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Abstract We offer a clear numerical demonsvation of the Berry-Robnik level spacing 
distribution in a dynamical regime in which regular and irregular regions coexist in classical 
phase space. In order to achieve this we had to go very deeply into the semiclassical limit, which, 
so hr, has only been passible for an abstract dynamical system. namely the quantized standard 
map on a toms. We have performed an extensive numerical analysis of the quasi-energy specha 
and of the eigenstates in the two-dimensional phase-space representation. We have confirmed 
the validity of Percival's canjechm that the e igensws  can be clearly classified either as regular 
or irregular where the small set of mixed-type states vanishes extremely slowly as we apprdach 
the far semiclassical limit. It has been verified that the assumptions (statistical independence) 
implicit in the Beny-Robnik theory are indeed satisfied giving rise to the observed excellent 
agreement between theory and experiment. The same high quality agreement is also observed 
in our comparison of the semiclassical theoretical (Seligman and Verbaarschot) and numerical 
delta statistics. 

In the development of quantum chaos improvements in understanding have been achieved 
by studying the statistical properties of  the (quasi-)energy spectra (and of other observables) 
in quantum systems whose classical counterparts are non-integrable and chaotic. For recent 
reviews see Giannoni eta1 (1991), Gutzwiller's book (1990), Eckhardt (1988), Bohigas and 
Giannoni (1984) and Robnik (1994), and references therein. We know that there are three 
universality classes of spectral fluctuations: Poisson statistics in the classically integrable 
cases; in the case a$ classical ergodicity we find the G O ~ G U E  statistics of raidom matrix 
theories depending on whether there is onelno anti-unitary s y h e t r y  (we ignore spin). 
The interesting and difficult case of mixed-type classical dynamics of w - l i k e  (generic) 
systems has been studied numerically for the first time by Robnik (19841, where a continuous 
transition from Poisson to GOE statistics in a.billiard system (Robnik 1983) has been fotmd- 
this work has been substantially revised in Prosen and Robnik (1993). Further theoretical 
progress was published by Berry' and Robnik (1984) where the following semiclassical 
theory of the level spacings was presented. The eigenstates (their Wigner functions in phase 
space) are supposed to condense uniformly on theheunderlying classical invariant regions such 
that each of them-in the semiclassical limit-supports a level sequence which for itself 
has Poisson or GOE statistics if the region is regular or irregular! respectively. All the 
regular regions can be thought of as supporting a single Poisson sequence because the 
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Poisson statistics are preserved upon a Statistically independent superposition. The mean 
level spacing of such a sequence is determined by the fractional phasespace volume of the 
regular regions. On the other hand, each chaotic (GOE) level sequence has a mean level 
spacing governed by the corresponding fractional phase-space volume. The entire spectrum 
is then assumed to be a statistically independent superposition of all subsequences. The 
statistical independence in the semiclassical limit is justified by the principle o f  uniform 
semiclassical condensation of eigenstates (in the phase space) and by their lack of mutual 
overlap, which is consist with Percivai‘s (1973) conjecture. Thus the problem of the statistics 
of the entire spechum is now mathematically precisely formulated and its solution as far 
as the level spacings are concerned, can be expressed in the following way: the statistical 
independence of superposition implies factorization of the gap distribution functions (Mehta 
1991, Haake 1991): the probability that there is no level within a gap clearly factorizes 
upon a statistically independent superposition. The connection between the level spacing 
distribution P ( S )  and the gap distribution E ( S )  is as follows: 

dZE(S) 
P ( S )  = - 

d P  
and conversely 

E ( S )  = du(u - S ) P ( u ) .  (2) Ssm 
Leaving aside the general case of infinitely many chaotic components, which does not 
include anything surprisingly new, 1et .u~ restrict ourselves to the case of one regular 
component with mean level density pi (= fractional phase-space volume) and one chaotic 
component with the mean level density pz. where p1 + pz = 1. This is already going to 
be an excellent approximation, because in a generic system of mixed type there is usually 
only one large and dominating chaotic region. Following Mehta (1991), Haake (1991) and 
Berry and Robnik (1984). we have 

where the Poissonian gap distribution EpDissoo is 
= ~Poiso.(Pl~)~GoE(Pz~) (3) 

E P ~ ~ ~ ~ ~ ~ ( S )  = exp(E.9 14) 
whereas for the EWE there is no simple closed formula (for the infinitely dimensional 
GOE case) and it must be worked out by using practical approximations for PGOE and/or 
EGO€ which, for example, can be found in Haake (1991), pp 72-74. However, the two- 
dimensional GOE case (the so-called Wigner surmise) can be worked out explicitly as given 
in Berry and Robnik (1984), equation (28), which is usually a good starting approximation. 

As for the delta statistics A(L)  a similar procedure based on the assumption of statistical 
independence leads to the simple (additive) formula (Seligman and Verbaarschot 1985) 

A(L) APaisroo(PIL) + AGOE(PZL) (5 ) 
where Apairson(L.) =~L/15 whilst for AGO€ there are good approximations given in Bohigas 

Let us now define our dynamical system whose phase space is just a compact two- 
dimensional torus TZ = ( ( x ,  y ) ;  x ,  y G [ -E,  n)], where the periodic coordinates x and y 
will be called position and momentum, respectively. The system’s dynamics will simply 
be given by consecutive applications of the ‘free motions’ Uh.(x,  y )  = (x  + y ,  y) and 
‘kicks’ UK&, y )  = ( x ,  y - a sin(x)). The most useful is the symmetric representation of 
the evolution mapping U, 

(6) 

(1991). 

112 112 U = UKCk 0 ut, 0 Uwa 
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where U;:(& y) = (x ,  y - asin(x)/2). Our mapping (6) is, in fact, the standard 
(Chirikov) map on a torus T2 rather than on a cylinder and its representation is dynamically 
(canonically) equivalent to the usual representation U s c k o U h .  It possesses two symmetries, 
namely the time reversal symmetry T ( x ,  y) = ( x ,  -y), T .  o U o T = U-’, and parity 
P ( x ,  y) = ( - x ,  -y), P 0 U 0 P = U. 

Since the classical phase space is compact, the quantum Hilbert space is finite 
dimensional and its dimension n determines the, dimensionless value of the effective 
Planck‘s constant h d  = 2r /n .  Let n be an even number n = 2m. The position and 
momentum eigenstates denoted by Ixk) and In) can be defined through the relation (.plyL) = 
n-1’2exp((in/Zx)xkyr), where our choice x~ = ( 2 s / n ) ( k -  i), y, = (Zx/n)(I - I), k ,  1 = 
1 . . . n, warrants the single-valuedness on the torus T2. TheJuantization procedure is now 
almost obvious: the quantum unitary evolution propagator U is decomposed into products 
of free motions U,, and kicks GfiCk in precisely the same way as the classical one (6) 
where quantum analogues for the kick and the free motion are diagonal in position and 
momentum representation, respectively: 

A 

The phases of the diagonal elements in (7) are. (when divided by n/%r) just the classical 
generating functions which generate the classical mapping (6). Therefore as n -+ 00 the 
quantum evolution approaches the classical dynamics. There. exists a simple closed-form 
expression for the propagator in the position representation, 

which is the discrete time analogue of the well known infinitesimal propagator 
exp[(i/h)((x - x‘)’/Zm dt - ( V ( x )  + V(x’))df /2)]  for the general continuous Hamiltonian 
 case.^ Using the symmetry under parity P one can further reduce the n-dimensional 
unitary matrix- Uk,  = (nklGlxe) into two (m =~ n/2)-dimensional unitaiy matrices 
U; = , (x~ulUlxeu) ,  where Ixku) are parity preserving position eigenstates Ixku) = 
2-‘/2(lxk) + U I  - x k ) ) ,  k = 1.. .m and U = il is a parity eigenvalue. Of course, 
quantization can also be worked out for odd values of n but it is physically less transparent 
so we have only used even values of n in our numerical example. 

We have diagonalized symmetric (due to time reversal) and unitary matrices U; as 
close to the semiclassical limit m -+ 00 as possible. Spectra for both parities and several 
consecutive values of m were joined together in order to obtain statistically significant 
results. Clearly, due to the time-reversal symmetry the GOE,(or, strictly speaking COE) 
statistics will apply to irregular level sequences. This is a high-quality resolution test of the 
Beq-Robnik formula so we have investigated the cumulative level-spacing distribution 
W ( S )  = J tduP(u)  rather than the probability distribution P(S) itself, since the latter 
suffers from arbitrariness of binning. We have applied a least-squares fit of the two- 
component Berry-Robnik formula with estimated one-sigma uncertainties of the numerical 
data SW = Jm, where N is the total number of numerici~spacings, (see 
Prosen and Robnik 1993), and evaluated the x z  test. Moreover, we had to use the true 
cdimensional GOE statistics to model the chaotic spectral subsequence instead of the 
commonly used Wigner surmise, since as close to the semiclassical limit as we were able 
to go (m = 8000) we could clearly detect considerable differences. On the other hand, we 
have also compared our data with the phenomenological Brody model of power-law level 
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repulsion: 

(9) 
which was reported by many authors (Wintgen and Friedrich 1987, Honig and Wintgen 1989, 
Prosen and Robnik 1993, Ganesan and Lakshmanan 1994) to provide statistically significant 
fits to physical data at practically accessible energies (i.e. effective values of A). For a more 
refined analysis we have used the so-called U-representation of the level spacing distribution 
(see Prosen and Robnik 1993) U ( q ( S ) )  = ( 2 / n ) a r c c o s ( . / m )  which has a nice 
property that the estimated statistical error HI = l/~n is constant. We have plotted 
U ( W ( S ) )  - U ( W ~ ' " ( S ,  plj), where WfR@) is the hest fitting two-component Berry- 
Robnik cumulative level spacing distribution (based on co-dimensional GOfi statistics), 
versus W ( S )  since the density of equally weighted numerical points is constant along the 
abscissa so that the information is uniformly distributed over the graph. 

We have observed a very slow convergence towards the semiclassical limit, which 
is characterized by a smooth transition from a power-law Brody-like regime in the near 
semiclassical limit towards the ultimate Berry-Robnik regime in the far semiclassical limit, 
as illustrated in figure 1 for our system (8) at a = 1.8. The quasi-universal Brody-like 
regime (with the fractional power-law level repulsion) has been clearly and statistically 
significantly demonstrated in Prosen and Robnik (1993), where the near semiclassical limit 
was studied. The origin of this phenomenon has been explained and understood theoretically 
in a separate letter (Prosen and Robnik 1994a). Thus the transition exemplified in figure 1 
is very- typical. 

But for a = 1.8 and m = 8000 (numerical data were collected for m = 7991.. ,8000 
and both parities) we have clearly reached the Berry-Robnik regime of the f& semiclassical 
limit which is reflected in the fact that the matching between numerical values and the best-fit 
Berry-Robnik curve becomes excellent (100% confidence level, see figure 2). The value of 
the parameter p1 = 0.272(1=k0.9%) deviates only by 2.5% from the classical regular volume 
p;' = 0.265(1 =k 0.8%). For larger values of p1 closer to integrability (smaller values of 
parameter a) the convergence is even slower, e.g. for a = 1.3 (p1 = 0.372) there are still tiny 
but detectable deviations between the theory and numerical values even at m = 8000. As the 
value of m decreases the deviation between the quantal and classical value of p1 increases, 
where the former is typically larger than the latter. But over the whole range 1 c m c 8000 
(from the near to far semiclassical limit) the modified two parameter (pl ,  p )  Berry-Robnik 
model, where the chaotic subsequence was assumed to have Brody statistics (9) with level 
repulsion parameter p, has turned out to be highly satisfactory (100% confidence level). 
We have also found a significant fit~to the semiclassical ansatz for delta statistics A(L) (5) 
(at m = 8000) with the best-fit value of parameter pt = 0.274(1=k 1.5%) deviating by 3.3% 
from the classical value (figure 3). The fit was on the interval 0 6 L 6 100 which is-as 
judged aposteriori-safely below the saturation region (Berry 1985). 

This letter reports on the first successful verification of the Berry-Robnik level spacing 
distribution, which eliminates any doubts about the validity of the Berry-Robnik regime in 
the dispute concerning the ultimate semiclassical spectral statistics (in generic Hamiltonian 
systems). A detailed analysis and theoretical explanation of the various regimes of spectral 
statistics will be given in a separate paper (Prosen and Robnik 1994a). With the present 
day supercomputer capabilities such a statistically significant analysis is possible only for 
one-dimensional timedependent systems, such as our compactified quantum standard map, 
because the so-called far semiclassical l i t  is formed very slowly as A + 0 and the 
effective A is related to the dimension n of matrices which need to be diagonalized via 
h E n-'lf ~ where f is the number of freedoms. Correspondingly, we have investigated the 

1 8+1 P ~ ( s ,  p )  = aSb exp(-bsp+l) U = cs+ i)b b = [r(i + ( p +  1)- )] 
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Figure 1. The figure illusvates the transition from the Brody-like to~the Berry-Robnik regime 
for system (8) at a = 1.8, at three stretches of m: 11.. .40 (I220 spacings) (a), (b). 301.. .400 
(70 IO0 spacings) (c). (d) ,  and 3991.. ,4000 (79910 spacings) (e), If) and both pm'ties. The 
cumulative level spacing distribution W ( S )  (a), (c), (e) and the deviation of the U-function 
from the best-fit Berry-Robnik cuIye U ( W ( S ) )  - U ( W ~ " ' ( 5 .  PI)) versus W ( S )  (b), (d) ,  (f) 
is shown. The dotted curves are the limiting Poisson and~GoE case, the broken c w e  is the 
best-fit Brody disaibution, the thin full curve is the best-fit Berry-Robnik curve and the thickest 
full c w e  is the numerical one. Small spacing regions 0 c S c 0.25 are shown in magnified 
windows. On the righht-huld side (b), (d),  If) the Beny-Robnik curve is just the abscissa mnd 
the thin full lines indicate *la statistical uncertainly of numerical data. 
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Figure 2. Cumulative level spacing distribution (U )  and its U-function (6 )  for the highest-lying 
range of m = 7991 .. ,8006 (I59910 spacings). The meaning of the curvs is the same as 
in figure 1 and also a = 1.8. In the standard represenlaJim (U) the theoretid and numerical 
curves are completely overlapping, and the agreement behueen the best-fit Berry-Robnik mrve 
with p1 = 0.272 and numerical values is really excellent since the value of x’ = 45000 is 3.5 
limes smaller than the number of spacings. The broken curve is again the best-fit Brody curve. 
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Figure 3. The delta statistics A(L) are shown at a = 1.8 for the highest lying range of 
m = 7991.. ,8000. The damad curves are the limiting Poisson and COG curves, the thin tidl 
curve is the best-fit Selipan-Verbmchot formula ( 5 )  with PI = 0.274, and the thick full curve 
shows the numerical data. The vertid broken curves indicate ule region where the least-squares 
fit is applied. The theory starts to deviate from numerics above L i_' 150 where the saturation 
effects set in. 

structure of eigenstates in phase space (Husimi distributions) and we have also found very 
slow convergence to the ultimate uniform localization on classical invariint components in 
the semiclassical limit (Prosen and Robnik 1994b). Non-uniform localization on the chaotic 
region survives much higher in n than one would expect if it was just a consequence of 
slow classical transport in phase space due to partial barriers (Bohigas etnl 1993). 
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