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Abstract. We establish analogy between a microwave ionization of Rydberg atoms and a charge transport
through a chaotic quantum dot induced by a monochromatic field in a regime with a potential barrier
between dot contacts. We show that the quantum coherence leads to dynamical localization of electron
excitation in energy so that only a finite number of photons is absorbed inside the dot. The theory
developed determines the dependence of localization length on dot and microwave parameters showing
that the microwave power can switch the dot between metallic and insulating regimes.

PACS. 05.45.Mt Quantum chaos; semiclassical methods – 73.50.Pz Photoconduction and photovoltaic
effects – 32.80.Rm Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states)

The dynamical localization of quantum chaos is a generic
physical phenomenon induced by quantum coherence
which leads to suppression of diffusive wave packet spread-
ing originated from dynamical chaos in the classical limit
(see e.g. [1] and Refs. therein). It has been first seen in
numerical simulations of the kicked rotator model [2] and,
later, of a more realistic system of excited hydrogen atom
in a microwave field [3]. The first observation of this phe-
nomenon was achieved in microwave ionization experi-
ments of hydrogen and Rydberg atoms [4–7] while more
recent experimental progress allowed to realize the orig-
inal kicked rotator model with cold atoms in laser fields
and detect with them the dynamical localization of chaos
[8].

For a hydrogen atom in a microwave field the diffu-
sive excitation in energy appears only above certain field
threshold where the integrability of unperturbed motion
is destroyed and the classical dynamics becomes chaotic
[9]. However, in certain systems the internal dynamics can
be almost fully chaotic on an energy surface so that clas-
sically the diffusive excitation starts for arbitrary small
fields. As an example of such systems we may quote com-
plex molecules [10], Rydberg atoms in a magnetic field [11]
or chaotic Sinai billiards [12]. In such systems the quantum
eigenstates are chaotic and their level spacing statistics is
described by the random matrix theory [10,11,13,14]. The
excitation of such quantum systems by a monochromatic
field represents a diffusive process of one-photon absorp-
tion/emission transitions with a rate Γ which is given by
the Fermi golden rule. The quantum interference effects
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lead to the dynamical localization of this diffusion with
the localization length lφ given by [15]:

lφ = 2π�Γρc . (1)

Here lφ is measured in the number of photons of
monochromatic field with frequency ω, ρc is the level
density of unperturbed system and it is assumed that
�ωρc > 1 and lφ > 1. The extensive numerical simulations
of a microwave ionization of internally chaotic Rydberg
atoms (chaos is produced by static magnetic or electric
field) [16] showed that the relation (1) works even in ex-
treme regimes when up to a thousand of photons is needed
to ionize one atom.

The result (1) is rather general and can be used not
only for atoms but also for chaotic billiards in a microwave
field. In fact, during the last decade the conductance prop-
erties of such billiards realized with 2D electron gas quan-
tum dots of micron size have been studied in great detail
both experimentally and theoretically (see reviews [17,18]
and Refs. therein). In such experiments typical parameters
correspond to a dot size a ∼ 1 µm and electron density
ne ∼ 4 × 1011 cm−2. With the spin degeneracy the level
number at the Fermi energy is nF = neA/2 ≈ 2000 where
the dot area is A ∼ a2. These values of a and nF corre-
spond to those of a Rydberg atom with the principal num-
ber n ∼ 100. Indeed, the atom size is a ∼ n2aB ∼ 0.5 µm
and the level number, inside a set with fixed magnetic
quantum number mz ∼ 1, is nF ≈ n2/2 ∼ 5000 (see
e.g. [16]). Here aB is the Bohr radius and mz is pre-
served for a linearly polarized field. Thus, a quantum dot
with the above parameters can be viewed as a mesoscopic
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Fig. 1. (a) Dot billiard at λ = 3/8 with the probability density
of the eigenstate at the Fermi level nF = 2001 (see text); den-
sity is proportional to grayness. Dashed stripes show schemat-
ically income (left) and outcome (right) leads. (b) Sketch of
tunneling barriers of height U between income lead, dot and
outcome lead .

“Rydberg” atom. A tunneling barrier of height U between
the dot and the income/outcome lead (see Fig. 1) cre-
ates an effective ionization potential similar to the one of
Rydberg atom. The in/out direction is determined by a
small applied voltage driving electrons from left to right
(Fig. 1b). The microwave field will switch the dot conduc-
tance from insulating (�ωlφ � U) to metallic (�ωlφ > U)
regime. The structure with one dot can be repeated few
times consecutively along one direction to enhance the
current signal variation with system parameters.

To understand in a better way the requirements for
microwave parameters we note that for the 2D electron
gas the Fermi momentum pF and energy EF are given
by p2

F = 2πne�
2 and EF = p2

F /2m with m = 0.067me

for nGaAs. The average level spacing in the dot is ∆ =
1/ρc = EF /nF = 2π�

2/mA. For the typical values of a
and ne used above we obtain EF ∼ 100 K, ∆ ∼ 0.05 K
with the Fermi velocity vF = pF /m ∼ 2 · 107cm/s. Hence,
the collision frequency is νc/2π = vF /2a ∼ 100 GHz that
is much larger than the frequency corresponding to one
level spacing ∆/(2π�) ∼ 1 GHz. Thus for a microwave
field with ω/2π < 100 GHz ac-driving is in the classical
adiabatic regime and according to the adiabatic theorem
the energy excitation is exponentially small for dot bil-
liards with integrable dynamics. However, for dots with
chaotic dynamics a microwave field with �ω > ∆ leads
to diffusive excitation in energy E with the rate DE =
(δE)2/δt ≈ �

2ω2Γ . In analogy with a chaotic atom [16]
in a linearly x-polarized field we have ∂E/∂t = εωx cosωt
and DE ∼ (εaω)2/νc where ε is the field strength multi-
plied by the electron charge. This gives

lφ ≈ 2πχε2a2/(�νc∆) ≈ 16χε2(A/A0)5/2(ne0/ne)1/2 (2)

where χ is a numerical constant and in the right part
A0 = 1 µm2, ne0 = 4 × 1011 cm−2 and ε is measured in
V/cm. It is also convenient to write (2) in the form lφ ≈
χ(εa/EF )2n3/2

F which shows that lφ may be large even
when εa � EF .

To check the validity of the above estimates and ob-
tain all numerical coefficients we study numerically the
dynamical photonic localization in the billiard which is

given by a conformal quadratic map of a unit circle pro-
posed by Robnik [19]. Its shape in polar coordinates is
r(φ) = R(1 + 2λ cosφ) with a parameter λ ∈ [0, 1/2].
For λ > 1/4 the billiard is non-convex and almost fully
chaotic, while for λ = 1/2 it is rigorously known to be
ergodic and belongs to the class of K-systems [12]. We re-
strict our studies mainly to the case with λ = 3/8 shown in
Figure 1. For the quantum evolution we consider only even
states of the billiard. These states are symmetric with re-
spect to reflection transformation y to −y and a microwave
field linearly polarized along x-axis gives transitions only
inside this symmetry class. We take the Fermi level to be
nF = 2001 in this symmetry class (total quantum number
around 4000) that corresponds to EF = v2

F /4 = 12586.2
where for numerical simulations we use the usual billiard
units with � = R = 2m = 1. Then near EF the average
level spacing for this symmetry class is ∆ = 6.266. The nu-
merical method introduced in [19] allows to find efficiently
the billiard eigenstates and the dipole matrix elements be-
tween them (the eigenstate at the Fermi level is shown in
Fig. 1). Therefore, the quantum evolution induced by a
microwave field can be numerically integrated directly in
the eigenbasis. This approach allows to follow the quan-
tum excitation over thousands of microwave periods. The
integration time step was set to ∆t = 10−4 and we en-
sured that its modification did not affect the excitation
probabilities. In the numerical simulations the transitions
below nF were suppressed, since in a dot all states be-
low nF are occupied by electrons, and up to ntot = 2000
levels above nF were taken into account. The escape in
outcome lead is modeled as absorption of all probability
above the level number nF +nI after a microwave pulse of
finite duration. This corresponds to the tunneling barrier
height U = nI∆ between the dot and outcome lead.

Examples of probability distribution wn over billiard
eigenstates n after a long microwave pulse are shown
in Figure 2. They clearly show exponential localization
of probability which can be approximately described by
wn ∼ exp(−2n/l)/l. The localization length in the basis
n is related to the photonic length lφ = l∆/ω. For large
ω = 160 the distribution shows a chain of equidistant
peaks corresponding to one-photon transitions with the
distance between peaks δn = ω/∆. For ω ∼ ∆ the peaks
disappear and wn decays in a homogeneous way.

The localization length lφ can be expressed through
the correlation function of dynamical motion inside the
billiard. Indeed, as discussed in [20] in the semiclassical
regime the dipole matrix elements of x can be expressed
via the spectral density of dynamical variable x(t). Us-
ing the definition of DE and the expression for ∂E/∂t we
obtain DE = ε2ω2R2S(ω/ωc)/2ωc. Here ωc = vF /R and

S(κ) = limT→∞
∣
∣
∣

∫ T

−T
dτξ(τ)eiκτ

∣
∣
∣

2

/2T is the dimension-
less spectral density of ξ(τ) = x(t)/R with τ = ωct and
κ = ω/ωc. Together with (1) this result leads to

lφ =
πε2R2

�ωc∆
S(ω/ωc). (3)



T. Prosen and D.L. Shepelyansky: Microwave control of transport through a chaotic mesoscopic dot 517

 1e-04

 0.001

 0.01

 0  100  200  300  400  500  600

<
w

n>

n

Fig. 2. (color online) Probability distribution 〈wn〉 over the
billiard eigenstates n after a pulse of 2000 microwave field pe-
riods (averaged over last 500 periods, n is counted from the
Fermi level nF ). Here ε = 1200, ω = 20 (red/black curve) and
ε = 300, ω = 160 (green/gray curve). Initially all probability is
in the state n = 0 shown in Figure 1. The straight dotted lines
show the theoretical exponential decay with the localization
length (3).
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Fig. 3. (color online) Dependence of the scaled localization
length lφ/ε2 (left axis) on the microwave frequency ω. Numer-
ical data for ε = 1200, 1200, 1200, 600, 300 (from left to right)
are shown by points with error bars, the full curve shows the
theory (3) with the classical spectral density S(ω/ωc) taken
from [20] for the billiard of Figure 1 (sketch), here ωc ≈ 224,
∆ = 6.266. Right axis shows the scale for S(ω/ωc). The dashed
curve shows the classical spectral density S(ω/ωc) for the
3-disks billiard (sketch); ω is adjusted to the same collision
frequency ωc as for the full curve case.

In the billiard units ωc = 2
√

EF and for our value of EF we
have ωc ≈ 224 and lφ/ε2 ≈ S/448. The classical spectral
density S(ω/ωc) has been found numerically in [20] and
we show it in Figure 3. As it is seen, S(ω/ωc) has one
maximum with S(1) ≈ 1.8 and it goes to a constant value
S(0) ≈ 0.004 near zero. Using (3) we can determine the
quantum localization length lφ from the classical value of
S. Without any fit parameters this relation gives a good
agreement with the numerical data of Figure 2.

To check the theory (3) in more detail we determine the
value of lφ from the fit of exponential probability decay:
〈wn〉 ∝ exp(−2n∆/ωlφ) (wn is integrated in one-photon
interval to extract lφ). The dependence of lφ/ε2 on ω is
shown in Figure 3 demonstrating a good agreement with
the theoretical formula (3) [21]. The dependence on ε at a
fixed ω is shown in Figure 4. It is also in a good agreement
with the theory (3) while lφ 	 1 which is assumed by the
semiclassical approach [22].
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Fig. 4. (color online) Localization length lφ as deter-
mined from numerical data (points) versus dimensionless field
strength εR/EF for ω = 20. The straight line gives the theo-
retical dependence (3).

The nontrivial property of equation (3) is that lφ is di-
rectly dependent on the dynamical spectrum S(ω/ωc). For
the mesoscopic billiards discussed above ω � ωc and it is
interesting to have billiards with large value S(0). Since
S(0) is simply the integrated auto-correlation function of
ξ(τ), a possible choice is a billiard formed by three touch-
ing disks which exhibits a slow polynomial decay of cor-
relations (see e.g. [23]). In Figure 3 we show the classical
power spectrum S(ω/ωc) versus ω for the 3-disks billiard
(see sketch, the opening between touching circles has a
length 0.05R). In this case the spectrum has a plateau at
small ω that gives the value of S(0) by a factor 250 larger
compared to the billiard of Figure 1. The comparison of
(3) with (2) gives χ = S(0)/4 (a = 2R, νc = πωc/2).
For the 3-disks billiard we have χ ≈ 0.25 and lφ ≈ 1 for
ε = 0.5V/cm and A = A0, ne = ne0.

In fact the billiard shape is of primary importance
for the efficiency of microwave excitation. Indeed, a de-
crease of λ from λ = 3/8 to λ = 0.1 makes the un-
perturbed dynamics inside the billiard quasi-integrable.
In the latter case a microwave field acts in an adiabatic
way and the current through the dot is reduced by or-
ders of magnitude compared to the chaotic billiard as it
is shown in Figure 5 [24]. This figure also shows that for
a chaotic billiard the current through the dot is strongly
reduced as soon as �ωlφ becomes smaller than the bar-
rier height U = nI∆. Therefore, a conductance g between
leads can be efficiently changed by varying a microwave
field power. The conductance appears due to diffusion in
energy which is rather similar to spatial diffusion in meso-
scopic quasi-one-dimensional wires. Using analogy with
the latter case where g = Ec/∆ [25], we can write the
microwave conductance of the billiard as

g ∼ lφ exp(−2NI/lφ)/NI , (4)

where Ec = �DE/U2 is the Thouless energy for diffusion
in energy space, NI = U/�ω is the number of photons re-
quired to pass over the lead barrier U and an effective level
spacing between quasienergy levels is ∆ef ∼ ∆/NI . As in
[25] it drops with the sample size NI and g ∼ Ec/∆ef .
For lφ 	 NI the dot is in the metallic regime while for
lφ � NI it is insulating. Thus a microwave field can
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Fig. 5. (color online) Dependence of the current I through
a dot billiard on a scaled microwave field strength εR/EF

at ω = 20, nF = 2001. The current I , shown in arbitrary
units, is determined as the probability on billiard eigenstates,
within 2500 ≤ n ≤ 4000, absorbed after a field pulse of
2000 microwave periods duration. Two curves correspond to
fully chaotic billiard at λ = 3/8 (top) and to quasi-integrable
billiard at λ = 0.1 (bottom). The arrow marks the posi-
tion where the absorption border is reached by localization
nI = 500 = �ωlφ/∆.

efficiently switch on and off the conductance of a chaotic
quantum dot blocked by a tunneling barrier U between
the dot and outcome lead. To distinguish clearly the de-
pendence (4) from the Arrhenius activation law at finite
temperature T we need to have T � �ωlφ.

Of course, above we used a rather simplified model ne-
glecting interactions between excited electrons and finite
temperature of a dot. These effects destroy quantum co-
herence and dynamical localization and should be taken
into account when comparing the theory with the exper-
iment. However, we expect that a transition from metal-
lic to insulating behavior induced by a microwave field
(see (4)) is a robust phenomenon and thus it can be ob-
served experimentally as it has happen with a microwave
ionization of Rydberg atoms. Present experimental tech-
niques allow to observe effects of microwave radiation on
electron transport in mesoscopic dots (see e.g. [26,27])
that makes possible experimental investigations of the ef-
fects discussed here.

We thank Kvon Ze Don for discussions which originated this
work.
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