PHYSICAL REVIEW A 72, 052336 (2005)
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We study the eigenlevel spectrum of quantum adiabatic algorithm for 3-satisfiability problem, focusing on
single-solution instances. The properties of the ground state and the associated gap, crucial for determining the
running time of the algorithm, are found to be far from the predictions of random matrix theory. The distri-
bution of gaps between the ground and the first excited state shows an abundance of small gaps. Eigenstates
from the central part of the spectrum are, on the other hand, well described by random matrix theory.

DOI: 10.1103/PhysRevA.72.052336

I. INTRODUCTION

The question of how powerful quantum computers really
are remains to be answered. The difficulty of this question is
not particular to quantum computational complexity. Classi-
cal question of whether there exists a polynomial algorithm
for nondeterministic polynomial (NP) problems is one of the
greatest problems in mathematics. The prevailing opinion is
that no such algorithm exists. Proving this seems to be ex-
ceedingly hard. One actually has no real idea of how to at-
tack the problem. Due to an unintuitive character of quantum
theory similar question for quantum algorithms seems only
to be harder. Recently quantum adiabatic algorithm has been
suggested for which the initial numerical simulations showed
polynomial scaling of the average running time [1,2] for
NP-complete problem. There are no known classical polyno-
mial algorithms for NP-complete problems and some plau-
sible arguments hint that it seems unlikely that a construction
of a quantum polynomial algorithm is possible [3]. Never-
theless, even if the worst case complexity of quantum adia-
batic algorithm is exponential, they might still provide a
speed up for the average case performance. There were many
subsequent numerical studies of the scaling of running time
of adiabatic algorithm for different NP-complete problems,
some indicating exponential [4,5], some polynomial depen-
dence [6]. While there exist analytic results for certain adia-
batic algorithms (e.g., for Grover’s search algorithm) [7-10],
theoretical understanding of adiabatic algorithms for
NP-complete problems is still lacking. An exception is an
analytical asymptotic expression for the energy gap which
decreases exponentially for a particular choice of an initial
Hamiltonian [11]. In view of the conflicting numerical results
and in particular due to relatively small problem sizes ame-
nable to numerical calculation theoretical understanding is
greatly desired.

Recently random matrix theory (RMT) has been used to
analyze adiabatic algorithm [12,13], even though it has been
noted [ 13] that it is not clear whether RMT applies to the low
energy states. If RMT description would turn out to be ap-
plicable, we could use it to predict the behavior of adiabatic
algorithm for large problem instances. In the present paper
we are going to study statistical properties of eigenstates of
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adiabatic algorithm with the special emphasis on the ques-
tion whether random matrix theory is applicable. While nu-
merical results for small problems in Ref. [12] supported the
usage of RMT, we are going to show that for larger problems
the behavior is quite different for problems having a nonde-
generate ground state.

In Ref. [12] the failure probability of quantum adiabatic
algorithm is analyzed assuming random matrix theory spec-
trum, taking into account a cascade of Landau-Zener type
transitions. From the result obtained, an exponential scaling
of the running time is suggested. They also numerically stud-
ied the distribution of ground state gaps for small
3-satisfiability (3-SAT) problems with n=8 variables. The
distribution obtained showed a level repulsion which would
support the usage of RMT also for the ground state. As we
will show, the distribution obtained for the small » studied is
not yet an asymptotic one and the behavior for larger n is
very different. On the other hand, in Ref. [13] the possibility
of a polynomial running time is predicted, based on analysis
of two RMT models, both giving essentially equivalent re-
sults. The main contribution to the failure probability in two
models studied comes from the transitions to the bulk of the
spectrum.

In this paper we will study quantum adiabatic algorithm
for 3-SAT problems having exactly one solution and show
that while the bulk of spectrum is indeed well described by
RMT the ground and the first excited state are far from RMT.
In particular, it will be shown that the distribution of gaps
does not show any level repulsion for sufficiently large n.
RMT theory is therefore of limited use in describing the
dynamics of standard quantum adiabatic algorithm for
single-solution 3-SAT instances. As single-solution instances
are thought to be the hardest, our results are important for the
worst-case performance. What happens in the average case,
when the number of solutions for certain values of param-
eters may be large, remains to be explored.

II. QUANTUM ADIABATIC ALGORITHM

We will study quantum adiabatic algorithm for 3-SAT
with the standard linear interpolation between the initial
Hamiltonian H(0) and the final H(1),
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H(t)=(1-1)H(0) +tH(1). (1)

The eigenstates of H(¢) will be denoted by |¢,(¢)) with inte-
ger index i denoting energy ordering, e.g., |¢p(1)) is the
ground state. The energy and time ¢ are dimensionless.
The initial Hamiltonian H(0) is the sum of single-qubit
Hamiltonians on each qubit,

. 11 -1
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while the final Hamiltonian H(1) is a sum of m three-qubit
projectors, one for each clause,

4 m
H(1)= =2 |[C)XC|. 3)
Qi

A three-qubit projector given by C; projects on the subspace
of states that violate the ith clause. The Hamiltonian H(1)
therefore simply counts the number of clauses violated by a
given computational state. Somewhat unconventional prefac-
tor 4/, with a=m/n, in H(1) is chosen in order to have
time-independent trace, tr[ H(z) |=Nn/2, with N=2" being the
dimension of the Hilbert space. Two relevant parameters for
3-SAT instances are the number of variables n and the ratio
of number of clauses and variables, a=m/n. We used ran-
domly generated 3-SAT instances having exactly one solu-
tion, i.e., the so-called single-solution random 3-SAT prob-
lem. We will predominantly focus on instances with @=3 as
it has been recently numerically demonstrated [5] that the
gap for such problems is much smaller than for those around
the phase transition point for random 3-SAT [14]. In addi-
tion, single-solution random 3-SAT instances with small «
also seem to be hard for classical algorithms [15]. Because
previous studies focused on single-solution instances around
the phase transition point we will for comparison occasion-
ally also show the results for single-solution random 3-SAT
instances with =35, i.e., approximately at the location of the
transition point for small n.

To give an impression of how the eigenspectrum of H(z)
(1) looks like, we show in Fig. 1 an example for n=10. Two
enlargements are shown, one for the central part of the spec-
trum and the other one for the lowest energies. Already at
first sight one can see that there is a qualitative difference
between both energy regions. While in the central part one
has many avoided crossings, typical for a level flow de-
scribed by RMT, in the lowest levels only one avoided cross-
ing is prominent. In Ref. [5] it has been numerically shown
that the failure probability is perfectly described by the
Landau-Zener formula, taking into account this single
avoided crossing. One would expect the eigenlevel statistics
in the central part of the spectrum to be well described by
RMT theory, i.e., we will have level repulsion due to many
avoided crossings while on the other hand the level repulsion
is expected to be very weak for the lowest levels (if present
at all).

RMT is successfully used to describe spectral statistic of
complex systems, e.g., those with chaotic classical limit [16].
As the parameters of the system are changed, changing the
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FIG. 1. Spectrum for 3-SAT instance with n=10 variables and
a=3. The ground state gap occurring at f,,;,=0.562 has the value
A=0.111. The top figure shows enlargement of a tiny part of the
spectrum in the so-called RMT core, while the bottom one shows
the lower part of the spectrum. In the top figure, showing about 20
times smaller energy scales as the bottom one, there are many
avoided crossings typical for RMT level flow, while in the bottom
one only one avoided crossing between the two lowest levels is
dominating.

dynamics from integrable to chaotic, the nearest neighbor
spacing distribution changes from Poissonian to Wigner’s
surmise as predicted by RMT. Sometimes the perturbing pa-
rameter can be scaled out of the system and the transition
from Poisson to RMT level spacing occurs as one goes from
low to high energies in the spectrum. Such is the case, for
instance, for the hydrogen atom in a uniform magnetic field,
see e.g., Ref. [17]. One of Wigner’s main motivations to
introduce RMT has been to describe resonances of neutron
scattering on nuclei, i.e., the eigenspectra of nuclei. Within
standard RMT the Hamiltonian has independent matrix ele-
ments between all levels. To describe excitations of nuclei it
is actually more natural to use the so-called two-body
random matrix ensembles having only two-body random
interactions [18]; for a recent review, see Ref. [19]. In
particular, for two-body random ensembles the distribu-
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tion of spacings between the ground and the first excited
state is more similar to semi-Poisson distribution pep(s)
=4sexp(-2s) than to Wigner’s surmise for Gaussian
orthogonal ensemble (GOE) pyw(s)=1/2s exp(—s>m/4) [20].
Note that for the semi-Poisson distribution there are more
small spacings than for the GOE result. One can also argue
that for a typical physical system the low energy spectrum
will be dominated by some quasiexcitations, e.g., expanding
the potential around the minimum one gets phononlike exci-
tations. Low energy spectral fluctuations as given, for in-
stance, by the distribution of nearest neighbor spacings are
therefore expected to be closer to those for integrable sys-
tems than to chaotic ones, i.e., more Poisson-like. Further-
more, it has been recently shown [21,22] that the degree of
entanglement of the ground state for the quantum adiabatic
algorithm for exact cover problem is much smaller than the
maximal possible (as it would be, for example, for random
vectors).

All these results suggest that the low energy properties of
quantum adiabatic algorithm could significantly deviate from
those given by RMT. The aim of this paper is to show that
this is indeed the case. But first, let us look at the high energy
part of the spectrum where we expect RMT to hold.

III. BULK PROPERTIES

We first test entanglement properties of eigenstates. For
two qubits the positive partial transposition (PPT) is a nec-
essary and sufficient condition for a state to be separable
[23,24]. For ith eigenstate |#;(t)) at time ¢, the reduced den-
sity matrix pj of the jth and kth qubit is obtained by tracing
over all other qubits, pjk=Tr5[|1p,-(t)>< Ui(1)]], where £ is a set
of all qubits apart from jth and kth. We will denote the ma-
trix obtained by partial transposition with respect to one qu-
bit by pjT,g*. If the smallest eigenvalue \,,;,(i,jk,7) of pjT,g‘ is
negative, the state pj is entangled; otherwise, it is separable.
We will use the smallest eigenvalue \,;, to measure two-
qubit entanglement of eigenstates. To obtain a quantity inde-
pendent of two qubits j and k we will also average it over all
pairs of qubits,

2 T
m% )\min(l,]k,t). (4)

The dependence of \;,(i,f) on the eigenvalue index i and
time is shown in Fig. 2. If the eigenvectors are well de-
scribed by RMT \,,;,(i,7) should be large and positive. The
reason is that a random vector tracing over many qubits will
result in a reduced density matrix that is very similar to the
completely mixed one which is in turn separable. Therefore,
while random vector on n qubits almost certainly represents
an entangled state for any bipartite cut, say n/2+n/2 qubits,
it almost certainly does not give an entangled state when
tracing over many qubits, specifically for a 2 X2 degree of
freedom reduced density matrix. Numerical simulation for
random states (expansion coefficients are random Gaussian
numbers) and n=10 qubits gives \;,(random)=0.21, which
is close to the largest values attained for eigenvectors in Fig.
2. The value \,(random) saturates for large n, while it

)\min(ivt) =
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FIG. 2. (Color online) Violation of the PPT criteria for eigen-
states, i=0,...2"—1, at different times z. Color (gray) encodes the
average minimal eigenvalue of p’4, Eq. (4). Inside the black circle
the average value is larger than 0.15; we call this region the RMT
core. All is for the same 3-SAT instance shown in Fig. 1.

weakly increases with n for smaller n. The asymptotic value
is determined by the so-called induced measure on the space
of density matrices [25]. Quantities other than \,,;, can also
be considered and calculated for random 2 X2 degree of
freedom matrices [26]. In the figure, one can observe that the
largest values of \,;,(i,7) are obtained in a certain “circle” of
times ¢ and eigenstates i. In Fig. 2 we mark with a dashed
curve the region where this value exceeds 0.15. We are going
to call this central portion of the spectrum a RMT core, be-
cause eigenspectrum in this region can be well described by
RMT. Note that in contrast to the RMT core there is a weak
two-qubit entanglement present (negative \,.;,) in the lower
part of the spectrum (e.g., ground state).

RMT behavior of states in the RMT core is confirmed also
by studying bipartite entanglement. We divide n qubits into
two halves and calculate the reduced density matrix p,, of
the first n/2 qubits. The von Neumann entropy of this re-
duced density matrix then characterizes bipartite pure state
entanglement. The dependence of the entropy S(i,7) of the
ith eigenstate at time ¢,

S(i,1) = = tr{ pyp Iny pyyo],s (5)

is shown in Fig. 3. One can see the same structure as for the
PPT criteria in Fig. 2, with the highest entropy eigenstates
occurring at the same place as the highest values of N, (the
same black circle in the two figures). For low energy eigen-
states we again have strong deviations from RMT, i.e., small
values of the entropy. Remember that high values of S(i,?)
indicate strong bipartite entanglement while large values of
Nmin(i,7) indicate an absence of two-qubit entanglement.

As a final test of RMT properties of states in the RMT
core we studied the nearest-neighbor level spacing statistics,
the paradigmatic signature of RMT. We diagonalized the
Hamiltonian at time ¢=0.5 for one 3-SAT instance with
n=14 variables and a=3, obtaining all N=16 384 eigenval-
ues. For the central RMT core we choose to take 9523
eigenenergies in the range 5.69 <FE;<<8.33 (the whole spec-
trum lies between 1.97 and 13.00). Unfolding has been done
by fitting a cubic polynomial to the cumulative density in the
used energy interval. The level density in this region is al-
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FIG. 3. (Color online) The dependence of the entropy S(i,?) (5)
of the reduced density matrix for the first n/2 qubits for eigenstates
(index i) and time ¢. The entropy for maximally mixed state would
be n/2=5. The black circle has the same location and the size as in
Fig. 2 and the 3-SAT instance is also the same.

most constant (=2.5X 10~ in our case) and independent of a
particular 3-SAT instance. The resulting level spacing distri-
bution is shown in Fig. 4 together with the Wigner’s surmise
pw(s)=sm/2 exp(—s>m/4) for the GOE ensemble. One can
see nice agreement with RMT also for small spacings seen in
the cumulative distribution shown in the inset of Fig. 4

The situation is quite different in the low energy part
of the spectrum. If using 1724 energies in the range
2.5<E;<5 (we start with the eighth lowest energy), doing
again cubic unfolding, we get the level spacing distribution
shown in Fig. 5. While p(s) might seem to be in accordance
with the GOE at first sight, the behavior of the cumulative
distribution, shown in the inset, reveals that there are too
many small spacings as compared to the GOE result. The
level repulsion is therefore weaker in the low energy region.

The properties of eigenstates in the central part of the
spectrum (RMT core) are therefore well described by RMT
while there are deviations for low energy states. As the
ground state and the first excited state are crucial for working
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FIG. 4. Level spacing distribution for states from the RMT core.
9523 central eigenlevels of a single 3-SAT instance with n=14 and
a=3 are used. Dashed curve is Wigner surmise for GOE. In the
inset a cumulative distribution is show, confirming the agreement
with GOE also at small spacings.
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FIG. 5. Level spacing distribution for low energy states (1724
low energy states are used, starting with the eighth level). In the
inset, one can clearly see that there are more small spacings than for
the GOE ensemble.

of quantum adiabatic algorithm we will in the next section
concentrate exclusively on the properties of the ground state.

IV. GROUND STATE GAP

A necessary condition for quantum algorithm to offer ex-
ponential advantage over the classical is that the quantum
states are sufficiently entangled, meaning that the entangle-
ment, as quantified, for instance, by the maximal Schmidt
number, grows exponentially with size. If this is not the case,
one could efficiently simulate quantum evolution on a clas-
sical computer [27]. To describe the degree of entanglement
we looked at the eigenvalues )\j, j=0,... ,2M2_ 1 of the re-
duced density matrix for the first n/2 qubits. Square roots of
these eigenvalues are Schmidt coefficients for the n/2+n/2
partition,

2n/2_1
=3 ke P, 6)
j=0

where |x;\> and |xf’) are the corresponding eigenvectors on
the first and second n/2 qubits, respectively. How fast the
eigenvalues \; decrease with j will tell us the degree of en-
tanglement and if one can use efficient methods to simulate
the evolution of such states [28]. In Fig. 6 we show \; for
three different eigenstates: for the ground state and one high
energy eigenstate from the RMT core at the location of the
minimal gap and for the ground state at smaller time. One
immediately notices the difference between the ground state
and the state from the RMT core. In the later the eigenvalues
are much larger and decrease with j very slowly. On the
other hand, for the ground state the eigenvalues A ; decrease

much faster. This fast decrease of A; for the groJund state
makes it possible to simulate ground state dynamics (e.g.,
quantum adiabatic algorithm) on a much smaller space than
the full N-dimensional Hilbert space. This has been exploited
to perform numerical simulation of the quantum adiabatic

algorithm for much larger n than possible with the conven-
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FIG. 6. (Color online) Eigenvalues \j.j=0,... , 221 of the
reduced density matrix for the first n/2 qubits (6). Pluses show data
for a high lying eigenstate (i.e., 512th eigenstate) at 7,,;,=0.56 (the
location of the minimal gap), crosses are for the ground state at
min=0.56 while stars are for the ground state at r=0.2. All is for the
same 3-SAT instance from Fig. 1.

tional methods [21]. From Fig. 6, we can, for instance, see
that if we are content with the precision of say 107> one has
to take ~25 eigenvectors in the case of the “random” state
from the RMT core, while on the other hand we would need
only ~5 eigenvectors for the ground state. Note that \; are
simply connected with the entropy S [Eq. (5)] shown in Fig.
3. For the three cases shown in Fig. 6, we get entropies
S(i=0,0.56)=0.9, S(i=0,0.2)=0.15, and S(i=512,0.56)
=4.08. The entropy of the ground state S(0,7) attains its
maximal value at the position of the minimal gap [22]. It is
significantly smaller than for the excited states from the
RMT core but still grows linearly with n, preventing the
efficient classical simulation of the quantum adiabatic algo-
rithm for NP-complete problems [22].

While the entanglement of the ground state determines
how efficiently we can classically simulate such an algo-
rithm, the running time of the quantum adiabatic algorithm is
predominantly determined by the minimal gap A between the
ground and the first excited state. The necessary running time
for the wanted precision at the end can be simply determined
through the Landau-Zener formula [5].

In Ref. [12] the authors found a GOE-like distribution for
the minimal gaps A of small 3-SAT instances with n=8 vari-
ables. If such behavior would persist for larger n this would
be advantageous because due to level repulsion we would
have fewer small spacings, i.e., the running time could be
smaller. One should note that here we are talking about the
distribution of ground state gaps A for different 3-SAT in-
stances, i.e., the distribution is meant over the single-solution
random 3-SAT ensemble (many spectra), whereas in the pre-
vious section we looked at the distribution of spacings within
a single spectrum. Here we also do not do any unfolding as
there is no obvious unfolding procedure for the lowest state.

In Fig. 7 we show the distribution of gaps for 1000 ran-
dom 3-SAT instances at two different n and a. The gaps are

expressed in terms of the average gap, s=A/A. We can see
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FIG. 7. Histograms of the distribution of minimal gaps A for
1000 single-solution 3-SAT instances for different n and a. Spac-
ings s are expressed in terms of the average spacing A that can be
read from Fig. 9. For small n there are few small spacings, whereas
for larger n their number increases. This transition happens sooner
for smaller «.

that for small » we indeed have a sort of level repulsion.
For larger n=16 the character is quite different though. For
a=3 the distribution is more Poisson-like with an abundance
of small spacings. For =5 a similar behavior can be ob-
served, but it seems that for larger a the change from GOE-
like to Poisson-like distribution takes place at larger n.

The histogram for the largest case of n=18, a=3, we
generated is shown in Fig. 8. We can see that the distribution
is close to Poissonian with two important differences. There
are more small spacings and more large spacings than one
would expect for an exponential distribution. Of course, the
probability to have zero spacing is zero, so for very small
spacings p(s) goes towards zero, e.g., for the case in Fig. 8
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0.1
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FIG. 8. Level spacing distribution for 1000 single-solution ran-
dom 3-SAT instances with n=18 and a=3. The full line is the
exponential curve (Poisson spacing distribution), the arrow shows
the position of the median spacing, s,,,4=0.56, and the vertical line
next to the median is the value of the median for an exponential
distribution. All spacings are expressed in terms of the average

spacing, s=A/A. No RMT-like level repulsion is present.
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FIG. 9. The dependence of the median gap A/n on n for @=3
and a=5. Exponential dependence can be seen for =3 while for
a=5 the large n dependence is hard to infer (fitting a power law
gives A~n~9)_ Dashed line is A/n=1/(2N). In the inset we show
for @=3 in addition to the median also the average, minimal, and
maximal gap, all out of 1000 instances.

cumulative distribution (not shown) grows as ~s! for very
small spacings of order s~ 1073—1072,

In Fig. 9 we show in the main plot the median spacing for
a=5 and a=3. Instead of showing A directly we divided it
with n because the trace of H(f) «n and so we expect that the
eigenvalues themselves will grow proportionally to n. We
can see that the dependence of A/n on n is exponential for
a=3, while the asymptotic behavior for @«=5 has possibly
not yet been reached. Such exponential decrease of the gap,
suggesting exponential running time, has already been nu-
merically found in Ref. [5]. Interestingly, the asymptotic de-
cay rate for a=3 agrees with 2A/nx<1/ VN (shown with
dashed line), which is the same as the analytical asymptotic
result obtained in Ref. [11] for the initial Hamiltonian being
a projector to the ground state. It might be that the worst-
case performance (i.e., for small a) is A~ 1/\N regardless
of the choice of H,. Still, this issue needs to be explored in
more detail. In the inset to Fig. 9, we show for =3 also the
minimal, maximal, and the average A/n. While all seem to
have exponential dependence on 7, their decay rate is differ-
ent. This could hint that by increasing n one gets increasingly
more small and more large spacings. The same conclusion
has been reached from the distribution of gaps in Fig. 8
where there is also a difference between the median and the
average A/n. The distribution of gaps therefore seems to
change character with n and one cannot claim that the distri-
bution found for n=18 (Fig. 8) is already the final asymptotic
distribution. In fact, there even might not exist any stationary
asymptotic distribution. Whether this multiple scale of the
gap distribution can be remedied by some unfolding proce-
dure is not clear. In any case the distribution of gaps is far
from RMT prediction and, unfavorably, we have many small
spacings that will necessitate large running times of quantum
adiabatic algorithm.
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FIG. 10. (Color online) Logarithm (base 10) of the probability
p(i,t) [Eq. (7)] to find the solution in eigenstates higher than ith.
Four black curves are isolines at 107!, 1072, 1073, and 10~ prob-
ability. The black ellipse has the same location and the size as in
Fig. 2 and the 3-SAT instance is also the same.

V. PROBABILITY FLOW

So far we have identified two regions in the spectrum of
quantum adiabatic algorithm for 3-SAT problems. The bulk
properties in the RMT core are described by RMT while the
ground state properties and the ground state gap A are far
from RMT predictions. In the present section we are going to
explore how important the RMT core states are for the suc-
cess of adiabatic algorithm.

Let us denote the solution state by |¢) (i.e., ground state
at t=1). At the beginning of the algorithm, at time #=0, the
solution has approximately equal small overlap with all
eigenstates, |(¢py|#:(0))*~1/N. The solution probability
is therefore distributed over all eigenstates. During the evo-
lution this probability gradually gets “concentrated” in the
ground state, so that after we have passed the minimal gap A
at Imin W€ have |<¢sol|¢0(t>tmin>|2~ 1 while |<¢sol|¢i>0(t
>t >~ 0. With time the probability therefore “flows” to-
wards the ground state. So even though the RMT core occu-
pies high energies it could be important for the adiabatic
algorithm because the solution probability for small times is
found also in these high energy eigenstates. To check how
much the RMT core states participate in this probability flow
we have calculated the total probability at time ¢ to find the
solution | ¢, in the eigenstates higher than ith,

N-1

plit) = 2 Kol (). (7)

j=i

Due to the normalization we of course have p(0,¢)=1, while
at the end of the algorithm all probability is in the ground
state, p(0,1)=1,p(i>0,1)=0, due to our definition of the
final ground state being the solution. Note that p(i,f) gives
the failure probability if we stop the algorithm at time 7 and
do not extend it to final r=1. The failure probability at the
end, at =1, provided we, e.g., remove all levels higher than
ith from time ¢ onwards, is not necessarily equal to p(i,7). It
is probably correlated with p(i,z) but with details depending
on how we “remove” the levels at time 7. In Fig. 10 we show
the dependence of p(i,t) for the same test 3-SAT instance
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with n=10 variables used before. We can see that the RMT
core states are of limited importance. For instance, if we are
satisfied with the error probability of 10% (i.e., the probabil-
ity to find the solution of 0.9), for times larger than r=0.4
the states higher than i~300 (location of the isoline 107")
are not important as long as the probability flow for levels
with i <300 stays the same. Figure 10 nicely illustrates that
as time progresses the high energy states become less and
less important. This happens already before the actual mini-
mal gap is reached at 7,,;, = 0.56. One consequence of this is
that the adiabatic algorithm is expected to be more insensi-
tive to the coupling of high energy eigenstates to the envi-
ronment. For some results regarding the stability of quantum
adiabatic algorithms to perturbations, see [29-31].

VI. CONCLUSION

We have shown that the properties of the ground state of
the adiabatic algorithm for single-solution 3-SAT instances
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are very different from those of random vectors occurring in
RMT. The distribution of gaps between the ground state and
the first excited state for random 3-SAT problems with one
solution shows a transition from GOE-like to Poisson-like
distribution with increasing problem size. What is more, the
distribution obtained for n=18 does not yet seem to be the
asymptotic one. The ground state is also relatively weakly
entangled as compared to RMT predictions. On the other
hand, the central bulk portion of the spectrum is well de-
scribed by RMT but has a limited influence on the flow of
probability to the ground state. Therefore, RMT seems to be
of limited use in describing standard quantum adiabatic al-
gorithm for single-solution 3-SAT instances.
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