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AbslracL The matrix e!ements of the quantum Hamiltonian, which mrresponds to the 
classical KAM system, H = & + r p  (where is integrable) in an energy ordered 
eigenbasis of f i o  are mnsidered. Their statistical properties are "prised in Ihe 
definition of the sparsed banded random matrix ensemble (sBPJ.~). In analysing the 
spectral statistics of this ensemble we 6nd the p e r  law level repulsion and the level 
spacing distribution which is well described by the Brody distribution. The numerical 
study of SIRME shows two interesting scaling lawr (i) the mnneetion behveen the scaling 
miable z = ab3I2 (a = mean diagonal increment, b = bandwidth) and the level 
repulsion parameter p as deduced f" the Bmdy distribution, and (ii) the connection 
benveen the same scaling variable z and an apression which mntains two 'ypes d 
localization length (entropy and geometric). ?he universal aspects and the imporlance 
of SBRME lor the Hamiltonian syslems in the Vansition region knveen integrability and 
chaos are discused. 

1. Introduction 

In this work we investigate a random matrix ensemble which is designed to model 
the spectral statistical properties such as the energy level distribution of quantum 
Hamiltonian systems in the transition region between integrability and chaos. Our aim 
is to understand to what extent this transition region behaves universally. It has been 
suggested that certain universal aspects can be captured by a one parameter family of 
nearest-neighbour level spacing distributions P( S) which would uniquely interpolate 
between the integrable case (Poisson distribution) and the ergodic case (W&ner 
distribution) (Robnik 1987, Wintgen and Friedrich 1987, Honig and Wmtgen 1989, 
Prosen and Robnik 1992a). The most frequently used candidate for such a family of 
distributions is the Brody distribution (Brody 1973, Brody et a1 1981) 

which has a simple analytic form but no profound physical justification. It is not yet 
completely understood why it usually gives a statistically significant fit when applied 
to the finite although very large spectra of up to a few thousand consecutive levels, 
in particular for small S (see e.g. Prosen and Robnik l w a ) ,  and this is the main 
motivation of the present work. 
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On the other hand there are the asymptotic semiclassical Berry-Robnik formulae 
(Berry and Robnik 1984) for the level spacing distribution P( S )  in the transition 
region. It has been argued by Robnik (1987) that Ihese formulae might not be 
correct for small values of level spacings S and in a separate work (Prosen and 
Robnik l992a) vie have found indeed that even for quite large values of S the 
convergence towards the semiclassical limit is very slow. Berry-Robnik formulae are 
non-universal in the sense that they depend on the dynamical structure of the classical 
phase space (the relevant parameters are the volumes of integrable and separate 
chaotic components) of each particular system and are therefore multiparametric. 
There is no reason why they should not apply in the semiclassical limit but the 
convergence towards this limit is usually very slow as is discussed in detail in Prosen 
and Robnik (1992a, b). The lint numerical indication that Beny-Robnik formulae 
might not be adequate at small S in the non-semiclassical limit has been given by 
Seligman and Verbaarschot (1985) and by Seligman et al (1985). The Brody formula 
and the Beny-Robnik formulae are incompatible, especially for small level spacings 
where the Brody formula unlike the Berry-Robnik formulae shows the power law level 
repulsion. We have reasons to expect that the Brody formula (or more precisely, the 
Izrailev formula, (Izrailev 1989)) should apply approximately for non-semiclassical 
spectra, especially at small S, whereas the Berry-Robnik formulae should be correct 
in the semiclassical limit. 

The Brody-like distributions such as devised by Iuailev (1989) also shows up 
in cases of strong localization in classically chaotic time dependent systems. There 
are two important research programs in this direction: the kicked rotator and an 
ensemble of banded random matrices with zero increment diagonal (Iuailev 1988, 
1989, Casati ef a1 1990, 1991), and second, the modelling of classically ergodic 
time independent Hamiltonian systems by means of an ensemble of banded random 
matrices having the diagonal with non-zero increment (BRME) (Wiikinson ef a1 1991, 
Wingold ef a1 1991), which is based on semiclassical estimates of the matrix elements 
by Feingold and Peres (1986) and by Wdknson (1988). This work motivated us to 
generalize the BRME to also include the systems in the transition region between 
integrability and chaos. Very closely related results on BRME and on sparsed @ut 
not banded) random matrices have also been recently published by Fyodorov and 
Mirlin (1991a, b) and by Mrlin and Fyodorov (1991); see also Evangelos and 
Economou (1992). Fyodorov and Mirlin (1991b) find the correct scaling of the 
localization length (which was in error in WIlkinson el al (1991), as discussed in 
section 3). 

One should be aware of the meaning of substituting a certain Hamiltonian matrix 
which corresponds to a specific dynamical system by a random member of a given 
random matrix ensemble. Such random matrix ensembles are usually specified by a 
small number of parameters (two in the case of BRME and none in the well known 
cases of GOE, GUE and GSE) and they can therefore capture only the average features 
of dynamical systems. Only those features which behave universally to a certain 
extent (do not depend on the details of dynamical systems, e.g. on the fine structure 
of classical phase space or dynamical correlations etc.) can be reproduced by a 
suitably chosen parametric ensemble of a few random matrices. In the next section 
we define a three-parametric ensemble of sparsed banded random matrices (SBRME) 
which incorporates the statistical properties of the distribution of the matrix elements 
but suppresses all higher correlations among them. In section 3 we present the 
numerical results on the level spacing distribution for SBRME matrices which exhibit 
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the Brody-like behaviour, and suggest two interesting scaling laws for SBRME. The 
last section is devoted to the discussion and conclusions. 

2. Definition of the sparsed banded random matrix ensemble 

We start with an integrable Hamiltonian H,,(f)  with f degrees of freedom. By I , 8  
we denote the canonical action-angle variables and by f, 6 the corresponding quantum 
operators with [f,,$,] = (h/i)h,,. we apply the semiclassical toms quantization 

ilm) = I,,, = + 4 4 )  x hm mk =0,1,2,  ... (2) 

where for our purposes we can neglect the Maslov indices a. The semiclassical 
eigenfunctions Im) and energies E,,, read 

Now we introduce the general perturbed Hamiltonian 

A = A" + EV(i,d) (5) 

which for generic perturbation 3 and small values of the perturbation parameter 
E represents a quantized KAM system. The general Hermitian perturbation can be 
expanded as a Fourier series on a torus 

V ( i ,  d) = { 1<,,,(f)eim" + e-im" K* ,Cf)} (6) 
m 

with the classical limit 

The zeroth-order component can be absorbed in the integrable part, so we may put 
KO := 0. The realness of the classical limit implies 

K L ( I )  = K-m(I). (8) 

Using the formula 

e'X.'Im) = ~m + k) (9) 

which follows from the form of the semiclassical eigenfunctions on a torus (3) one 
obtains 

(mlfiln) = Hu(hm)bm, t { K,-,(hm) + &-,,(fin)}. (10) 
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Now we shall make certain estimates about the decay of the Fourier components K, 
which follow from the Parseval equation 
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We assume finiteness of the average perturbation on every t o m  I, i.e. 

U ( I )  < CO for every I. (12) 

The convergence of the sum (11) implies the decay of the Fourier components with 
increasing index m which must be faster than the p e r  

IK,I' < C(1)ImI-f (13) 

provided that IC,,, is at least approximately isotropic in m asymptotically (it must 
not have qualitatively different behaviour in different directions which is a reasonable 
assumption for a generic perturbation). Since the Fourier components of a generic 
perturbation decay fast enough it is convenient to assume that the series (7) is finite, 
ie. we restrict our class of perturbations to those which have finite Fourier expansions 
in canonical angles and assume that they are still generict. So let us assume that 
there is a maximal magnitude of index M, such that K,,, = 0 if [ml > M and that 
all Fourier components are of the order 0(1) (all prefactors can be absorbed in the 
perturbation parameter E). Using equation (10) we have 

m = n  

(mlfiln) = O(e) (m- nl< M (14) r Im-nl > M .  

The next step towards the final form of the Hamiltonian matrix is the ordering of 
the basis Im) with respect to the energies of the integrable part E,. Let us introduce 
Greek integer indices to label the ordered eigenenergies of I?", X 4 p + E, < E,, 
and index vectors such that, EmI = E,. Now consider two energy surfaces E, and 
E, which are close to each other (AE = E,, - E, < E = ( E e  -t E x ) / 2 )  and the 
energy shell in between in action space I. The matrix element HAP := (mxl&lm,) 
can be non-zero only if the distance belween the energy surfaces in action space A I  
is smaller than MR as follow from (14). There are A I A ( E ) / h f  = p ( E ) A E  levels 
in the energy shell where A( E) is the area of the energy surface in action space 
which is a smooth classical function of the energy, and p (  E) is the density of states 
of the integrable part Q0 and it is of the order 0 ( t i - j ) .  We put A I  := RM and 
find that there can be at most M R A ( E ) / d  energy levels between E, and E, to 
obtain the non-zero matrix element H A @ .  It follows that the matrix H,, is banded 
with the bandwidth 

b = M A ( E ) ~ I ' - ~ .  (15) 

t We muld equivalently perform the whole derivation lor the general influire Fourier expansions and a1 
the end neglen vanishingly small malrix elements within the wings of the dominant band. ?he resuictlon 
U, the class of Bnite Fourier expanded perturbalions does not present any serious Limitations or loss of 
generality. 
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But p - X < b is only a necessary condition for the math element HA,, to be 
non-zero. We must further require (as follows from (14)) that the points hm, and 
tint,, are actually close together which is typically not the case. It is illuminating to 
imagine a f d i m  ball of radius BM around the p i n t  hna, which by (14) contains 
all lattice points nay for which H A ,  # 0. The intersection of this ball and the other 
energy surface Ep is a (f - 1)dim ball with the area of order a = ( h M ) f - l  where 
the ‘gamma function’ prefactors and relatively weak dependence on the dimensionless 
ratio A I / ( t i M )  have been omitted. Since we know that lattice points of increasing 
energy generally lie randomly in action space (Berry and ’IZlbor 1977) we can interpret 
the ratio a / A ( E )  as the statisticalprobabiliry that the matrix element HA,, will be 
non-zero. Our matrix H A ,  is therefore sparsed and banded with the density of 
non-zero elements inside the band or sparsily equal to 

Since the non-zero elements are distributed rarely and randomly inside the band we 
are tempted to make the statistical assumption which transforms the Hamiltonian 
matrix HA,, into the realization of the statistical ensemble of random matrices. We 
assume that magnitudes of non-zero elements are Gaussiant random variables with 
zero mean and the second moment equal to e. 

It is suitable to divide the matrix H A +  by e to minimize the number of parameters 
and define the sparsed random matrix ensemble (SBRME). An infinitedimensional (or 
N-dimensional where N is large enough) matrix A j k  is a member of SBRME(CZ, 6,  m) 
if the diagonal elements are independent ordered ‘Poissonian events’ with the average 
increment a, ( A j + l , j + l - A , j )  = a, the offdiagonal elements are exactly zero outside 
the band, A,, = 0 if l j  - IC1 > b, but those inside the band are non-zero with 
probability m / b ,  and the non-zero offdiagonal elements are mutually independent 
Gaussian variables with zero mean and the second moment unity. m is thus the 
average number of non-zero elements in each row on the one (say right) side of the 
diagonal. 

For the connection between SBRME and real physics it is essential to know the 
scalimgs of the ensemble parameters a,  b, m with the perturbation parameter E and 
ti which can be deduced from (15) and (16) 

a = - = O ( h f / e )  P b = O ( h ’ - f )  m = 0 ( 1 ) .  
c 

SBRME is a kind of generalization of the BRME introduced by Wdkinson d al (1991); 
the latter very closely resembles the special case of SBRME for m = b. (The only 
non-essential difference between B R M E ( ~ ,  b) and S B R M E ( C Z , ~ , ~  = b) is that in the 
former case the diagonal is also Gaussian random whilst in the latter case the diagonal 
is Poissonian random.) However, we are interested in the other (semiclassical) limit 
of KAM systems when the sparsity m / b  + 0 since b -+ M as h -+ 0 and m is fixed and 
depends only on the ‘geometry’. Note that sparsity s goes to zero in the semiclassical 
limit h -+ 0 for a fixed value of e. 

t mihis choice seems lhe most obvious one, although we believe lhat any other smooth disvibution would 
give the same resuI1s since it muld only aller the dass of admissible penurbations which should again 
show generic features. 
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3. Numerical results 

We study numerically the energy level statistics and the localization properties of the 
eigenvectors. So far we have not been able to derive any of OUT results analytically. 
But we have hied to generalize the ideas of Wdkinson et a1 (1991) for the derivation 
of the scaling variable and the scaling property of the localization length. However, 
this attempt was unsuccessful due to the complications mnnected with the sparsity. 
When we numerically diagonalize SBRME m a h i m  with small sparsity m / b  Q 1 
we find that the eigenvectors are localized but not simply exponentially, for they 
are rather typically ‘sparsed’. ‘Sparsed’ means that only a few components of the 
eigenvector substantially differ from zero in one localization region. lb describe this 
phenomenon we define two types of localization length of a normalized eigenvector 
zj, cj lxjjZ = 1. The commonly used ennopy localizarion length is defined in terms 
of information entropy (Izrailev 1988, 1989) 
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and measures the number of components which substantially diferfrom zero. In addition 
to the entropy localization length we define the geometric locaiizafion length as 

In the case of exponentially localized eigenvector xi a. exp(- l j l /~)  we have 
L ,  z 8L,. But for the sparsed eigenvector we have typically Le < SL . 

Since we have limited computer capabilities we are not able to expfore the whole 
three-dimensional parameter space (a, b, m) of the SBRME, and therefore we restrict 
our research to the fixed value of m , m  = 1. Parameter m is the only ensemble 
parameter which does not depend on h or on perturbation parameter E, and that 
is the reason why we have chosen the ‘plane of fixed m’. Our SBRME matrices 
then have on average only three non-zero elements (including the diagonal one) in 
each row. We have chosen the square mesh of parameter values for CY = 0.0125, 
0.0178, 0.025, 0.0354, 0.05, 0.0707, 0.1, 0.1414, 0.2 and b = 10, 14, 21, 32, 48, 7 2  
NAG FORTRAN double precision routines have been used to calculate all eigenvalues 
for 80 realizations of SBRME of the dimension N = 2ooo for each pair of values 
(a,b). The upper and lower thirds of the spectra were discarded due to possible 
finite size effects, so that only the middle 656 levels were unfolded to the unit mean 
level spacing and fitted by the Brody formula (1). For each fit we have joined all 
80 x 665 = 53 UM level spacings together so that we have obtained the level repulsion 
exponent p with significant accuracy. Then the full diagonalization (eigenvalues and 
eigenvectors) was made for SBRME matrices of dimension N = 800t to determine 
the average localization lengths Le and L, for all pairs of (a,b). Each average 
localization length was determined as the double average, fust over aU eigenvectors 
of a given SBRME matrix (only eigenvectors corresponding to the lower and upper 

t Full diagonalization is a 0 (N’) procesg whilst the Calculalion of the spectrum of a ymmetric banded 
matrix can be performed with only 0 (N*b) operations ( b  < N). 
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100 levels were discarded due to the finite size effects) and then over 10 realizations 
of an ensemble for each pair of values (a, b). We have obtained three important 
numerical results about the properties of the ensemble SBRME(~ ,  b, 1). 

We have found that the Brody formula (1) gives a statistically signscant fit for 
all parameter values (a, b) that we have chosen. The same x2 test as in Prosen and 
Robnik (I-) was performed and the typical values of xz were mainly two to four 
times smaller than the total number of level spacings 80N. This fact demonstrates 
the amazing robustness of the level spacing distribution and the applicability of the 
Brody formula. 

0 0 1 .  

exponent 0 against fi? where 1: is the scaling 
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The following function of the parameters 

(20) = a b 3 ~ 2  = 0 f ~ ( 3  f v 2 /  ( -  4 
plays the role of the scaling variable since the level repulsion parameter p is 
numerically found to be only a function of z, p = p ( x )  (see figure 1). It is surprising 
that the form of the scaling variable is the same as for BRME (Wilkinson er a1 1991) 
although the shape of the cuwe p ( x )  is different. One can verify that p ( x )  gives 
the correct limiting behaviour as the perturbation parameter E goes to zero, since 
E + 0 + x + CO,@ + 0. In other words, as E + 0 we indeed observe the 
approach to the Poissonian level spacing distribution. On the other hand one gets 
an incorrect limit ~ ( c o )  = 1 (see Wilkinson et a1 1991) if one replaces SBRME by 
BRME (m depends on b, m = b instead of being fixed, m = 1) so that the sparsity 
is surely crucial and governs the behaviour of SBRME However the behaviour of the 
semiclassical limit h + 0, which depends on the number of freedoms f, see (20), is 
not easily 'understood. We should stress once again that of course we cannot expect 
the correct semiclassical limit since for dynamical systems it must be given by the 
Beny-Robnik formulae. 

The third numerical result concerns the localization properties of the eigenvectors. 
One can construct the parameter which controls the level repulsion y = aL,/6E. 
If yj is an eigenvector localized around index j then 6E is an expected difference 
between jth diagonal element Ajj and the corresponding eigenenergy E j ,  6E = 
(IAjj - E j [ ) .  1) then the two If 6E is large enough (6E B a L g , y  
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eigenvectors whose peals are more than one geometric localization length apart 
(the corresponding diagonal elements are expected to differ by more than mLg) can 
still have similar energies although they cannot 'feel' each other. That means possible 
level degeneracies Le. no level repulsion. The opposite case y > 1 means that two 
eigenvectors with small energy difference necessarily overlap which leads to the level 
repulsion. 

T Prosen and M Robnik 

Figure 2. ?he parameler -y k plotted against fi ((1) It seems obvious that asymptotically 
the pointr lie on a straight tine. The curve - 1 is drawn lo show passible 
wetall dependence. This assumption can be verified by looking at the plot of log-( 
against log(- - 1) shown in (b). AU poinls in (b) fall on a straight tine 
log 7 = clog(- - 1) + d wilh the parameter valua c = 1.08 and d = -0.06. 

6E can be calculated by estimating the scalar product of eigenvector gJ with 
the j t h  row of the matrix A,, which should be equal to Ejyj.  One obtains 
6E x provided that the localization length L, is of the same order or 
smaller than b, and that m B 1, so that 6 E  > 1. The former condition is met for 
our parameter values but the latter is not since we assumed m = 1. Nevertheless we 
discovered that y is a function of the scaling variable I only. The numerical data 
shown in figure 2 strongly support the hypothesis that in the case m = 1 we have 

y ( a ,  b , m  = 1) = aL&= 6- 1 0 6  when I> 1. (21) 

The small x functional dependence - 1 is perhaps only a good numerical 
approximation to y ( r )  but the asymptotic behaviour z > 1 is quite significantly given 
by y(z) x I*/*. It is interesting to note that in the case m = b of BRME we must 
take 6E = 4 and we have then y(+) = al; /6E = a L g / & =  0 ( 1 )  = constant, 
as has been found analytically by Fyodorov an8 Mirlin (lwlb),  but has been wrongly 
predicted in (Widkinson et al 1991) to behave as ?(I) = O ( d 3 ) .  The latter 
behaviour would imply approach to GOE as I - CO, but in reality the Fyodorov- 
Merlin result shows that this conclusion by "ilkinson et af (1991) is in error as 
seen above. We should emphasize that in our case y(x) does not control the level 
repulsion in the manner described before because the condition m B 1 is not fulfilled 
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since we have m = 1, e.g. large x W 1 implies large y > 1 but small level repulsion 
exponent fi -=x 1, i.e. no level repulsion. 

live iinal remarks are in order. Firstly, contrary to a naive belief the sparsity 
strongly affects the localization lengths and the scaling laws such as (21). This has 
been verified by looking numerically at the localization lengths L, and Le at small 
sparsity s = m/b of the order of a few percent. At small x they are indeed 
typically of the order of b and a fonion' much smaller than w 1.4b2, the latter being 
predicted for BRME by Wilkinson et a1 (1991), Casati et al(1590) and by Fycdorov and 
Merlin (1991b). Therefore, our scaling laws such as (21) cannot be directly compared 
with the predictions for BRME. Indeed, a naive substitution of LE % Le = @f(x) 
at large x where according to Fyodorov and Merlin (1991b) f (x)  w l /x ,  we find 
y ( a , b , m  = b) % @, so that in contrast to the small sparsity case m << b the 
quantity y is 110 longer a function of x alone. Secondly, it should be emphasized that 
due to our clear physical motivation we study the SBRME at fixed value of m rather 
than at fixed sparsity s = m/b. 

In any case, since in this work we are primarily interested in the approach of the 
level statistics towards the Poissonian behaviour the case m = 1 is most important 
and interesting, but also technically most easily studied. 

We would l i e  to mention that in order to obtain the numerical results of this 
paper it was necessary to use one month of CPU time on the VAX 8800 computer, 
which is therefore the maximum information on SBRME that we are presently able to 
extract. The careful study of the dependence of the scaling laws upon the parameter 
m must be therefore delegated to future work. For example, the preliminary study of 
the case m = 2 (using the same b's as before) shows that the quality of the Brody-fit 
deteriorates substantially, so that sampling from SBRME should be considerably larger 
in order to achieve the same statistical significance. 

4. Conclusions 

We have modelled some statistical properties (such as the spectral statistics and 
average localization lengths) of quantized Hamiltonian systems in the transition region 
between integrability and chaos @articularly KAM systems when the perturbation 
parameter is small) by means of newly defined sparsed banded random matrix 
ensemble (SBRME). The statistical assumptions in the definition of the ensemble were 
the neglecting of the correlations among the non-zero offdiagonal matrix elements and 
the assumption of the Gaussian randomness of their statistical distribution. The 
physical motivation for introducing SBRME stems from the fact exposed in detail in 
Prosen and Robnik (1992a) that Hamiltonian systems in the transition region between 
integrability and chaos only very slowly approach the semiclassical limit which is 
accurately described by the Berry-Robnik (Berry and Robnik 1984) formulae, but 
at small S and finite spectra they typically exhibit power law level repulsion, which 
is well described by the Brody-like distributions such as e.g. the lzrailev distribution 
(Izrailev 1989, Casati er ai 1991). These statistical assumptions in the definition of 
SBRME (or only one of them) are obviously crucial for the semiclassical behaviour of 
the spectral fluctuations. We found that the spectral fluctuations of the small sparsity 
SBRME exhibit the power law level repulsion for c # 0 and tend to the Poissonian 
statistics as e --* 0, and thus behave quite universally, since the Brody formula (1) 
can be applied successfully. These results thus clearly confirm our expectations that 
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the average statistical properties of dynamical Hamiltonian systems such as the level 
repulsion are well captured by SBRME. 

As for the other mathematical properties of the S B R h f E ( a ,  b, m = 1) we have 
established two important numerical results: (i) the existence of the scaling law p(s)  
of the level repulsion parameter p as a function of the scaling variable z = orb3/' 
(a = the mean diagonal incremenf b = bandwidth), and (ii) the existence of the 
scaling law y(r), y = aL m, where Le and L,,are the average entropy 
and the average geometric focalization length (of the eigenvectors), respectively. 
Asymptotically we find y = fi with great statistical significance. 

We believe that these results represent an interesting new direction of research 
towards understanding of the universal aspects of the statistical properties of 
quantized KAM Hamiltonians. 
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