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Abstract. We study the statistical properties of transition probabilities (or generalized
intensities, equal to the squared matrix elements of operators having a classical limit). We
first generalize the Shnirelman theorem to include semiclassically integrable states and
use this to generalize the Feingold-Feres formula for the average value of generalized
intensities. We perform an unfolding procedure to separate the smooth mean part of
the intensities (as a Function of frequency) from its fluctuating part by applying the
generalized Feingold-Peres formula. (This formula relates the mean value of squared
matrix elements to the power spectrum of the given observable over classical trajectories.)
Our approach is illustrated numerically by analysing the dipole transition probabilities
in a family of billiards between integrability and chaos as introduced by Robnik. The
average values of the intensities as a function of frequency are excellently described by
the generalized Feingold-Peres formula, especially in the classically ergodic case where
the agreement is excellent. In the ergodic case the fluctuations of intensities are perfectly
well described by the Porter-Thomas distribution, whilst in the predominantly regular
regime (almost integrable KaM) we find a great abundance of approximate selection
rules, some apparent systematics of line series and some strongly enhanced transition
probabilities which we believe is typical for such a regime. Our approach is expected to
be very useful and practical in the context of nuclear, atomic and molecular physics.

In the development of quantum chaos the major emphasis in the research of stationary
problems so far has been in analysing the statistical properties of energy spectra and of
eigenfunctions (Berry 1983, Bohigas and Giannoni 1984, Robnik 1985, Eckhardt 1988,
Bohigas and Weidenmiiller 1988, Gutzwiller 1990, Heller 1991). One of the main
results in this field was the discovery that the predictions of random matrix theorics
(Brody er al 1981) also apply to dynamical Hamiltonian systems of few freedoms if
the classical dynamics is ergodic (Bohigas et al 1984, Berry and Robnik 1986, Robnik
and Berry 1986, Robnik 1992, 1993b). In the mixed-type systems with dynamics
in the tramsition region between integrability and chaos the approach of nonlinear
dynamics has also been fruitful (Berry and Robnik 1984, Seligman et al 1984, Prosen
and Robnik 1992, 1993b). However, the expectation values and generally the matrix
elements of other reasonable observables (Hermitian operators having a classical
limit) have been little studied (Feingold and Peres 1986, Alhassid and Levine 1986,
Wilkinson 1987, 1988). One well known result concerns the fluctuation properties of
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generalized intensities (squares of matrix elements) within the framework of random
matrix theories, namely the Porter—-Thomas distribution {(Brody et al 1981), which
has been experimentally observed and suggested by Porier and Thomas (1956} in
the context of nuclcar physics. We expect that this fluctuation law also applies in
classically ergodic systems with few freedoms. The main motivation of the present
work is to explain this and to find the appropriate generalization for Hamiltonian
systems in the transition region of mixed dynamics. We will illustrate this numerically
for a family of billiards which we have extensively studied recently (Prosen and Robnik
1992, 1993b).

It order to study the fluctuation properties of generalized intensities one must be
able to clearly separate the smooth mean part of the intensities as the function of
frequency (equal to the energy difference between the final and initial state divided
by k) from its fluctuating part. So, given the frequency of the intensity we ask what
is its mean value and which is the distribution of its fluctuating part in units of the
mean value. In the classically ergodic case Feingold and Peres (1986) propose a
formula expressing the mean intensities in terms of the power spectrum of the given
observable taken over a dense chaotic classical orbit. In deriving this result they rely
on the Shnirclman theorem (Shnirelman 1979) expressing the quantum expectation
value of a reasonable operator as the classical microcanonical average. This theorem
is obvious once one has in mind that the Wigner distributions of the eigenstates of a
classically ergodic system in the semiclassical limit are just microcanonical distributions
(Berry 1977). In order to rederive the Feinpold-Peres formula and to gencralize it we
first point out that the Shnirclman theorem applies also to the states in the regular
and mixed regime if the classical average is taken over the relevant classical invariant
ergodic component which supports the corresponding semiclassical eigenstate. This
can be an invariant torus, a chaotic component, or the entire energy surface.

Following Feingold and Percs (1986) we start by looking at the following sum
over eigenstates k of eigenenergies E; for the transition elements A,; = {j|A[k}):

Yoexp (i(E; — Ep)t/R) | A2 =) (jle'® /™ Alk) (ke B/ R A)5)
% 2

= (jleF /R Ae=1H1/0 4] 5y = (5lA(HA0)]3) . (1)

Now we apply the generalized Shnirelman theorem, stating that in the semiclassical
limit this s equal to the classical average

C;(1) = {A(1) A(0)}; @)

over the invariant ergodic component labelled by j which supports the semiclassical
state |7). Using the ergodicity on the given invariant component this two-point
autocorrelation function can be expressed as the time average along a classical dense
orbit {dense in the given invariant component which, for example, can be an invariant
torus, or a chactic component, or the entire energy surface)
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Next we replace the sum 3, by the integral [d E, po( E,}, where p( E) is the density
of states, and perform the Fourier transform and obtain

S.(E.—-E)/h
(Al = 2T ®

where the state j is fixed and the average (). is taken over states & within a thin
energy shell of thickness of 2 few mean level spacings. Here

00 1 Tz 2
Sj (w) = / diC(‘f)BWt = g}l_l:nm T / th(t)e“” (5)
-o0 -T2

is the power spectrum of a dense orbit in the invariant ergodic component 5. If A
.has a non-vanishing mean value {A}, the S;(w) will have a delta spike at w = 0,
and this can be removed by replacing A in the above formulae by 4 ~ {A},. To
calculate the actual mean values of the intensities |A;, [* we also perform in the above
formula (on the left-hand side) the averaging over the j states microcanonically over
the thin energy shell around E; of sufficient width such that the cotresponding
semiclassical states uniformly cover the energy surface, whilst on the right-hand side
we correspondingly take the microcanonical average over all initial conditions j on
the energy surface E;. So the final formula for the mean generalized intensities is

S((E, —E.,)/k
14, = el Ble ©

By {-}z we denote the microcanonical average over the energy surface E. The
apparent asymmetry in jk of this formula disappears in the semiclassical limit 4 — 0.
In the numerical evaluations described below we applied the above formula with
{8(w)} g and p( E) being calculated on the energy surface placed half way between
E; and Ey, ie. E = (E; + E,)/2. This choice is met to minimize the error at
finite #.

Knowing the average value of intensities as a function of w we can now separate
the smooth part from its fluctuating part by renormalizing the matrix elements as
follows:

Xpp= ™
(1A;: 1%

The renormalized matrix elements X, are now regarded as random variable whose
probability distribution is denoted by D(X'), which by definition has unit dispersion,
and naturally is expected to be an even function of X, D(X) = D(-X), and so
it has zero mean. In the classically ergodic case we expect that quite generally
the matrix elements of a given operator are very well modelled by the GOE of
random matrix theories (Brody er al 1981) which predict a Gaussian distribution for
Dpr(X) = exp(—X?%/2) /\/f—%, which is equivalent to the so-called Porter—Thomas
distribution for the intensities I = X?, namely P(I) = exp(—1/2)/V2rI, see
Porter and Thomas (1956). In integrable cases one expects a vast abundance of at
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least approximate selection rules which render most X to become zero, implying
that D(X) approaches a delta function 6(X) in the semiclassical limit. This can
be seen by considering the matrix representation of an operator in the basis of the
torus-quantized eigenstates of an intcgrable system, as explained in detail by Prosen
and Robanik (1993a). In the mixed-type dynamics {KAM) in the transition region
between integrability and chaos we expect a continuous transition from 6( X} towatds
Dpr(X). More precisely, we have derived a semiclassical formula for D(X') in such
a transition region by taking into account the fact that the only broadening of D(X)
stems from the transitions between chaotic initial and chaotic final states belonging to
the same family of the invariant ergodic components (continuously parametrized by
the energy), while all other transitions are almost forbidden. This work in progress
rests upon a more detailed analysis of higher autocorrelation functions and will be
reported on in a separate paper (Prosen 1992).

We illustrate the above theoretical considerations in the numerical study of a 2D
billiard system with analytic boundaries covering the range between integrability and
chaos, namely the quadratic conformal image w(z) = z+ A 2* of the unit disk |z[ < 1,
which has been introduced by Robnik (1983, 1984) and has been extensively studied
recently by Prosen and Robnik (1992, 1993b). At A = 0 we have the integrable
case of a circular billiard, whilst for A between 0.25 and 0.5 we observe numerically
almost ergodicity, in the sense that the tiny islands of stability predicted by Hayli et
al (1987) have negligible area on the sos. Our object of study are the dipole matrix
elements for transitions between the eigenstates of even parity with respect to the
reflection symmetry. In order to have a uniform covering of the transition region we
have chosen the paramcter values A = 0.1,0.15,0.2 and 0.375. The relative fraction
of volume of the regular regions covered by the invariant tori on the energy surface
are .88, 0.36, 0.05 and 0.00, respectively. We considered all transitions between the
even eigenstates of sequential number between 2001 and 2400, which offcrs 80000
matrix elements—a number sufficiently large to warrant high-quality statistics.

In figure 1(a)~(d) we plot the intensities (squared matrix elements) as functions
of frequency measured in units of the mean level spacing divided by &, for the
above mentioned values of A. The obvious common feature is the fact that the
transitions are effectively limited to a relatively narrow frequency range within which
the intensities are significant, while outside this frequency range the transitions are
virtually forbidden. In the ergodic case (figure 1(a)) the fluctuations around the
smooth average value are quite random, but as we approach the integrable case (the
volume of the regular component on the energy surface increases) the presence
of regular-regular transitions becomes more and more obvious. Its signature is
manifested in a small number of very large intensities which are typically organized
as a systematical line series clearly visible in the diagrams (figure 1(b)-(d). Of
course, such systematics is a consequence of a2 well defined geometry of families of
classical invariant tori, which support the semiclassical regular states berween which
the transitions take place. This bchaviour is predicted to be generic for the systems
in the transition region.

It is now most interesting to calculate the average values of the intensities versus
the frequency (by binning the lines of figure 1(a)-(¢) into small frequency intervals
and averaging over them) and to compare this quantum results with the semiclassical
prediction of the generalized Feingold—Peres formula (6). This is shown in figure 2(a)-
(d) for the corresponding values of A. We plot the quantum curve (thick curve) and
the +1 sigma band around the expected theoretical value. The agreement is really
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Figure 1. The transition probabilities
(squared dipole matrix elements) are
plotted against the frequency of the
photon in units of the mean level spacing
divided by k, for the four values of
the parameter A = (0.375 (@), 0.2 (b),
0.15 {c) and 0.1 (d). The range of the
ordinate vafues and its units are adapted
to the maximal valve, which in (@) is
about three times smaller than in (¥)~(d).

0023

excellent in view of the fact that the two curves cover the range of several orders of
magnitude (4 in 2(a) through 8 in 2(4)). It is readily seen that the fluctuations in the
form of delta spikes increase with the approach towards integrability—a consequence
of the increasing fraction of the energy surface volume occupied by the invariant tori
on which the motion is quasiperiodic having a discrete spectrum.

Using the above information on the smoothed average values of intensities versus
the frequency we can now calculate the fluctuation distribution D{X) for the chosen
values of A. The results are shown in figure 3(a)-(d). In the classically ergodic
case of A = 0.375 we see that the Porter-Thomas distribution Dpp(X) (Gaussian)
is perfectly well confirmed (figure 3(a)). With increasing fraction of the regular
component we see the gradual emergence of the central delta spike due to the
increasing fraction of almost forbidden regular-regular transitions (figure 3(2)—(d)).
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Figure 2. The logarithm of the
average values of the intensities versus
the frequency in units of the mean
level spacing divided by A (thick curve)
24k I\ compared with the %1 sigma band (thin
curve) around the expected theoretical
40 td) semiclassical value according to (6) for
X = 0375 (a), 0.2 (&), 0.15 (c) and
0.1 (d). The range of the ordinate
values and its units are adapted 1o the
maXimal and the minimal value. The
discrepancy at small values of w (¢)-
(d) is a consequence of the finite time
LL evaluation of the power spectra, namely
’ the integration time T in (5) is equal to
-k -2 0 2 L about 14 times the break time Threag =
X Amhp( E).

This circumstance is also well manifesied in the increasing value of the kurtosis
K = {{X ~ (X)N%/{(X = {X))*? - 3, which has the following values: —0.03,
6.7, 42 and 99 for the chosen four values of A equal to 0.375, 0.2, 0.15 and 0.1,
respectively. It is useful to check also whether the dispersion o2 = {{X — (X})?) is
sufficiently close to its theoretical value of unity; in fact we find o equal to 0.999,
1.005, 1.034 and 1.038, respectively, Let us also quote the numerical values for the
average (which ideally should be zero), {X): —0.003, -0.008, —-0.006 and 0.002,
respectively.

In conclusion we summarize that in the present work we offer a peneralized
Feingold-Peres approach (based on a generalized Shnirelman theorem) to predict the
smooth average dependence of generalized intensities on the frequency in any system
between integrability and ergodicity. This is used to define the (unfolded) fuctuation
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Figure 3. The probability density
D(X) for the fluctuations of the matrix
elements for A = 0.375 (2), 0.2 (b),
0.15 (¢) and 0.1 (d). For comparison
we plot also the Gaussian distribution
with the same mean (which should vanish
ideally) and with the same dispersion
(which after the unfolding should ideally
be unity) as the numerically calculated
distribution.  In (g) corresonding Lo
16 I the classically ergodic case we see that
D(X) is perfectly well fitted by the
0 W 315 Gaussian which confirms the validity of
plE-E] the Porter-Thomas law,

distribution of the matrix elements D(X ) which turns out to be universal in classically
ergodic Hamiltonian systems and is given by the Gaussian distribution with zero mean
and unit dispersion Dpr(X) which is equivalent to the well known Porter-Thomas
distribution for the fluctuating intensities. We have numerically demonstrated the
surprising accuracy of these theoretical predictions by investigating the dipole matrix
elements in a generic family of 2D billiards. Further theoretical work in progress is
devoted to a systematic study of higher moments {|A;;|*™) and higher correlations
and a more complete understanding of the semiclassical description of systems in the
transition region (Prosen 1992). Needless to say, our approach is expected to be very
useful and practical in the context of nuclear, atomic and molecular physics (Bohigas
and Weidenmiiiler 1988).
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