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Abstract. This letter presents exacl surface of section reduction of quantum mechanics. The 
ma'" theoretical result is a decomposition of the resolvent of the autonomous bound Hamiltonian 
H .  (E - H)- '  in t e m  of the four propagators which propagate from and/or to Hilbert space 
over the configuration space (cs) to and/or from Hiltmi space over the configurational surface of 
&on (csas), which has one dimension less than cs. The exact energy quantization condition 
m be expressed solely in terms of the c s o s ~ o s  propagator. AU these newly defined energy- 
dependent (cs/csosHcs/csos) propagators are expressed in terms of the resolvent of the related 
scattering Hamiltonian. 

After the pioneering work of Bogomolny on the semiclassical surface of section propagators 
[ l ]  there remained a question whether his beautiful approach could be generalized to 
exact quantum mechanics [4]. Smilansky and co-workers [2,7] have developed such a 
principally exact method for quantization of billiards which is closely related to the theory 
of quantum scattering. In this letter I present the exact quantum surface of section method 
for quantization of general non-relativistic Hamiltonians of the standard type which is in fact 
a generalization of the scattering approach for billiards [2.7]. A more detailed presentation 
and some further generalizations of the method are given elsewhere [5,6]. 

We study Hamiltonian systems with f-freedoms, living in an f-dim configuration space 
(cs) C, and consider only the case of the so-called configurational surface of section t: (CSOS) 
& which is an (f - 1)-dim submanifold of cs C. We fix the cs coordinates p = (I, y ) ,  
x E S, y E Z C Re in such a way that the csos is given by a simple constraint y = 0, or 
So = (S,O), where the csos coordinates I E S may be more general than the usual 
Euclidian coordinates S = Ref-'. The csos cuts the cs into two pieces which will 
be referred to as upper and lower and denoted by the value of the index a =?, 4. In 
arithmetic expressions, the arrows will have the following values, t= +1, J= -1. The 
theory presented in this letter will apply to quite general classes of bound Hamiltonians 
whose kinetic energy is quadratic at least perpendicularly to SOS and which is more general 
than the class of standard Hamiltonians p 2 / k  + V(q) 

1 
=  pi + H'@,,x,y) 

Even more general Hamiltonians including positionally dependent mass and arbitrary gauge 
fields (e.g. magnetic field) are considered in 161. 

t e-mail: Tomaz.Fmsen@UNI-MB.SI 
$ More general cases can be treated by means of such canonical transformations of coordinates which commute 
with qnantivlion and eliminate the momenta from the surf3ce of section conshain1 in 2 f -dim phase space. 
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In quantum mechanics, the observables are represented by self-adjoint operators in a 
Hilbert space 7i of complex-valued functions q(q)  over the cs C which obey boundary 
conditions V ( X )  = 0 and have finite norm [cdq1'P(q)12 < 00. The Dirac's notation 
is used. Pure state of a physical system is represented by a vector-ket IQ) which can 
be expanded in a convenient complete set of basis vectors, e.g. position eigenvectors 
In) = Ix,Y). IW = [cdqlq)(qI\V) = [,dqY(q)lq) (in a symbolic sense, since Iq) are 
not proper vectors, but such expansions are still meaningful iff q(q)  is square integrable, 
i.e. Lz-function). Every ket IW) E 7i has a corresponding vector from the dual Hilbert 
space 7i', that is bra (*I E X', (Qlq) = ( q l W ) * .  Operators 2 and ljz can be viewed as 
acting on functions *(x) of x only and therefore operating in some other, much smaller 
Hilbert space of squareintegrable complex-valued functions over a csos SO. Vectors in 
such sos-Hilbert space, denoted by L, will be written as I*). Eigenvectors of sos-position 
operators 2. &Id] = z'lz') provide a useful complete set of basis vectors of L. The 
quantum Hamiltonian can be written as 

(2) 

where the eigenstates of the inside-csos Hamiltonian ri'(0) restricted to the SOS-Hilbert 
space L, In) E L called sos-eigenmodes 

h2 ri = --a; + A'(y) A'(y) = HY-iha,, 2. y) 2m 

A'(0)lrlnI = E2nI (3) 

provide a useful (countable n = I ,  2, . . .) complete and orthogonal basis for L since ri'(0) 
is still a self-adjoint operator with discrete spectrum when its domain is restricted to L. By 
cutting one half of cs off and attaching a semi-infinite separable channel (flat along the 
y-axis) instead, one defines the two scattering Hamiltonians 

General scattering wavefunction of the Hamiltonians (4) is also the solution of the original 
Schrodinger equation (E - f i ) W o ( z ,  y, E) = 0 on the o-side of CS but on the other side 
of cs (in the channel) it can be explicitly written as a plane wave decomposition in terms 
of the SOS-eigenmodes 

% ( x ? Y + m  = (z*Yl&b(E)l*l 
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We have introduced two linear operators over L where the discrete spectrum of the first 
(waveoperator) 

consists of the wavenumbers of the perpendicular motion (with respect to csos). 5picaliy. 
there is a finite number of the so-called open sos-eigenmodes with real wavenumber, 
En < E, and infinitely many closed (or evanescent) modes with positive imaginary 
wavenumber, E, F E. 

The second newly defined operator over L is the csos-csos propagator &,(E) which 
is just the S-mahix of the corresponding scattering problem (4) 

The scattering wavefunction (5) is a unique function of the expansion coefficients { l1@) ,  
or the SOS-state. I * ) ,  so the linear operator from L to X, &(E) ,  and linear operator from 
7.1 to L, jL((E), are well defined. Then we define the CSOS~S/CS-CSOS propagators- 
linear operator frondto sos-Hilbert space L tdfrom Hilbert space %-by the following 
prescriptions 

I will now show the first important result 

Theorem 1. The poles of the resolvent & ( E )  = (E - fi)-' (i.e. the eigecenergies of fi) 
are in one-to-one correspondence with the points E where the oeerator 1 - T-z(E)?c(E) is 
singular. Even more; the dimensions of the null-spaces of E - H and of 1 - T-m(E)?c (E) 
are the samei. 

Every solution of the SchrSdinger equation abovehelow CSOS can be uniquely 
represented by some E L in a form Yo(=, y ,  E) = (2, yl&c(E)l*o].  If EO is such a 
pole, i.e. a d-times degenerate eigenenergy of the Hamiltonian fi. then the corresponding 
linearly independent eigenfunctions Yn(z, y ) ,  n = 1 . , .d and their normal derivatives 
ayYn(z, y )  should be continuous on the CSOS SO. So, there should exist 2D SOS-states 
lun) E L, n = 1 . . . d ,  U =t, J. such that 

with 

t Due to technical reasons+the energy E should not be exactly equal to the threshold for opening of a new mode, 
i.e. all k , (E)  # 0 so that K - ' / * ( E )  exists. 
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Continuity relations (12) can be rewritten by using the results 

(obtained from expansion (5)), and by using the completeness of position SOS-states Iz), 

(1 + f t ~ o ) ) ~  t n) = (1 + ~J(EO))I J n~ 

(1 - ?+(E~))I t n) = -U - C(EO))I J n). 

(15) 

(16) 

Adding and subtracting equations (15) and (16) one obtains important relations 

fo(Eo)lon) = I -on) (17) 

which mean that the operator 1 - - f + ( E o ) f O ( E o )  is singular with Ion) being the 
corresponding right null-vectors 

(18) (1 - f~~(Eo)f~(Eo))lun1 = 0. 

This is an important SOS-quantization condition. Each d SOS-states Ion}, n = 1 . . .d are 
linearly independent, since E, c,lon] = 0 would imply E, col%) = 0 due to linearity of 
relation (1 1). The null-space of 1 - ?*(Eo)fV(Eo) which is spanned by Ion), n = 1 . . . n 
is therefore also d-dimensional. The reasoning (11)-(18) is reversible so the converse also 
holds: The existence of d-dim null space of 1 - ~-_,(Eo)?~(Eo) also implies the existence 
of d-dim eigenspace of 6. 

One can also derive the complementary SOS-representation of the complex conjugated 
eigenfunctions U’,& y) which are in analogy with (11) provided by propagators P,(Eo). 
There exists 2D SOS-states Ion*] E L, n = 1. .  .d, U =?, J, such that 

Requiring continuity of eigenfunctions and their normal derivatives results in a sequence of 
formulae completely analogous to (12)-(16) ending with 

{un*lfo(Eo) = (-on*[ (20) 

(-on*l(l - ?-.,(Eo)Fm(Eo)) = 0. 

and the complementary quantization condition 

(21) 

The operator 1 - f--,(E~)f~(Eo) has therefore left and right null-space of the same 
dimension d. 

Let us now consider the resolvents of the scattering Hamiltonians (4) with outgoing 
boundary conditions = ( l / i h )~~d te i ( f i - a ) r /h  = ( E  - fi0 +is)-’ which can be 
again explicitly written inside the channel (oy < 0, oy’ < 0) 
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in accordance with equations (5) and (6). The last propagator we define is the cs-a 
propagator (without crossing the csos in between) &&)-linear operator over the Hilbert 
space ‘H with the kernel 

(2. ylBo(E)lz’* Y’) = (23) 
yy’ < 0. 

Theorem 2. Now I can state the second important result. The energy-dependent quantum 
propagator (i.e. the resolvent of the Hamiltonian) &E) = ( E -  H)-] can be decomposed in 
terms of the CS-CS propagator-with no intersection with the csos -  bo(^), cs-csos 
propagator P‘(E), CSOS-CS propagator &‘(E), and CSOS-CSOS propagator ?“(E) 

&E) = &(E)+ Q.(E)(l - ? - o ( E ) ? o ( E ) ) - ~ L ( E )  
r 

This decomposition formula can be intuitively understood by expanding the operator 
(1 - ?+(E)fg(E))-’ in a geometric series and then using the basic postulates of quantum 
mechanics about summation of the probability amplitudes of alternative events (different 
number of crossings of CSOS) and multiplication of the probability amplitudes of consecutive 
events (sequential crossings of CSOS) [3], since the system which propagates from point pi 
to point Q in cs along a continuous path can cross the csos arbitrarily many times. (In fact, 
the number of crossings is even if pi and 4, lie on the same side of csos and odd otherwise.) 
The decomposition of the resolvent (24) can be proved by considering two facts: (i) The RHS 
is also asolution ofthe Sctwodinger equation (E-&(?, y@(~)lz’y’) = s(z-z‘)s(y-y‘). 
This is indeed true. The first term of the RHS (2, ylCo(E)lz’y’) is the particular solution 
of the non-homogeneous Schrodinger equation while the remaining terms are solutions of 
the homogeneous Schriidinger equation apart from discontinuities at y = 0. (ii) The RHS is 
also continuously differentiable at y = 0. Using (24), (13) and (14) one can show that this 
is true if 

(25) 

where U = sgn y’. The validity of these identities can be checked by verifying: (i) that both 
LHSs and RHSS satisfy the conjugated SchrMinger equation (as functions of (d. y’) and (ii) 
that their values and their normal derivatives match on the ‘initial surface’ S, (put y’ = 0) 
that can be seen by applying (23) and (22) to the LHss and applying (10) and (6) to the 

Before we conclude we shall use the relations such as equation (22), equation (25) and 
its analogue for the propagator &(E),  and the completeness of the sos-position states 
to express the remaining three propagators solely in terms of the scattering resolvent (the 
fourth propagator & ( E )  is already defined in terms of the scattering resolvent (23)) 

RHSS. 

Wry) k d z ’ ( z ,  yI&(E)l~’, O){“lt1’2(E) (27) 
fi 

(O,YIQo(E) = - .,cG 




