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AbslracL We study the statistical properties of transition probabilities (or generalized 
intensities, equal to the squared matrix elements of operators having a classical limit). We 
first generalize the Shnirelman theorem to include semiclassically integrable states and 
use this to generalize the Feingold-Peres formula for the average value of generalized 
intensities. We perform an unfolding procedure to separate the smooth mean part of 
the intensities [as a function of frequency) from its fluctuating part by applying the 
generalized Feingold-Peres formula. [This formula relates the mean value of squared 
matrix elements to the power spectrum of the given observable over classical trajectories.) 
Our approach is illustrated numerically by analysing the dipole transition probabilities 
in a family of billiards between integrability and chaos as introduced by Robnik. The 
average values of the intensities as a function of frequency are excellently described by 
the generalized Feingold-Peres formula, especially in the classically ergodic case where 
the agreemeni is excellent. In the ergodic case the fluctuations of intensities are perfectly 
well described by lhe Porter-Thomas distribution. whilst in the predominantly regular 
regime [almost integrable KAM) we find a great abundance of approximate selection 
NI=. some apparent systematics of line series and some strongly enhanced transition 
probabilities which we believe is typical for such a regime. Our approach is expected to 
be very useful and practical in the context of nuclear, atomic and molecular physics 

In the development of quantum chaos the major emphasis in the research of stationaty 
problems so far has been in analysing the statistical properties of energy spectra and of 
eigenfunctions (Berry 1983, Bohigas and Giannoni 1984, Robnik 1985, Eckhardt 1988, 
Bohigas and Weidenmiiller 1988, Gutmiller 1990, Heller 1991). One of the, main 
results in this field was the discovery that the predictions of random matrix theorics 
(Brody el ai 1981) also apply to dynamical Hamiltonian systems of few freedoms if 
the classical dynamics is ergodic (Bohigas el ai 1984, Berry and Robnik 1986, Robnik 
and Beny 1986, Robnik 1992, 1993b). In the mixed-type systems with dynamics 
in the transition region between integrability and chaos the approach of nonlinear 
dynamics has also been fruitful (Berry and Robnik 1984, Seligman er al 1984, Prosen 
and Robnik 1992, 1993b). However, the expectation values and generally the matrix 
elements of other reasonable observables (Hermitian operators having a classical 
limit) have been little studied (Feingold and Peres 1986, Alhassid and Levine 1986, 
Wdkinson 1987, 1988). One well known result concerns the fluctuation properties of 
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generalized intensities (squares of matrix elements) within the framework of random 
matrix theories, namely the Porter-Thomas distribution (Brody er a1 1981), which 
has been experimentally observed and suggested by Porter and Thomas (1956) in 
the context of nuclear physics. We expect that this fluctuation law also applies in 
classically ergodic systems with few freedoms. The main motivation of the present 
work is to explain this and to find the appropriate generalization for Hamiltonian 
systems in the transition region of mixed dynamics. We will illustrate this numerically 
for a family of billiards which we have extensively studied recently (Prosen and Robnik 
1992, 1993b). 

In order to study the fluctuation properties of generalized intensities one must be 
able to clearly separate the smooth mean part of the intensities as the function of 
frequency (equal to the energy difference between the final and initial state divided 
by l i )  from its fluctuating part. So, given the frequency of the intensity we ask what 
is its mean value and which is the distribution of its fluctuating part in units of the 
mean value. In the classically ergodic case Fcingold and Peres (1986) propose a 
formula expressing the mean intensities in terms of the power spectrum of the given 
observable taken over a dense chaotic classical orbit. In deriving this result they rely 
on the Shnirclman theorem (Shnirelman 1979) expressing the quantum expectation 
value of a reasonable operator as the classical microcanonical average. This theorem 
is obvious once one has in mind that the Wigner distributions of the eigenstates of a 
classically ergodic system in the semiclassical limit are just microcanonical distributions 
(Berry 1977). In order to rederive the Feingold-Peres formula and to generalize it we 
first point out that the Shuirclman theorem applies also to the states in the regular 
and mixed regime if the classical average is taken over the relevant classical invariant 
ergodic component which supports the corresponding semiclassical eigenstate. This 
can be an invariant torus, a chaotic component, or the entire energy surface. 

Following Feingold and Perm (1986) we start by looking at the follow in^ sum 
over eigenstates k of eigenenergies E, for the transition elements Ajk = (jlAlk): 
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- - (jlei&t/fiae-ii't/hf~ 3) = (j lA(t)A(O)lj) .  (1) 

Now we apply the generalized Shnirelman theorem, stating that in the semiclassical 
limir this is equal to the classical average 

Cj(0 = IA(OA(0)Ij (2) 

over the invariant ergodic component labelled by j which supports the semiclassical 
state U). Using the ergodicity on the given invariant component this two-point 
autocorrelation function can be expressed as the time average along a classical dense 
orbit (dense in the given invariant component which, for example, can be an invariant 
torus, or a chaotic component, or the entire energy surface) 

TI2 

d r A ( t + r ) A ( T ) .  
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Next we replace the sum Ck by the integral JdEkp(  Eh) ,  where p ( E )  is the density 
of states, and perform the Fourier transform and obtain 

where the state j is fixed and the average ( . ) j  is taken over states k within a thin 
energy shell of thickness of a few mean level spacings. Here 

is the power spectrum of a dense orbit in the invariant ergodie component j. If A 
.has a non-vanishing mean value { A } j  the S j ( w )  will have a delta spike at w = 0, 
and this can be removed by replacing A in the above formulae by A - {A}j. To 
calculate the actual mean values of the intensities lAjk I z  we also perform in the above 
formula (on the left-hand side) the averaging over the j states microcanonically over 
the thin energy shell around E j  of sufficient width such that the corresponding 
semiclassical states uniformly cover the energy surface, whilst on the right-hand side 
we correspondingly take the microcanonical average over all initial conditions j on 
the energy surface Ej. So the final formula for the mean generalized intensities is 

By {.}E we denote the microcanonical average over the energy surface E .  The 
apparent asymmetry in jk of this formula disappears in the semiclassical limit A + 0. 
In the numerical evaluations described below we applied the above formula with 
{ S ( w ) l E  and p ( E )  being calculated on the energy surface placed half way between 
Ej  and E,,  i.e. E = ( E j  + E k ) / 2 .  This choice is met to minimize the error at 
finite A. 

Knowing the average value of intensities as a function of w we can now separate 
the smooth part from its fluctuating part by renormalizing the matrix elements as 
follows: 

The renormalized matrix eiemenrs X j k  are now regarded as random variable whose 
probability distribution is denoted by D ( X ) ,  which by definition has unit dispersion, 
and naturally is expected to be an even function of X ,  D ( X )  = D ( - X ) ,  and so 
it has zero mean. In the classically ergodic case we expect that quite generally 
the matrix elemene of a given operator are very well modelled by the GOE of 
random matrix theories (Brod et al 1981) which predict a Gaussian distribution for 
D m ( X )  = exp(-XZ/Z)/ ZT, which is equivalent to the so-called Porter-Thomas 

T I  see distribution for the intensities I = X 2 ,  namely P ( I )  = e x p ( - I / 2 ) / c ,  
Porter and Thomas (1956). In integrable cases one expects a vast abundance of at 

2 
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least approximate selection rules which render most X to become zero, implying 
that D ( X )  approaches a delta function 6 ( X )  in the semiclassical limit. This can 
be seen by considering the matrix representation of an operator in the basis of the 
torusquantized eigenstates of an integrable system, as explained in detail by Prosen 
and Robnik (1993a). In the mixed-type dynamics (KAM) in the transition region 
between integrability and chaos we expect a continuous transition from 6 ( X )  towards 
D,(X). More precisely, we have derived a semiclassical formula for D ( X )  in such 
a transition region by taking into a m u n t  the fact that the only broadening of D ( X )  
stems from the transitions between chaotic initial and chaotic final states belonging to 
the same family of the invariant ergodic components (continuously parametrized by 
the energy), while all other transitions are almost forbidden. This work in progress 
rests upon a more detailed analysis of higher autocorrelation functions and will be 
reported on in a separate paper (Prosen 1992). 

We illustrate the above theoretical considerations in the numerical study of a 2D 
billiard system with analytic boundaries covering the range between integrability and 
chaos, namely the quadratic conformal image w ( z )  = z+XzZ of the unit disk IzI 4 1, 
which has been introduced by Robnik (1983, 1984) and has been extensively studied 
recently by Prosen and Robnik (1992, 1993b). At A = 0 we have the integrable 
case of a circular billiard, whilst for X between 0.25 and 0.5 we observe numerically 
almost ergodicity, in the sense that the tiny islands of stability predicted by Hayli el 
a2 (1987) have negligible area on the SOS. Our object of study are the dipole matrix 
elements for transitions between the eigenstates of even parity with respect to the 
reflection symmetry. In order to have a uniform covering of the transition region we 
have chosen the parameter values X = 0.1,0.15,0.2 and 0.375. The relative fraction 
of volume of the regular regions covered by the invariant tori on the energy surface 
are 0.88, 0.36, 0.05 and 0.00, respectively. We considered all transitions between the 
even eigenstates of sequential number between 2001 and 2400, which offers 80000 
matrix elements-a number sufficiently large to warrant high-quality statistics. 

In figure l(a)-(d) we plot the intensities (squared matrix elements) as functions 
of frequency measured in units of the mean level spacing divided by h, for the 
above mentioned values of A. The obvious common feature is the fact that the 
transitions are effectively limited to a relatively narrow frequency range within which 
the intensities are significant, while outside this frequency range the transitions are 
virtually forbidden. In the ergodic case (figure I@)) the fluctuations around the 
smooth average value are quite random, but as we approach the integrable case (the 
volume of the regular component on the energy surface increases) the presence 
of regular-regular transitions becomes more and more obvious. Its signature is 
manifested in a small number of very large intensities which are typically organized 
as a systematical line series clearly visible in the diagrams (figure l(b)-(d). Of 
course, such systematics is a consequence of a well defined geometry of families of 
classical invariant tori, which support the semiclassical regular states between which 
the transitions take place. This behaviour is predicted to be generic for the systems 
in the transition region. 

It is now most interesting to calculate the average values of the intensities versus 
the frequency (by binning the lines of figure l(a)-(d) into small frequency intervals 
and averaging over them) and to compare this quantum results with the semiclassical 
prediction of the generalized Feingold-Peres formula (6). This is shown in figure 2(u)- 
(d) for the corresponding values of A. We plot the quantum curve (thick curve) and 
the k l  sigma band around the expected theoretical value. The agreement is really 
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Ficum 1. The transition probabilities 
(squared dipole matrix elements) are 
plotted against the frequency of the 
photon in uniU of the mean level spacing 
divided by h, for the four values of 
the parameter X = 0.375 (U), 0.2 (b), 
0.15 (c) and 0.1 (d).  The range of the 
ordinate values and its units are adapted 
to lhe maximal value, which in (a) is 
about three times smaller than io ( b j ( d ) .  

excellent in view of the fact that the two curves cover the range of several orders of 
magnitude (4 in 2(a) through 8 in 2(d)). It is readily seen that the fluctuations in the 
form of delta spikes increase with the approach towards integrability-a consequence 
of the increasing fraction of the energy surface volume occupied by the invariant tori 
on which the motion is quasiperiodic having a discrete spectrum. 

Using the above information on the smoothed average values of intensities versus 
the frequency we can now calculate the fluctuation distribution D ( X )  for the chosen 
values of A. The results are shown in figure 3(u)-(d). In the classically ergodic 
case of X = 0.375 we see that the Porter-Thomas distribution D p T ( X )  (Gaussian) 
is perfectly well confirmed (figure 3(a)).  With increasing fraction of the regular 
component we see the gradual emergence of the central delta spike due to the 
increasing fraction of almost forbidden regular-regular transitions (figure 3(a)-(d)). 
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Figure 2. The logarithm of the 
average values of the intensities versus 
the frequency in units of the mean 
level spacing divided by h (thick curve) 
compared with the *I sigma band (thin 
curve) around lhe expected theoretical 
semiclassical value according to (6) for 
X = 0.375 (U), 0.2 (b), 0.15 (c) and 
0.1 (d) .  The range of the ordinate 
values and iIs units are adapted to the 
maximal and the minimal value. The 
discrepancy at small values of w (c)- 
(d) is a mnsequence of the finite time 
evaluation of the power spectra, namely 
the integration time T in (5) is equal to 
about 14 times the break time T&K = 
2 s h p (  E). 

This circumstance is also well manifested in the increasing value of the kurtosis 
I< = ((X - (X))4)/((X - (X))*)*  - 3, which has the following values: -0.03, 
6.7, 42 and 99 for the chosen four values of X equal to 0.375, 0.2, 0.15 and 0.1, 
respectively. It is useful to check also whether the dispersion u2 = ((X - ( X ) ) ' )  is 
sufficiently close to its theoretical value of unity; in fact we find U equal to 0.999, 
1.005, 1.034 and 1.038, respectively. Let us also quote the numerical values for the 
average (which ideally should be zero), (X): -0.003, -0.008, -0.006 and O.IM2, 
respectively. 

In conclusion we summarize that in the present work we offer a generalized 
Feingold-Peres approach (based on a generalized Shnirelman theorem) to predict the 
smooth average dependence of generalized intensities on the frequency in any system 
between integrability and ergodicity. This is used to define the (unfolded) fluctuation 
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Figure 3. The probability density 
D ( X )  tor the Ructuatipns of the matrix 
elements for A = 0.375 (a), 0.2 (b), 
0.15 (c) and 0.1 (d). For comparison 
we plot also the Gaussian distribution 
with the same mean (which should vanish 
ideally) and with the same dispersion 
(which after the unfolding should ideally 
be unity) as the numerically calculated 
distribution. In (a) m m o n d i n g  10 
the classically ergodic case we see that 
D(X) is perfectly well fitted by the 
Gaussian which confirms the validity 01 
the Porter-Thomas law. 

distribution of the matrix elements D ( X )  which turns out to be universal in classically 
ergodic Hamiltonian systems and is given by the Gaussian distribution with zero mean 
and unit dispersion D p T ( X )  which is equivalent to the well known Porter-Thomas 
distribution for the fluctuating intensities. We have numerically demonstrated the 
surprising accuracy of t h a e  theoretical predictions by investigating the dipole matrix 
elements in a generic family of ZD billiards. Further theoretical work in progress is 
devoted to a systematic study of higher moments (IAjklZm) and higher correlations 
and a more complete understanding of the semiclassical description of systems in the 
transition region (Prosen 1992). Needless to say, our approach is expected to be very 
useful and practical in the context of nuclear, atomic and molecular physics (Bohigas 
and Weidenmiiller 1988). 
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