurate consecutive energy levels with sequential numbers of the
order of a few ten millions at the cost of few minutes of Convex C3860 CPU time per level.

3. Abstract formulation of the method

In this section we devize a general and abstract mathematical framework within which
one can prove all versions of simply-connected SOS quantization conditions and SOS
decompositions of the resolvents of the corresponding Hamilton operators.

Let M be an arbitrary normed vector space, which will be referred to as reduced space.
The vectors from reduced space M—r-vectors will be written in bold italic and linear
operators over reduced space—r-operators will have a mathematical accent = Then we
define an r-operator valued function L(y E), where y is a real variable and E is a complex
spectral parameter (e.g. energy), in order to study the following general homogeneous vector
differential equation:

(3, — L&, E) () =0 &0)

over the entire real axis y € R (or on some finite interval which contains zero). Normalized
r-vector valued functions f(3), [ dyllfFO)I® < oo, constitute a normed vector space,
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denoted by M. The values of the spectral parameter £ for which (37) has non-trivial
solutions in H are called generalized eigenvalues whereas the comresponding r-vector valued
functions are cailed generalized eigenfunctions of (57). It will be shown in the next
subsection that this problem is equivalent to the time-independent Schrédinger equation
for some spec:lal choice of L(y, E). Equation (57) can be solved generally by means of a
Green function G(y y’, £} which is a unique r-operator valued function which solves the
inhomogeneous equation

(8 — LGy, E))G(y,¥. E) —-3(}’ -, E) - (58}
with boundary conditions

lim G(y,y.E)=0 : (59}

y—>Eo

where J {y, E) is some non-singular r-operator valued function.

Equation (58) may be written in the form L(E)G(E) = 1 where L(E) and G(E) are
the operators over H with kernels bemg r-operator valued distributions J Yy, E)(S’(y -
»y — L(y, EYs(y — y )) and G(y y', E), respectively. If left and right inverse of L(E)
exist and coincide then G(E )L(E ) = 1, so the Green function satisfies also the ‘conjugated’
equation

66,y . B ~ L', B) = =86 - 0. B) (60)
where ’
L'(y, E)= ~7"'4, B)L(y. B/ 3, E) . .

* We shall construct the Green function G(y ¥, E) by means of the Green functions
G, (y, ¥, E} of two generalized scattering problems which are defined by cutting the y-
axis at y = 0 and substituting the upper (y > 0,0 =1 =+)lower (y < 0,0 =} = —) part
of the function L(y, E) by a constant L(E) = [0, E). Therefore these scattering Green
functions satisfy

(O — LG B)Go(0. Y, E) =30y =YY, E)  if oy>0  (6)

(3 — LO, B))Go(y, ¥, Ey =80y - )/ (3, E)  'if oy<0  (62)
with boundary conditions

Jim_ Go(y,y', E)=0. _ (63)

The scattering Green function G,(y, ), E) can be written explicitly on the (—o)-side
{oy €0, 0y < 0) in terms of the abstract scattering operator T,(E)

Go(y, ¥, E) = iexp(L(EW)(3 —ily — Y10, E) — T (E)) exp(L'(E)Y') (64)
where [yl =t=+;y > 0,[y] =] = —; ¥ < 0 denotes the side or sign. Equation (64) can
also be considered as a unique definition of the abstract scattering operator, or

T.(E) =iGo (20,50, E) + L 5 i/ (0, E).. , (65)

Theorem 2b. The Green function of (58) é(y, ¥, E) can be decomposed in terms of four
r-operator valued functions which can be defined by means of the scattering Green functions

éo(y, y,E)= ab-][)J]éb'](y’ v, E) (66
0(y, E) =1y1G (3, 0, E) : (67)
B(y, E) = VilyIGy (0, y, E) ' (68)

T(E) = T1(E) + T (E) = iG4(£0, F0, E) +1G (0,20, E) + 1.  (60)
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Namely, the decomposition formula reads
G, Y, E) = Go(y. ¥, E) + Q0. EYU — TENTB(Y, E). (70)

Proof. One must show that RHS of (70) is the solution of equations (58) and (59). The
first term of the RHS is indeed a solution of a inhomogeneous equation (58) with boundary
conditions (59) on both sides but it is generally discontinucus at y = 0. The second term
of the RHS, or its first factor Q(y, E), is a solution of the homogeneous equation (57) on
both sides but it is again discontinuous at y = 0. The sum of the two terms is therefore
also the solution of the inhomogeneous equation (58). One is left to prove that the sum is
continuous at y = 0 and therefore 2 unigue solution of (58). For arbitrary function of y we
define the difference operator

Ayf =fOo+O - Fy-0). 71)
Then the straightforward calculation yields
£,G0,y, E) = AyGo(0, Y, E) + (8,00, N1 - T(E) ™' Py, E)

= 8,Go(0, ¥, E) = [¥'1Gyy; 0, ¥, E) =
since

A,Q(0, E) = Vil — T(E)). (72)

Theorem Ib. For any generalized eigenvalue E of (57) the operator T(E) has a fixed point.

Proof Any genera.hzed eigenfunction of (57) corresponding to the generalized eigenvalue
E can be writien in a form
o) =00, E)a (73}

for some non-zero r-vector @ € M. One can write explicitly, & = Q"(O EYf(0) if
0(0, E) is invertible, or more generally, a = [B’Q(y EYlan L FO)y=0 if af O(y, E)| =0
is singular for all p = 0,1...r — 1. Equation (73) follows from the deﬁnmon of the r-
operator valued function Q(y, E) in terms of scattering Green functions on the non-trivial
side. Since the function f(y) is continuous at y = 0, 4,F(0) = 0, one sees, using

equation (72), that a is a fixed point of the operator 'f'(E),
T(E)a=a.

Note that general decomposition formula (70) is invariant with respect to similarity
transformations '

06, E) - 0@y, E)S
T(E) = §~\T(EYS (74)
By, E) > §7'P0, E)

and transformations
00, E) = Q0. EYZ
TEY—1— Z(T(E) - DZ (75)
P(y, E) = ZP(y, E)

where $ and Z are any bijective r-operators.

Note that in this section the symbols denoted by letters G, 2, P, and T bhave different

meaning than in section 2. The propagators from sectlon 2 will appear as elements of block
matrices in the following subsection.



General guantum surface-of-section method 4149

3.1. Trivial application

For example, let us first cast our ordinary Schrédinger problem (4) and (2) into the abstract
form. Here the reduced space should be M = £ & L, since the Schrodinger equation is of
the second order, One should take

. - v _p-1
Ly, B) = ( #6. B) 01) i0.8=(gln 0™ 0o

in (57) and (58) where K2(y, E) = @m/i*)(E—H'(y)), K(E) = K (0, E). Then, referring
to the two components £ of M with indices I and 2, [¢¥(y)} = J1(¥) is a solution of the
Schrodinger equation (32 + K2y, ENlY ()} = 0 and —(2m/a2)G 11 (v, ¥, EYR "V(E) isiits
normal Green function (13) in a hybrid representation. Comparing scattering ansitze {18)
and (64) and using the similarity transformation (75)

E IZ:I/Z(E) f_vllz(E)
~ \iKY*(E) —iKY(E)

one obtains the usual CS05-CSOS propagators in a compact, block form

smtpems_ {0 THE)
STIT(EYS = (1‘(3) 0 ) (a7

One can also check that the first ‘row’ of (M/JZ_m)Q(y, E)S and the first ‘column’
of (iR/v2Zm)S B (y, E)K(E) can be written as (Q;(E), 0+(E)) and (P4 (E), Pi(E)),
respectively. It is now easy to check that the 1, 1 component of the general decomposition
formula (70) agrees with the more special case (35).

3.2. Non-trivial applications

There is a straightforward non-trivial generalization of application (76), namely, one can
include non-relativistic systems which interact with very general external (gauge) fields and
‘thus have Hamiltonians in our canonical coordinates (=, ¥} of the form

7 = —( —ihd, — AN + BH'(y) ' (78)

where the only restriction for the self-adjeint operators ﬁ(y) = A(—ihdp, =, y) and
g (y) = H'(—ihdy, =, y) is that they should not depend upon B, so they can be restricted
to act over the small s0s-Hilbert space £. Again we define the reduced space as M = LB L
and the Schrédinger equation (4) with (78) can be written as 2 first-order system (57) where
(76) should be replaced by

y _{i1AGy/R -1 v _{ .0 -EUB

s B (I?zcy, E) izi(y)/ﬁ) 0B = (K(E> 0 )
where all statements from the previous example remain valid except that now the CSOS—
CSOS propagator cannot be separated into upper and lower parts like (77) and all blocks of
T(E) are generally non-zero.

As for another interesting apphcatlon one can decompose the Green function of a
relativistic Dirac ——spm fermion bound in an external electromagnetic field A#(x, ) and
search for its stationary states. One may choose, for example, & = (!, x3), y= x* and
Ly, E) = y3 (7Y —iE +1eA% + y1(8; ~ieAl) + y2(3, —ieA%) +im) +ieA?, J = —y3,
that (57) and (58) reduce to a Dirac equation where it = ¢ = 1. The reduced Hilbert space
is now the space of Dirac spinor-valued functions over the two-dimensional plane (x!, x2).
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4. Multiple sections

In this section I consider the case of multiply-connected cS0s. Let €503, which is now a
smooth multi-sheeted (f — 1}-dirnensional manifold S, divide the f-dimensional ¢s C on
countably-many disconnected parts whose closures are denoted by C,, ¢ € 7,

c=Uca

act

where 7 is some finite or countable index set. Two points are in the same compartment
Cy if they can be connected by a continuous curve which does not cross cs0s &, The
compartments C, and Cg are said to be neighbouring (denoted by «|8) if their intersection
Syp is a pon-empty (f -~ 1)-dimensional manifold

ol & Cy ﬁCp=Saﬁ;éﬁ.

The union of all such intersections is the whole CS08

§=|18u.

alf

Hisa self-adjoint operator over the Hilbert space H = L%(C). Let Oz, |8 be open
sets which cover the connected parts of CS0S, Spg C Oy, The Hamiltonian operator H is
admissible if there exist coordinates (x, ¥)qp for each of the sets Oyp such that

Blrxo, = ~5020, M7 )8, + Hlp()
Mop(y) = Mog(—ifidg, T, y) (79)
AL, () = Hg(—ikdg, 7, 7).

We choose the sign of coordinate y of Uyg so that (z, y)ug € Cp if y > 0. Here we have
allowed for very general ‘masses’ ﬂ?ap(y), which should, of course, be positive operators
and hence invertible, which is another generalization of this section. Then I introduce small
sos-Hilbert spaces L5 = L(S,p), &|B. The operators restricted to L, will be again
denoted by an accent . Now cut off the ¢s around C, and attach y-flat the so-called -
waveguides on the other sides of all connected parts Syg, @|8 of the boundary 3C, (see
figure 2). Thus one defines the scattering Hamiltonians which in local coordinates read

, _ | 229 M5 508 + B y<0
Helzow = { —(#2/2)8, M} (0)3, + H25(0) y20 alp. ®0)

The fundamental solution of the time-independent Schrddinger equation for the scattering
problem (80) in the of-waveguide is given by

s (T MO R 2 (E) o2iRen B

where the wavenumber operator faﬁ(E) is the positive square root of the self-adjoint
operator

y 2 . v -
Kip(E) = Mo ONE ~ By @)L, (0). @81)

Vectors from the dual space £, ; are written with reversed indices, e.g. goiz| € L'.;ﬁ. Thus
the general scattering wavefunction of the Hamiltonian H, in the ef-waveguide (y > 0)
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Figure 2. The geometry of the two-dimensional cs of a bound system with multiple sections (a).
One of the related scattering systems is shown schematically in (5).

reads

W, (x, 7, E) = ~;— ﬁq{m! 1/2 _szE)[ —lKuﬁ(E)}hb-} g + ele.ﬂ(E)J Z Tﬂay (E)N’}ar]
(32)

Vi(z,y, EX) =

yle
"/—[ pel¥™ | e 8y 4 Z yal 01 Ty ep(E) GIKQE(E))]

x Koy M EYMo5 12 }ag (83)

(where M 2 M ! 2(0)) and is uniquely determined by the incoming waves parametrized
by the SOS-states ]t,&}dy or [¢*}ay coming from the ay-waveguide for all neighbouring
compartments C,. We have introduced the scattering operators Tz,, which will be called
generalized CSOS—CSOS propagators. Tg., is the scattering operator from Ly, to Lg, and
describes the propagation from C, to Cg via Cy. Then we define the two types of linear
operators: Qay from small 508- Hilbert spaces L., to Hilbert space 7, and P, from Hilbert
space H to small SOs-Hilbert spaces £, by the following prescriptions:

ylo

D (G (E) Yy = Yalg, E)
yed

¥l N

> vl By (B)lg) = Wi(g, E).
red

The resolvent of the scattering Hamiltonian with outgoing boundary conditions

Go(E) = (E — Hy +i0)™
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can also be written explicitly (in analogy with (18)) inside the waveguides (y > 0, y' > 0)
Py 1 - X W
(@ NeplCalB@, 3 )ay) = o7 pallMef’k (B85, e ENoy!
e ED Ty, (B) eHhor EY | R BV I Yy (84)

In analogy with the sunply-connected case we also define: (i) the operators Qay (E) from
Ly to H and the operators Pyo(E) from H to Ly, with the kemels

(@) Qay (BN Jay = { f)q'Q:‘Y(E W ley g :g: (85)
el ¥\ Byu(ENg) = { pVihEl gk (36)

which are called generalized CSOS—CS and C3-C$OS propagators respectively, and (ji) G‘o(E b
a linear operator over H with the kernel

@Gy = | OB 3 g < @

which is called the generalized CS—CS propagator (without crossing the CS0S in between).
Let us compact our notation by introducing the following symbols. First we define the
large sos-Hilbert space M

M =@£aﬂ

«|f

with a complete system of orthogonal projectors ﬁap- (Note that each pair (@, g) is always
included twice, once as «|B and once as B|e.) For each sos-state |1} we write symbolically

Wi=Y Wl  [¥)es = Taply}.
alg

One then defines the large operators T(E), Q(E) and P(E) by

T(E)=Y . Tpay(E)ay
Blely

OE) =) Oy (ENIay
ay

P(E)=) HyaPyo(E)
yo

or equivalently

yice

g T(E) =) Tpy (BN, (88)
yeJg

B(E)ay = Ouy (E)1ay 39

ﬁyaP(E) = ﬁyapya(E)- {90)

Now, geometrically most general form of the main result of this paper can be stated and
proved very elegantly.
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Theorem 2¢. The resolvent of the Hamiltonian G(E Yy={(E— H =1 can be decomposed in
terms of four elementary propagators, namely Go:Ho>H, Q- Mo>H, Q. H-> M,
and T : M — M, as follows:

G(E) = Go(E) + Q(EY(1 — T(E)) ' B(E). ©n

Proof Put the decomposition formula in a sandwitch between {gf and [¢’). One should
prove that the RHS also solves the inhomogeneous Schridinger equation as the LHS does

(E — H(—ihdg, @){g|G(E)lg) =3(g—q) .- - (92)

This is indeed true in every compartment C, separately, where (qug(E)lq’) is a particular
solution and {g| Q(E)(I — T(E}) 1P(E Yg') is a solution of the homogeneous equation by
construction of the operator ‘Q(E). What is left to prove is that the RHS is continuously
differentiable on borders between compartments, that is on €808 S. Take arbitrary
neighbouring compartments C; and Cs and choose coordinates (x, y)es of an open set
O which includes S,g. We shall need the following values and normal derivatives of
the CSOs—CS and CS—CSOS propagators on the S, which can be obtained directly from

(82)-(84),
(. 0)up| Gy (E) = ? éa{wllez K3 (E) (Tpuy (B + 35y (93)

8,{(, 0)ap| Qay (E)ly=0 = ﬁ sl | M RN EY (Tpuy (B) — 85y)  (94)

Pyo(E) (@, 0)up) = £(Tyagc5)+sﬂy) Ko P (EVM )ap ©95)

a,.ﬁ,m(En(_m,y)aﬁ)l,ﬂ=7(1'%3(@—6@) L EYM (Tl (96)

First we shall prove that the RHS of (91) is continuous on all Sz, «}f. Using the
difference operator (71) we can write (omitting the argument (E) for the sake of brevity)

Ayl 0451Gla"y — Az, 0aglGolg’)

yie ¥ .
= ((z, 0)ap| (Z‘, Oy Tlay — Y Qﬁynsy) (- Py Blg)
yeg Coyed
V=i _ vig ’ ’
=77 .Bm{a’|MU2 /2 Z(Tﬁar +8ﬁr)norr z(nﬂ? +3ar)nﬂr
reJ . yeJ

x(1—T)"12P|q"}

=“/_ pal@l Moy’ Rog ™[ Pop ~ Ppa]ld))

We have apphed equanons (93), (88) and (90). Analogously, by applymg equations (94),
(88) and (90) we get (note also that (, ¥)ug = (&, —¥)sa)

A,8,{(®, VaplGlg ) ymo — Aydy (e, y)uﬂléaq'n}_o .

WA yig
== ﬁa{ l 1/2 1/2 Z(Tﬁﬂ? - aﬁy)nuy + Z(Taﬁy ay)nﬁy

yeg
x(1— 1) P|q)

"/- I .'
= 3 nlelMf R [ Pop + Paclla)-



4154 T Prosen

In order to see that A,{(z, O)G,;,'If}lq’) = 0 and A,d,{(x, y)ﬂﬁlfr‘lq')lyﬂ = 0 one has to
prove

(e, 0>apiéa(E)iq’>=§ﬁa{ PR E) o BV O

B4 VaplGalEND) lymo = -‘£ pal\ M K (E) Ppof BNl (98)

considering the definition of GQ(E) in terms of G, (E) (equation (87)). But this is easy.
Both, LHSs and RHSs of (97) and (98) satisfy the conjugated Schridinger equation as functions
of ¢’. The initial data, the values and the normal derivatives of the LHSs and RHSs on any
initial surface (2, 0)qy, |y also match as can be seen by applying ¢’ = (=, Y)ey and
(84) to LHS: and (95) and (96) to RHSs. The formulae (97) and (98)/(91) then follow from
the uniqueness of the initial-value hemogeneous {(4)/non-hemogeneous (92) Schrédinger
problem.

One can formally expand the decomposition formuia (91) in a geometric series or sum
over paths

nz2 . - - . .
G(E) = Go(E) + E Qoryayes (EYytorcn (B - - - Tosaney (E} Py, (E) %
arlag..la,

where each term contains probability amplitudes to propagate from compartment C,,
to Cyy ... t0 Cyy. If one chooses many disconnected parts of CSOS S, Which are
geometncaliy close then the propagators Taﬁy (E} would become simple and they could
be asymptotically explicitly calculated, so the formula (99) would turn into a kind of
path-integra! formula for the energy-dependent quantum propagator. Note that so far the
expansion (99) only has a formal and heuristic meaning stimulating physical intuition,
and probably quite generally gives a divergent series like many other quantum probability
amplitude expansions in physics.

5. Discussion and conclusions

This paper presents a theoretical construction of $0s reduction of quantum dynamics in
analogy with the S80S reduction of ¢lassical dynamics. However, there is an important
difference: in classical dynamics, one should carefully choose sOs such that almost every
trajectory crosses it, while in quantum dynamics this is not essential. All theorems work
even if CSOS lies in a classically forbidden region although the practical usefulness of
the method is expected to be worse then, because of the exponential localization and
sensitive dependence on boundary conditions. Moreover, the formalism of section 4 can be
easily adapted (by taking two different €508s as a single multiply-connected €505) to show
explicitly that the spectra, as determined by our method, do not depend on the choice of
the 508, since the corresponding quanturn Poincaré mappings are related to each other by
a kind of similarity transformation.

The Green function—energy-dependent quantum propagator—has been decomposed
in terms of propagators which propagate from Cs/Cs0s to CS/C50S. This decomposition
formula has been generalized in two ways: (i} for Green functions of arbitrary linear
differential systems and (ii) for sos which consists of more than one disconnected part. The
combination of these two generalizations is straightforward so'it is not given explicitly in
this paper. While this general decomposition formula (equation (91) or even (70)) so far has
merely theoretical value, it has a very practical consequence, namely, the SOs-quantization
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condition. The resolvent of the Hamiltonian (E — H)™! can have a pole, i.e. eigenenergy
Ey, only when the operator 1 — T(Eq) is singular, i.e. when the general quantum Poincaré
mapping T(£p) has a fixed point ¥} € M, T(Eo)|¥} = |¢). For the more special and
common case of section 2 we have M = L& L, T =(; ) ?), and |} =(:I:), where
4

|1} is a fixed point of the quantum Poincaré mapping Tvl’f} and at the same time }}} is a
fixed point of a similar mapping TV'T fj,. This quantization condition can be very efficiently
numerically implemented [14, 12, 11]. Since the exact quantum Poincaré mapping is usually
difficult to calculate explicitly we describe its semiclassical fi-expansion and give explicitly
the leading (Bogomolny’s [1]) and next-to-leading order terms.

Recently I have been informed that one of the results of this paper, namely the SOS
quantization condition for two-dimensional Hamiltonian systems of the standard type, has
also been obtained independently and subsequently by Rouvinez and Smilansky {12]. In
a somewhat different notation they use the same scattering trick and their quantization
condition is, in fact, identical to one part of theorem la while this theorem further explains
the spurious levels which are just the threshold energies for opening of the new channels E/.
They [12] also give a constructive method for obtaining the eigenfunctions which is
equivalent to (28) but they do not derive the more general $08 decomposition of the Green
function (theorems 2a—c).
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