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Abstract. – We study heat transport in a nonequilibrium steady state of a quantum interact-
ing spin chain. We provide clear numerical evidence of the validity of Fourier law. The regime
of normal conductivity is shown to set in at the transition to quantum chaos.

The derivation of Fourier’s law of heat conduction from the microscopic dynamics, without
any ad hoc statistical assumption, is one of the great challenges of nonequilibrium statistical
mechanics [1]. Even in the context of classical dynamical systems, the issue of energy (heat)
transport, in spite of having a long history (recently reviewed in [2]), is not completely settled.
It has become clear that transport theory requires that the underlying deterministic dynam-
ics yield a truly diffusive process. On the other hand, it is known that classical nonlinear
systems of interacting particles, above a critical interaction strength, typically exhibit chaotic
and diffusive behaviour which then leads to the onset of Fourier law J = −κ∇T , relating
the macroscopic heat flux to the temperature gradient ∇T . Therefore deterministic chaos
appears to be an essential ingredient required by transport theory. In this perspective, of par-
ticular interest is the problem, almost completely unexplored, of the derivation of Fourier law
from quantum dynamics. So far, investigations have been mainly focused on linear-response
theory [3]. The possibility instead to derive the Fourier law from quantum dynamics, by
establishing the dependence of J on ∇T in a nonequilibrium steady state, calls directly into
question the issue of quantum chaos. In this connection, a main feature of quantum motion is
the lack of exponential dynamical instability [4], a property which is at the heart of classical
dynamical chaos. This fact may render very questionable the possibility to derive the Fourier
law of heat conduction in quantum mechanics. However, quite interestingly, it has been shown
that strong, exponential unstable, classical chaos is not necessary [5] (actually, strictly speak-
ing, is not even sufficient [6]) for normal transport. Thus it is interesting to inquire if, and
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under what conditions, Fourier law emerges from the laws of quantum mechanics. This is the
purpose of the present paper.

To investigate this problem one has to deal with a finite open system connected to heat
baths. Here we consider an interacting quantum spin-(1/2) chain which exhibits the transition
from integrability to quantum chaos as a parameter, e.g. the magnetic field, is varied. The
standard treatment of this problem is based on the master equation, thus limiting investiga-
tions to relatively small system sizes. By using this method, in an interesting paper [7], the
decay of current correlation function in a model of non-integrable chain of quantum spins is
computed. However, this results were not fully conclusive and its conclusions rely on linear-
response theory. Also, in [8] Lindblad formalism was used to study the validity of Fourier’s
law for different type of spin-spin interaction.

Here we take a different approach, namely we follow the evolution of the system described
by a pure state, which is stochastically coupled to an idealized model of heat baths. Stochastic
coupling is realized in terms of a local measurement at the boundary of the system and
stochastic but unitary exchange of energy between the system and the bath. By this method
we have been able to perform very effective numerical simulations which allow to observe
a clear energy/temperature profile and to measure the heat current J. In the nonintegrable
regime where the spectral statistics is described by random matrix theory (RMT) —the regime
of “quantum chaos”— we found very accurate Fourier law scaling J/∆T ∝ 1/L, where L is
the size of the chain. In the integrable and near-integrable regimes instead, we found that the
heat transport is ballistic J ∝ L0.

We consider an Ising chain of L spins 1/2 with coupling constant Q subject to a uniform
magnetic field �h = (hx, 0, hz), with open boundaries. The Hamiltonian reads

H = −Q
L−2∑

n=0

σz
nσ

z
n+1 + �h ·

L−1∑

n=0

�σn , (1)

where the operators �σn=(σx
n, σ

y
n, σ

z
n) are the Pauli matrices for the n-th spin, n=0, 1, . . . L−1.

We set the coupling constant Q = 2. In this system, the only trivial symmetry is a reflection
symmetry, �σn → �σL−1−n. Moreover, the direction of the magnetic field affects the qualitative
behavior of the system: If hz = 0, the Hamiltonian (1) corresponds to the Ising chain in
a transversal magnetic field. In this case the system is integrable as (1) can be mapped
into a model of free fermions through standard Wigner-Jordan transformations. When hz is
increased from zero, the system is no longer integrable. When hz is of the same order of hx

quantum chaos sets in leading to a very complex structure of quantum states as well as to
fluctuations in the spectrum that are statistically described by RMT [9]. The system becomes
again (nearly) integrable when hz � hx. Therefore, by choosing the direction of the external
field we can explore different regimes of quantum dynamics.

The onset of quantum chaos is commonly studied in terms of the nearest-neighbor level
spacing distribution P (s) that gives the probability density to find two adjacent levels at
a distance s. For an integrable system the distribution P (s) has typically a Poisson dis-
tribution PP(s) = exp [−s]. In contrast, in the quantum chaos regime (for Hamiltonians
obeying time-reversal invariance), P (s) is given by the Gaussian Orthogonal Ensemble of
random matrices (GOE). In this case, P (s) is well approximated by the Wigner surmise
PWD(s) = (πs/2) exp[−πs2/4], exhibiting the so-called “level repulsion”.

In fig. 1 we show the results of our numerical simulations of system (1) for three different
values of the magnetic field: i) chaotic case �h = (3.375, 0, 2) at which the distribution P (s)
agrees with GOE and thus corresponds to the regime of quantum chaos, ii) integrable case
�h = (3.375, 0, 0), at which P (s) is close to the Poisson distribution, and iii) intermediate case
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Fig. 1 – Nearest-neighbor level spacing distribution P (s) for the chaotic (left), intermediate (center)
and integrable (right) chains. P (s) was obtained by diagonalizing the Hamiltonian (1) for a chain
of length L = 12, averaging over even- and odd-parity sub-spectra. The curves correspond to PWD

(dashed line) and to PP (dotted line).

�h = (7.875, 0, 2) at which the distribution P (s) shows a combination of (weak) level repulsion
and an exponential tail. We have consistently observed signatures for the onset of quantum
chaos also in other spectral correlations as well as in the structure of eigenfunctions. Let us
now turn to study energy transport in this model system. To this end we need to couple both
ends of the chain of spins to thermal reservoirs at temperature T. We have devised a simple way
to simulate this coupling, namely the state of the spin in contact with the bath is statistically
determined by a Boltzmann distribution with parameter T. Our model for the reservoirs is
analogous to the stochastic thermal reservoirs used in classical simulations [10] and we thus
call it a quantum stochastic reservoir. We use units in which Planck and Boltzmann constants
are set to unity � = kB = 1.

In the representation basis of σz
n the wave function at time t can be written as

|ψ(t)〉 =
∑

s0,s1,...,sL−1

Cs0,s1,...,sL−1(t)|s0, s1 . . . sL−1〉 , (2)

where sn = 0, 1 represents the up, down state of the n-th spin, respectively. The wave function
at time t is obtained from the unitary evolution operator U(t) = exp[−iHt]. The interaction
with the reservoir is not included in the unitary evolution. Instead, we assume that the spin
chain and the reservoir interact only at discrete times with period τ at which the states of the
leftmost (s0) and the rightmost (sL−1) spins are stochastically reset. Thus, the evolution of
the wave function from time t to time t+ τ can be represented as

|ψ(t+ τ)〉 = Ξ(βl, βr)U(τ)|ψ(t)〉 , (3)

where Ξ(βl, βr) represents the unitary stochastic action of the interaction with the left and
right reservoirs at temperatures β−1

l and β−1
r respectively.

The action of Ξ(βl, βr) takes place in several steps:
i) The wave function is first rotated by the angle α = tan−1(hx/hz) to the eigenbasis of
the components σl = �h · �σ0/h, σr = �h · �σL−1/h of the edge spins along the field, that is
|ψ〉 → e−iα(σy

0+σy
L−1)/2|ψ〉. Here, h = |�h| stands for the strength of the magnetic field.

ii) A local measurement of the observables σl, σr is performed. Then the state of the spins at
the borders collapses to a state (s∗0,s

∗
L−1) with probability

p(s∗0, s
∗
L−1) =

∑

s1,...,sL−2

|Cs∗
0 ,s1,...,sL−2,s∗

L−1
|2 . (4)

In other words, this means that we put all coefficients Cs0,s1,...,sL−1 with (s0, sL−1) 
= (s∗0, s
∗
L−1)

to zero.
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iii) The new state of the edge spins is stochastically chosen. After this, which simulates the
thermal interaction with the reservoirs, each of the edge spins is set to down, (up) state with
probability µ,(1− µ). The probability µ(β) depends on the canonical temperature of each of
the thermal reservoirs:

µ(βj) =
eβjh

e−βjh + eβjh
, j ∈ {l, r} . (5)

iv) Finally, the wave function is rotated back to the σz
n basis, |ψ〉 → eiα(σy

0+σy
L−1)/2|ψ〉.

This completes the description of the interaction with the quantum stochastic bath. This
interaction thus (periodically) resets the value of the local energy hσl,r of the spins in contact
with the reservoirs. This information is then transmitted to the rest of the system during its
dynamical evolution and relaxation towards equilibrium. Therefore, the value of τ controls
the strength of the coupling to the bath. We have found that, in our units, τ = 1 provides
an optimal choice. We have nevertheless performed simulations for other values of τ with
qualitatively similar results. In particular, for weak couplings (τ � 1) the heat conductivity
does not depend on the coupling strength. Note that our method does not correspond to a
stochastic unraveling of a master equation (ME) for the density operator (e.g., in the Lind-
blad form) [11]. Here the evolution of the system between two consecutive interactions with
the baths is purely unitary and not diffusive as in the ME. However, we have tested that,
using our prescription, averages over the ensemble of quantum trajectories or time averages
over a quantum trajectory are sufficient to reconstruct a thermal density matrix operator that
correctly describes the internal thermal state of the system in and out of equilibrium.

The unitary evolution U(t)|ψ〉 of the system has been computed by an accurate high-
order split-step factorization of the unitary evolution operator [12]. For each run the initial
wave function |ψ(0)〉 of the system is chosen at random. The system is then evolved for
some relaxation time τrel after which it is assumed to fluctuate around a unique steady state.
Measurements are then performed as time averages of the expectation value of suitable ob-
servables. We further average these quantities over different random realizations of “quantum
trajectories”. In order to compute the energy profile we write Hamiltonian (1) in terms of
local energy density operators Hn:

Hn = −Qσz
nσ

z
n+1 +

�h

2
· (�σn + �σn+1) . (6)

The local Hamiltonian Hn (defined for 0 < n < L− 2), gives the energy density between the
n-th and (n+1)-th spins. In terms of eq. (6) the Hamiltonian of the system can be rewritten as

H =
L−2∑

n=0

Hn +
h

2
(σl + σr) . (7)

First, we have performed equilibrium simulations in order to show that time-averaged
expectation values of the local energy density can be used as a consistent canonical local
temperature. To this end we set the left and right reservoirs to the same temperature T. In
fig. 2 we plot the mean local energy E = 〈Hn〉 where the average is taken over time and over
the L− 5 central values of the profile, for the chaotic and for the integrable chain (inset). For
low T, E saturates to a constant which, together with the energy profile 〈Hn〉, is determined
by the ground state. However, for larger T > 1, the energy profile is constant within numerical
accuracy, and numerical simulations give E ∼ −1/T , all results being almost independent of
L for L ≥ 6. The numerical data for E(T ) can be well approximated with a simple calculation
of energy density for a two-spin chain (L = 2) in a canonical state at temperature T (smooth
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Fig. 2 – Mean local energy E as a function of the temperature T for the chaotic chain, for L = 6
(crosses), 8 (triangles) and 10 (circles). Each point corresponds to the equilibrium simulation (Tl =
Tr = T ). E was obtained as the average of the L−4 central sites. The dashed line corresponds to the
canonical average Ecan(T ) of the local 2-body energy operator Hn. The two solid squares indicate
the values of the temperature that were later used in the out-of-equilibrium simulations. In the inset
the same data are shown for the integrable chain (squares) for L = 8.

curves), namely Ecan(T ) = trH0e
−H0/T /tr e−H0/T . Therefore, if the temperatures of both

reservoirs are in high-T regime, then we can define the local temperature via the relation
T ∝ −1/E. We stress that equilibrium numerical data shown are insensitive to the nature of
dynamics (consistent with results of ref. [13]), whether being chaotic, regular or intermediate.

In fig. 3 we show the energy profile 〈Hn〉 for an out-of-equilibrium simulation of the chaotic
chain. In all non-equilibrium simulations, the temperatures of the baths were set to Tl = 5 and
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Fig. 3 – Out-of-equilibrium energy profile 〈Hn〉 for the chaotic chain. The temperatures of the baths
Tl = 5 and Tr = 50, are both in the high-temperature regime (see the solid squares in fig. 2). Results
for chains of size L = 8 (crosses), L = 14 (open circles) and L = 20 (solid circles) are shown. The
dashed line was obtained from a linear fit of the data for L = 20 for the L − 4 central spins. Insets I
and II show the energy profile for the integrable and intermediate cases, respectively, for L = 15.
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Fig. 4 – Size dependence of the energy current in the chaotic chain with Tl = 5 and Tr = 50. We show
J/∆E (circles) and J/∆T (squares). The dashed lines corresponds to 1/∆L scaling. In the inset,
the size dependence of the energy current is shown for the integrable (circles) and the intermediate
(squares) chains.

Tr = 50. After an appropriate scaling the profiles for different sizes collapse to the same curve.
More interesting, in the bulk of the chain the energy profile is in very good approximation
linear. In contrast, we show that in the case of the integrable (inset I) and intermediate
(inset II) chains, no energy gradient is created.

We now define the local current operators through the equation of continuity: ∂tHn =
i[H,Hn] = −(Jn+1 − Jn), requiring that Jn = [Hn,Hn−1]. Using eqs. (6) and (7) the local
current operators are explicitly given by

Jn = hxQ
(
σz

n−1 − σz
n+1

)
σy

n, 1 ≤ n ≤ L− 2. (8)

In fig. 4 we plot J/∆E as a function of the size L of the system for sizes up to L = 20. The
mean current J is calculated as an average of 〈Jn〉 over time and L − 8 central values of n.
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Fig. 5 – Infinite temperature current-current time correlation function ξ(t), for two chaotic chains
of size L = 18 (tick dashed line) and L = 24 (thick solid line) and for two integrable chains of size
L = 18 (dashed line) and L = 24 (solid line).
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The energy difference was obtained from the energy profile as ∆E = 〈HL−5〉 − 〈H3〉. Three
spins near each bath have been discarded in order to be in the bulk regime. Since ∆L = L−8
is an effective size of the truncated system, the observed 1/∆L-dependence confirms that the
transport is normal. Moreover, also the quantity J/∆T , where ∆T = −1/〈HL−5〉 + 1/〈H3〉,
shows the correct scaling with the size L. On the other hand, in integrable and intermediate
chains we have observed that the average heat current does not depend on the size J ∝ L0,
clearly indicating a ballistic transport.

As a consistency check, we have also studied the energy current-current time correlation
ξ(t) = 〈J(t)J〉 of the isolated system for β → 0 which, for high temperature, gives the
conductivity as κ = βL

∫ ∞
0
ξ(t)dt. In fig. 5 we show that for the chaotic chain ξ(t) exhibits

fast, possibly exponential decay while for the intermediate case we observe slow decay, possibly
to a finite plateau, giving rise to ballistic transport. In the integrable case ξ(t) is constant
since J(t) is a conserved quantity.

In this paper we have shown that Fourier law of heat conduction can be derived from
the pure quantum-dynamical evolution without any additional statistical assumption. This
possibility is strictly related to the onset of quantum chaotic behavior.
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