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Abstract. We study numerically the eigenfunctions and their Wigner phase space distributions 
of the two-dimensional billiard system defined by the quadratic conformal image of the unit disk 
as invoduced by Robnik (1983). This system is a generic KAM s r j em and displays a transition 
f” integrability m almost ergodicity as the billiard shape changes. We clearly identify two 
classes of states: the regular ones associated with inlegable regions and the irregular states 
supported on classically chaotic regions, whilst the mixed type states were not found, in support 
of Percival‘s conjecture (1973). We confirm the existence of (extxemely) intense scars in the 
classically chaotic regions. and demonstrate their association with classical periodic orbits. Three 
classes of scars are revealed: one-orbit scars, many-orbit-one-family scars (of statistically similar 
orbits in the homoclinic neighburhood), and many-orbit-many-family scars. We argw that it is 
impossible to find an oprion‘ semiclassical theory of individual eigemtmes, but do MI deny Ute 
usefulness of general semiclassical arguments in analysing h e  collective and statistical properties 
of eigenstates. 

1. Introduction 

The bound-state eigenfunctions of classically ergodic Hamiltonian systems possess a much 
less organized structure than those of classically integrable systems. In fact, they have been 
predicted to be random (Beny 1977, Shnirelman 1979, Voros 1979), such that according to 
Berry (1977) and Voros (1979) the corresponding mean probability density is determined by 
the microcanonical Wigner (phase space) function in the semiclassical limit when f r  -+ 0. 
In almost every point in the configuration space of an ergodic system there are an infinite 
number of possible velocity directions for classical trajectories passing thmugh that point. 
The correspondence principle suggests then that in the semiclassical limit the eigenfunction 
can be locally represented as a superposition of infinitely many plane waves propagating 
along the rays-the classical trajectories. If their phases are random then one has a random 
superposition of infinitely many plane waves, giving rise to a Gaussian random function by 
the central limit theorem. However, Berry’s random phase hypothesis (Berry 1977) breaks 
down on dynamical grounds, possibly as a consequence of the quantum integability, as 
has recently been argued by Robnik (1986, 1988, 1989) in analysing the consequences of 
quantum integrability. It has been demonstrated, using arguments from the perturbation 
theory, that (Robnik 1986) ‘almost every quantum Hamilton system with purely discrete 
spectrum is (quantum) integrable, but its quantum integrals of motion (specifically, the 
Weyl correspondents of the operators representing the constants of the motion) generically 
do not have a classical limit when f r  -+ 0’. The qualitative argument (Robnik 1988) is 
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that the existence of quantum integrals of the motion at finite non-zero h would imply 
localization properties of the Wigner distribution (for the eigenstates) within ‘quantum 
tori’ near classically periodic orbits, implying the existence of scars. In other words, the 
existence of quantum integrals of motion at finite h implies subtle correlations between the 
phases on dynamical grounds, giving rise to deviations from the Gaussian randomness of 
the eigenfunctions of the classically ergodic (but nevertheless quantum integable) systems 
(Robnik 1988). 

The early numerical evidence by McDonald and Kaufman (1979) seemed to agree with 
the property of Gaussian randomness, though some substantial extra probability density 
has been noticed by McDonald in his unpublished PhD thesis. The importance of the 
phenomenon of scars as observed in the numerically calculated eigenfunctions of the stadium 
has been recognized for the first time, however, by Heller (1984). who offered a theory of 
scars in terms of the wave-packet dynamics (coherent states). He proved the existence of 
scars in the individual eigenstates by using a statistical argument. It became clear (Heller 
1986, Heller et a1 1987) that scars exist in the eigenfunctions of arbitrarily high-lying states, 
although the counting measure of the scarred states might vanish with increasing energy 
(OConnor and HeUer 1988) in consistency with the results of Shnirelman (1979): the 
quantum expectation value of a smooth operator with classically ergodic dynamics is given 
by the classical microcanonical average for almost all eigenstates. For a review see Heller 
(1991). 

A semiclassical theory of scars has been elaborated by Bogomolny (1988) in 
configuration space, and by Berry (1989) in the phase space. Further developments have 
been published by Aurich and Steiner (1991,1993) for the point particle sliding freely on a 
two-dimensional compact surface of constant negative c ~ ~ a h t T e .  A simple theory has been 
presented also in (Robnik 1989). 

The properties of wavefunctions in the intermediate region between integrability and 
chaos have been little studied. Our aim in this work is also to survey this vansition 
region in the two-dimensional billiard systemt defined by the quadratic conformal image 
w(z) = z + hzZ of the unit disk IzI < 1 as introduced in (Robnik 1983, 1984) and further 
explored by Berry and Robnik (1986). Robnik (199hb) and Prosen and Robnik (1993a). 
We choose units such that h2/2m = I ,  where m is the mass of the billiard point particle, so 
that we solve the eigenvalue problem A$ + E$ = 0 with Dirichlet boundary conditions. 
We verify numerically the appropriateness of classifying the states exclusively in either 
regular or irregular states in the transition region. We study the scars and their relation to 
the classical periodic orbits in chaotic regions, especially in the fully chaotic regime (almost 
ergodic), and the localization properties of the eigenstates in regular regions. 

2. Results 

Our primary goal was to investigate systematically the abundance and the intensity of scars 
in the high-lying eigenstates in the classically fully chaotic regime such as observed in our 
billiard for h = 0.375, which is almost ergodic. in the sense that the tiny stability islands 
discovered by Hayli et ol (1987) are not resolved numerically. We have searched for 
scars in 20 consecutive states (from the 2000th to the 2019th even-panty state), and to our 
t Sincc lhe billiard boundary is analytic this system i s  a “ly generic system (in conmt 10 non-smooth billianls 
like tk stadium of Bunimovich OT the Sinai billiard. or other fully chaotic non-generic systems), where he 
K*M lheorj is applicable. and il is a gwd candidate for investigating the socalled caexismceproblem of nonlinear 
d m i c s  (SVelcyn 1991), namely 10 show that he irregular regions (of positive Lyapunov exponents) and the 
regular regions (of vanishing Lyapunov exponents) have positive measure 
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slight surprise we found only one brilliant example of an intense scar shown in figure I(c). 
However, most of the states are nearly Gaussian random like the chaotic state shown in 
figure I(a), for which the Wigner distribution in an appropriate phase space is expected to 
be almost microcanonical. We realized that in our billiard the most convenient choice for 
a classical surface of section used to define the appropriate quantum (Wigner) phase space 
is represented by the abscissa having the role of the line of section. 

The Wigner function (of an eigenstate $ ( x , y ) )  defined in the full phase space 
( x ,  Y .  pX, pY) is 

(1) 

In order to compare the quantum Wigner functions with the classical Poincatt maps on the 
SOS we define the following projection of (1) 

PSOS(X.PX) = j d P ,  P ( X . O , P , , P , )  (2) 

which nicely reduces the number of integrations by one and is equal to 

psos(x,p~)=~;;i;-du~ 1 e x p ( ~ ) @ ’ ( x + ~ , O ) J l ( x - ~ , O ) .  (3) 

As is well known this function is not positive definite and indeed we typically find quite 
wild oscillations around zero whose average actually vanishes. In a straightforward plot of 
this object, this fact implies a lot of irrelevant structure which obscures the physical content. 
Therefore we used the technique of Gaussian smoothing of the Wigner functions psos. by 
choosing an appropriate sigma such that the irrelevant oscillations are suppressed while the 
important structure is preserved. (Note that this is a Husimi-type representation (Takahashi 
1989, Heller 1991). but the effective area of our Gaussian is notably smaller than kh.) In 
figures I(h) and I(d) we show (smoothed) &OS for the corresponding eigenstates shown 
in figures l (a )  and I@). Since the classical SOS is completely chaotic (almost ergodic 
and therefore not shown) we expect uniform (microcanonical) psos. This trend is indeed 
observed in figure I(b) but one should notice the filamentary structure of (smoothed) psos 
which we find is quite typical for chaotic states at intermediate scales. On the other hand 
figure I(d) is a brilliant example of a scar in the phase space associated with the shortest 
and unstable periodic orbit. 

We have studied in general the association of the localization regions with the classical 
periodic orbits in SOS and have plotted all the shortest periodic orbits up to a given period 
rima. (as defined by the number of bounces of f  the boundary), which satisfy what we call 
the coincidence criterion. This criterion demands that smoothed psos at every point of 
a periodic orbit is larger than 15% of its maximum value in the given eigenstate. In 
figure I(b) we see that many orbits qualify according to the coincidence criterion while the 
scar in figure I(d) is supported only by the period-two orbit clearly identified in figure I(c). 
As will be seen later on this is rather atypical as the scars are in general supported by many 
orbits. The numerical inspection of this period-two orbit shows that the (smoothed) Wigner 
function is precisely localized on the stable and unstable manifolds which becomes clearer 
in figure I@), where the sigma of the smoothing Gaussian is reduced by a factor 2.5. This 
observation again confirms the findings of Waterland et a1 (1988). 

An example of the transition region between integrability and chaos is A = 0.175 shown 
in figure 2, where the classical SOS is plotted in figure 2(e). We have examined twenty 
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consecutive states between the 2800th and 2819th even-parity states. Two classes of states 
are considered. In figure 2(o) we show a regular state associated with the islands of stability 
in the vicinity of the stable period-four orbit. According to the coincidence criterion several 
similar orbits support the localization regions. The periods of the longer orbits are multiples 
of the fundamental period four and they live in its neighbourhood The second class of states 
consists of the irregular states which are embedded in the classically chaotic regions, where 
they can be uniform (ergodic-like) or also exhibit localization regions (scars). One example 
of a localized irregular state is shown in figures 2(c) and 2(d). The scar clearly observed 
in figure 2(d) is supported by an unstable period-five orbit and by a family of similar 
but longer orbits in its homoclinic neighbourhood. This family of orbitswhich has been 
checked numerically to belong to the homoclinic neighbourhood of the primary orbit-very 
closely resembles the structum of the smoothed Wigner function. We think that this is a 
clear example demonstrating that in general it is insufficient to describe a scar by only one 
periodic orbit. As has been suggested a l d y  by Robnik (1989) we distinguish three classes 
of scars: 

(i) One-orbit scws, i.e. those supported by one classical periodic orbit only (see 
figures I(c) and I@)). 

(ii) Many-orbit-one-family scars, i.e. those supported by a dominant unstable periodic orbit 
and its daughter orbits in its homoclinic neighbourhood (see figures z(c) and 2(d)). 

(iii) Many-orbit-mny-fumily scors, i.e. those supported by many different families of 
statistically similar orbits (see figure 3). 

We offer yet another example of intermediate KAM regime of a slightly chaotic billiard 
for ,I = 0. I .  Here we have surveyed twenty consecutive even-parity states (from the 2oooth 
to the 2019th), and we find again that eigenstates belong either to the regular class or to 
the irregular class. An example of the latter is presented in figures 4(a) and 4(b) where we 
see excellent overlap of the smoothed Wigner function with the classically chaotic region, 
and also with the classical periodic orbits selected by the coincidence criterion. One should 
notice that here the chaotic region is thin in comparison with the basic quantum phase 
space cell of area 2Rh and therefore it is not so different from the torus quantized states. 
Indeed, the wavefunction in configuration space (figure 4(o)) has a quite orderly appearance. 
Another example of a regular state quantized on a toms around the period-three orbit is 
shown in figures 4(c) and qd) ,  where again the quantum localization regions nicely follow 
the classical tori, as do the periodic orbits selected by the coincidence criterion. 

We did not find any states which would live in the classically regular and irregular 
regions simultaneously, so the classification of eigenstates in the regular and the irregular 
classes is well founded, supporting the original ideas by F'ercival (1973) and in agreement 
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Figure 1. (Opposite) 'WO eigenstates for A = 0.375: the ZOoZnd even-parity stale at energy 
E = 12 591.36 (a), (b). and the 201Mh even-parity stateat energy E = 12634.76 ( E ) .  (d). 
We plot the wavefunctions in configuration space (a) and (c) showing the iscdensity contom 
(upper halo and Ihe nodal lines flower halo. In (b) and (d)  we show the constant level m w u n  
of the corresponding smoothed Wigner function psos. The contours go in equal steps srarting 
at 1/8 of the maximal value. The abscissa is just the coordinate on the line of seclion whilst 
the ordinate coven the classically a ~ o w e d  tegion in momentum space, running from -nJE U, 

h a .  In (b)  and (d)  we also plot the classical periodic orbits ( W e  squms) with periods up lo 
n,, = 20 which satisfy the coincidence criterion (see text). (Tie complete list includes 3361 
periodic orbits.) In (e) we show the Wigner function (d)  with reduced smoothing by a laclor 2.5 
and we also show the classical stable and unstable manifolds of the period-two orbir Here the 
negative value regions become readily apparent and their contours xe plotted with thin lines. 
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Figure 2. We display W O  eigenslatcs for A = 0.175 
using the same lechdgLe as in figure 1: the 2804th 
e v e n - p l y  slate of energy E = 21 231 84 (a).  (6) .  and 
thc 28l2ul even-panty stale 01 energy E = 21 291.89 
(L), ld). The I IP  of ponodic orbis includes 1663 of 
them for nmm = 30. ( h )  and ( d )  should be compared 
with the clahsical PoinuuC plot on SOS (e). 



Survey of the eigenfunctions of a billiard system 5371 

with the recent findings of Bohigas et al (1990ab). The existence of such a clear 
cut classification of eigenstates justifies the assumptions implicit in the derivation of the 
semiclassical Berry-Robnik (1984) formulae for the level spacing distribution (cf Pmsen 
and Robnik 1993a). 

Figure 3. As figure 2. but for the 2810th even-parity 
sate of energy E = 21 273.21. In order to facilitate the 
comparison of (b) with the classical dynamics we show 
again classical SOS in (c). 

Finally, we should mention results on the global probability amplitude distribution in 
the fully chaotic (almost ergodic) regime for X = 0.375. Similarly to Aurich and Steiner 
(1991, 1993). we confirm that almost all states are very well described by the Gaussian 
distribution, however, the deviations are manifested mainly in significant positive values of 
the kurtosis K = ((Jr - ( J r ) ) 4 } / ( $ * ) 2  - 3; for example for the scar shown in figures l(c) 
and I(d) we obtain K = 0.84, but for most of the other states K is close to zero as it should 
be for the Gaussian distribution. 

3. Discussion and conclusions 

The main conclusion of this paper is the existence of the well founded classification scheme 
of eigenstates into regular and irregular states. As for the chaotic wavefunctions we see even 
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( e l  

Figure 4. As figure 2. but showing hvo eigensmtes 
for h = 0.1: the 2002nd even-parity state of mergy 
E = 15 797.68 (U) .  (b), and the 2018th even-parity 
state of energy E = 15 916.77 (c), (d). 7he list of 
periodic orbits includes 524 of them for n,, = 40. 
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in high-lying states notable deviations from the microcanonical distribution, but nevertheless 
very rarely find intensely scarred states. Moreover, the scars can be roughly classified 
as belonging to one of the three phenomenological classes, as explained above in detail. 
according to which there exists a clear association of s w s  with the classical periodic orbits. 
At the beginning of our work this phenomenological evidence led us to speculate that we 
might be able to establish a semiclassical theory of individual eigemtafes. In the meantime, 
it became obvious that it is impossible even to predict the individual eigenenergies within 
a vanishing fraction of the mean level spacing by using the semiclassical methods (Prosen 
and Robnik 3993b). Our conclusion is that the structure of individual eigenstates cannot 
be predicted by a semiclassical theory, but which is nevertheless useful in describing the 
collective and the statistical properties of states. We believe that an a posteriori modelling 
of eigenstates in terms of classical periodic orbits in the spirit of the Gutzwiller theory 
would be useful, but it would necessarily have to include large families of orbits rather than 
taking into account only one periodic orbit. 
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