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Abstract

We present analytic and numerical results on several models of one-

dimensional (1D) classical lattices with the goal of determining the origins

of anomalous heat transport and the conditions for normal transport in these

systems. Some of the recent results in the literature are reviewed and several

original new “toy” models are added that provide key elements to determine

which dynamical properties are neccessary and which are sufficient for cer-

tain types of heat transport. We demonstrate with numerical examples that

chaos in the sense of positivity of Lyapunov exponents is neither necessary

nor sufficient to guarantee normal transport in 1D lattices. Quite surpris-

ingly, we find that in the absense of momentum conservation, even ergodicity

of an isolated system is not neccessary for the normal transport. Specifically,

we demonstrate clearly the validity of the Fourier law in a pseudo-integrable

particle chain.

PACS numbers: 44.10.+i, 05.45.-a, 05.60.+w, 05.70.Ln
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I. LEAD PARAGRAPH

The study of how heat is transported through solids has a history dating back

to antiquity and culminating, in the regime of classical physics, in the Fourier

law of heat conduction, which asserts that the flux of heat (the “heat current”) is

proportional to a constant times the gradient of the temperature. This “normal

transport” of heat corresponds to “diffusion” of the heat through th system

and is observed in most physical systems. In some mathematical models and in

certain specially prepared experiments, one can observe “anomalous” transport

of heat. Strictly speaking, one uses the term “anomalous” transport to describe

anything that is not “normal,” up to and including the case in which the heat

propagates ballistically through the system. Numerous prior studies have sought

to understand the origins of both normal and anomalous transport and to isolate

key features of the systems that lead to each type of transport. A particularly

important set of studies developed from the original Fermi-Pasta-Ulam study of

the (supposed!) equipartition of energy in a one-dimensional chain of coupled

nonlinear classical oscillators. Just as the study of the time evolution of the

FPU system revealed the surprising result that there was no apparent evolution

towards equipartition but instead a tendency towards the recurrence of the

initial state, so the study of transport in FPU-like systems revealed that their

thermal conductivity was indeed anomalous. In the present article, we explore

systematically the conditions that lead to normal or anomalous conductivity in

classical, one-dimensional chains (“lattices”). We find an interesting interplay

among the consequences of translation invariance (momentum conservation),

nonlinearity, complete integrability, and deterministic chaos, and demonstrate

the particularly surprising result that chaos is neither necessary nor sufficient

for normal conductivity in these systems.
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II. INTRODUCTION

The related issues of thermalization, transport, and heat conduction in one-dimensional

(1D) classical lattices have been sources of continuing interest (and frustration!) for several

generations of physicists, particularly since the pioneering computational study of Fermi,

Pasta, and Ulam (FPU) revealed the remarkable “little discovery”1 that even in a strongly

nonlinear 1D lattice recurrences of the initial state prevented the equipartition of energy

and consequent thermalization. The complex of questions that has developed from the FPU

work involves the interrelations among equipartition of energy (the questions like: Is there

equipartition? In which modes?), local thermal equilibrium (Does the system reach a well-

defined temperature locally? If so, what is it?), and the transport of energy/heat (Does

the system obey Fourier’s/Ficke’s heat law? If not, what is the nature of the abnormal

transport?). Review articles spread over nearly three decades have provided snapshots of

the understanding (and confusion) at different stages of this odyssey2–8.

In this article, we will explore a subset of these questions dealing with the transport of

energy/heat in 1D classical lattices. In particular, we will focus on the many studies that

have attempted to verify the validity of Fourier’s law of heat conduction

〈 ~J〉 = −κ∇T (1)

in 1D classical lattices or “chains.”

Here, κ is the transport coefficient of thermal conductivity and is supposed to be an

intensive observable, i.e., independent of the size of the system. Strictly speaking, κ is

well defined only for a system that obeys Fourier’s law and for which a linear temperature

gradient is established. Further, since in general κ is a function of temperature, the relative

temperature variation across the chain should be small for κ to be truly constant.

In the literature, the dependence of κ(L) on the size L of the system has also been

used to characterize the (degree of) anomalous transport. However, the definition of κ

for an anomalous conductor, where no internal temperature gradient may be established,
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is highly ambiguous. Usually, one defines it as κG(L) ≡ JL/∆T where ∆T is the total

temperature drop between the two thermal baths. In this paper we shall call such a definition

of κG a global thermal conductivity, in contrast to another definition of the so-called local

thermal conductivity κL = J/∇T , which may depend on the position in the lattice, since

∇T = dT (x)/dx and is unique only in the case of a linear themperature profile. We note that

the global and local thermal conductivities are proportional, namely κL = cκG where c does

not depend on the size L, if and only if the temperature profile is scaling, i.e. T (x) = τ(x/L)

where τ(ζ) again does not depend on L. We will confront these subtle distinctions at several

points in the ensuing discussion.

To place our work in the larger context, it is useful to recall that the issues of equipar-

tition/thermal equilibration and heat conduction/energy flow, although clearly related, can

in fact be studied separately. For instance, although an integrable system will never reach

a thermal equilibrium ensemble unless it is started in one, the concept of “soliton statisti-

cal mechanics” is not an oxymoron: assuming that the system is in a thermal equilibrium

ensemble, one can study what other aspects of statistical mechanics remain valid and, in

particular, what role solitons play in the response of the system to external perturbations.

Similarly, the study of thermal transport (Fourier’s/Ficke’s heat law), is the search for a

non-equilibrium steady state in which heat flows across the system, and the flow is typically

analyzed assuming the Green-Kubo formalism of linear response10, in terms of correlation

functions in the thermal equilibrium (grand canonical) state, independent of whether a

particular system can actually reach this state. Indeed, systems exhibiting “anomalous

conductivity” are precisely those in which this analysis does not lead to Fourier’s law.

We shall focus here on heat conduction but will attempt to make clear whenever our

results impact (or depend on) the existence of equipartition and local thermal equilibrium.

Previous studies have led to bewildering array of partial results and conjectures:

• harmonic chains11, showing κG ∼ L1, a result understood by the stability of linear

Fourier modes, absence of mode-mode coupling, with the rigorous consequence that
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no thermal gradient can be formed in the system.

• integrable models6, κG ∼ L1, a result understood by the presence of nonlinear stable

modes (the solitons) and complete interability6;

• non-integrable models with smooth potentials : (1) the FPU models, leading eventually

to claim that chaos was necessary and sufficient for normal conductivity (κG ∼ κL ∼

L0), Ref.7, a claim that has been countered by strong numerical evidence for anomalous

conductivity in FPU chains ( κG ∼ κL ∼∼ Lα, where α ≈ 0.37 )12,13; (2) the diatomic

Toda chain, where initial results claiming κG ∼ L0, Ref.14 have recently been refuted

by a study showing α ≈ 0.4, Ref.15; (3) the Frenkel-Kontorova model, which shows (at

least for low temperatures) κG ∼ κL ∼ L0, Ref.16;

• non-interable models with hard-core potentials (1) the “ding-a-ling” model17 and (2)

the “ding-dong” model18, both showing convincingly that κG ∼ κL ∼ L0. As one of

the oldest studies of this type we should perhaps also mention Northcote and Potts

model19.

This bewildering array of results has recently been greatly clarified in a series of indepen-

dent but overlapping studies. The numerical studies of Hu, Li, and Zhao16 and of Hatano15

show that overall momentum conservation appears to a key factor in anomalous transport in

1D lattices. Lepri et al20,21 and Hatano15 have argued that the anomalous transport in mo-

mentum conserving systems can be understood in terms of low frequency, long-wavelength

“hydrodynamic modes” that exist in typical momentum conserving systems and that hy-

drodynamic arguments may explain the exponents observed in FPU20,21 and diatomic Toda15

lattices. Later on, several othe papers appeared which tried to formalize the statement that

momentum conservation implies anomalous transport22–24.

In the present paper, we review these recent results and extend them on several fronts,

using numerical simulations of several different models. First, we present a counterexample

showing that converse of the above statement is not true: namely, anomalous conductivity
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does not imply that the model is momentum conserving. Second, we present convincing

numerical data showing that chaos is neither necessary nor sufficient for normal conductiv-

ity, providing counterexamples to prior claims7. Finally, we present some (hopefully well-

motivated) speculations on the necessary and sufficient conditions for normal conductivity

in 1D lattice systems.

The class of models we study is described by the quite general 1D classical lattice Hamil-

tonian with single-particle and two-particle interactions

H ≡
∑

n

(

p2
n

2mn

+ U os
n (qn) + V ip

n+1/2(qn+1 − qn)

)

(2)

Here, the particles moving in 1D have “absolute” coordinates xn = na + qn, where a is

the average lattice spacing and the relative coordinates qn designate the particles’ displace-

ments from their equilibrium (average) positions. We will either consider the particles to

be on a ring with periodic boundary conditions (in this case xN ≡ x0 + Na, qN ≡ q0),

or we will place the system between two thermal reservoirs (at possibly different temper-

atures) by coupling the edge particles 1 and N to canonical stochastic “heat” baths. To

present our analytic results in the most general context, we will consider arbitrary “dis-

order”: the masses, mn, can depend on lattice stite n, as can both the on-site potential

Uos
n (which represents a “phonon-fixed lattice” interaction) and the inter-particle potential

V ip
n+1/2 (=“phonon-phonon” interaction).

We begin our detailed discussion in Section II with a survey of several different models

(mostly previously studied) that fit into the general class described by the Hamiltonian in

Eq. (2). The models are presented in a general sense of increasing “normality,” starting

with (highly pathological) linear/harmonic chains, moving to (still pathological) integrable

models, and finally treating (supposedly) “normal” chaotic models. Already from this sur-

vey we obtain two important results. First, we show that momentum conservation is not

necessary for anomalous transport. The harmonic optical chain, which does not conserve

momentum but does exhibit anomalous transport, provides one clear example of this, and

an integrable model first introduced by Izergin and Korepin provies another. Second, by
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reviewing recent results in the FPU chain, which is known to exhibit chaos but also clearly

displays anomalous conductivity, we can conclude that chaos is not sufficient for normal

conductivity, in constrast to previous claims7. In Section III, we discuss some of the recent

theoretical work on the relation between the total momentum conservation and anomalous

heat transport. We show that one can relate momentum conservation to the divergence of a

particular form of the Kubo formula corresponding to a non-equillibrium system of spatially

uniform density. However, uniform pressure, as required by the stationary state, produces

the gradient of the density (or gradient of the chemical potential) which drives the ballistic

current in the oposite direction to the temperature gradient. The two ballistic contribu-

tions thus cancel and the resulting next order term typically gives anomalous superdiffusive

transport. In section IV we define and study the family of “bing-bang” models, which are

constructed by considering purely hard-wall potentials U os and V ip. The bing-bang models

are in fact equivalent to N -dimensional polyhedral billiards, which have vanishing Lyapunov

exponents and therefore zero Kolmogorov-Sinai entropy. Hence, the bing-bang models are

never chaotic in a sense of positive Lyapunov exponents. Nonetheless, we present convincing

numerical evidence of normal (diffusive) heat transport in a (pseudo-integrable) non-chaotic

but momentum non-conserving bing-bang model with an on-site potential. This demon-

strates that chaos, at least in the sense of exponential instability of generic trajectories,

is not necessary for the validity of the Fourier law. Taken together with the results from

Section II, this shows the surprising result that chaos is neither necessary nor sufficient for

normal conductivity in 1D classical lattices. In Section V we summarize our results and

conclude by discussing possible precise neccessary and sufficient conditions for normal and

anomalous transport.

III. PARTIAL SURVEY OF PREVIOUS MODEL STUDIES

As this article is not a review of the very broad topic of anomalous transport8,25, the

ensuing survey of previous model studies is not intended to be exhaustive, but rather merely
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illustrative, of the variety of models and results.

A. Linear Models

1. The linear acoustic chain

One of the first and few rigorous results on the issue of thermal conductivity is due to

Rieder, Lebowitz and Lieb11 who studied a linear (acoustic) chain of N (equal) harmonically

coupled particles, where

Uos(q) = 0, V ip(q) = 1
2
ω2q2, (3)

which are placed between two heat baths at temperatures T1 and TN . Rieder et al.11 show

that the transport is ballistic, with the average heat current J which is proportional to the

difference of the temperatures of the two heat baths and independent of the size of the

system

J = γ(TN − T1). (4)

They also calculate the temperature profile Tj, j = 1, 2 . . . N , proving that it is asymptoti-

cally flat at the value of the average temperature T (0 < j/N < 1) → 1
2
(TN +T0), as N → ∞.

However, close to the boundaries of the system the temperature profile exhibits exponen-

tially attenuated jumps to satisfy the boundary conditions. Surprisingly, these jumps are in

the opposite direction from the temperatures of the corresponding heat baths (see Fig.1).

Therefore, in the linear, momentum-conserving (acoustic) chain we find κG = L1. But note

that since the temperature profile is exponentially close to a flat profile, κL ∝ exp(c0L).

2. The linear optical chain

Particularly in light of recent discussions on the role of on-site potential and total momen-

tum conservation in heat conduction16,22, it is natural to pose the following simple question:
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what happens to the analysis of Rieder et al if a harmonic (quadratic) on-site potential is

added, thereby breaking the momentum conservation of the model but retaining its linear-

ity? Remarkably, we have been unable to find a previous reference in which this question

was studied, so we present the results briefly here. The model is effectively a discretized

massive Klein-Gordon system or linear optical chain, with

Uos(q) = 1
2
Ω2q2, V ip(q) = 1

2
ω2q2. (5)

The formalism of Ref.11 applies to the general class of linear chains, so it can be applied

to the case of the linear on-site potential (5). Because the analysis is straightforward, we

merely quote the results here. The momentum non-conserving linear optical chain also

exhibits ballistic (κG ∼ L1) heat transport. Indeed, this optical model behaves in essentially

the same way as the acoustic chain. The general shape of the temperature profile [eq.(4.2)

of Ref.11] and the expression of the heat current [eq.(4.6) of Ref.11] remain exactly the same,

the only difference being that the dimensionless parameter ν ∝ ω2 of the linear acoustic

chain11 is replaced by

ν̃ = ν +
Ω2

ω2
, (6)

for the linear optical chain. Note that this simple analysis already provides a non-trivial

result: anomalous transport does not imply momentum conservation, so that momentum

conservation is not a necessary condition for anomalous transport.

We should note that linear chains are also highly pathological in the additional sense

that many of their dynamical properties depend on the spectral properties of model of the

heat baths. This is a simple consequence of the existence of time conserved normal modes.

It has been pointed out in Ref.26, that in the case of the linear chain with disordered masses,

one can obtain super diffusive α > 0, diffusive α = 0, or even sub-diffusive α < 0, behavior

for different choices of heat baths.
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B. Nonlinear but Integrable Models

1. The Toda Lattice

As an example of a nonlinear but integrable momentum-conserving model, we consider

the celebrated Toda lattice27,2, for which

Uos(q) = 0, V ip(q) = exp(−q). (7)

Mokross and Büttner28 have shown by numerical simulation that the temperature profile is

almost flat and that the heat current is proportional to the difference of the bath tempera-

tures (4). Hence they find numerical evidence for ballistic heat transport, with κG(L) ∝ L1,

and κL(L) ∝ exp(c0L), for this integrable and momentum-conserving but non-linear chain.

For a discussion of the role of solitons in this anomalous transport, see Ref.6, and for the

propagation of shock waves, see Ref.29.

2. The Izergin-Korepin discrete sine-Gordon model

The natural class of models to consider next is a non-linear but integrable chain that does

not conserve momentum, i.e., has U os(q) 6= 0. There are not many known models with such

properties. However, one such model has been proposed by Izergin and Korepin30 in the

context of ultraviolet regularization of integrable quantum field theories in 1+1 dimensions.

They introduced a spatially discrete version of the famous sin(h)-Gordon model (we shall call

this IK-SG model) which has the following properties: it preserves the integrability of the

continuum limit and it has an on-site potential (sin φ (for unimodular complex field) or sinh φ

(for real field)). The classical Hamiltionian formulation of the model has been described in

detail by Tarasov in Ref.31. For simplicity, we consider here the case of real field variables

φ±
j (t), j ∈ Z, which corresponds in the continuum limit to the sinh-Gordon model with a

confining anharmonic on-site potential. Unfortunately, the model cannot be cast exactly in

the usual kinetic plus potential energy form of (2) except as an approximation to leading
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order in lattice discreteness (see below). Nonetheless, the model provides important insight

into the question of the role of U os in anomalous conductivity. Referring to Ref.31, we find

that the Hamiltonian of the discrete IK-SG model reads

H =
∑

n

hn, hn = h+
n + h−

n , (8)

h±
n =

(φ+
n∓1 cos δ − φ−

n±1 sin δ)(φ−
n cos δ − φ+

n sin δ)

(1 + φ−
n±1φ

+
n )(1 + φ+

n∓1φ
−
n )

+
2

sin 2δ

where the parameter δ is related to a lattice spacing ∆ via ∆ = 2 sin 2δ. For the real field

variables φ±
n , the Poisson bracket is defined as

{φ−
n , φ+

m} =
1

4 cos 2δ
φ+

n φ−
n (φ+

n cos δ − φ−
n sin δ)2δnm,

{φ+
n , φ+

m} = {φ−
n , φ−

m} = 0. (9)

The field variables can be transformed to conventional (discretized) canonical fields, u(x),

un = u(xn) and canonical momentum field π(x), πn = π(xn), pn = πn∆, and xn = n∆, by

the transformation

φ±
n =

exp(∓1
2
un) cos δ + exp(±1

2
un) sin δ)

√

1 + cosh(un) sin 2δ
exp(1

4
pn), {un, pm} = δnm (10)

In fact, the discrete Hamiltonian (8) can be written explicitly as an expansion in ∆ of the

continuum sinh-Gordon Hamiltonian as

H =
∑

n

[

(

1
2
π2

n + 1
8
(un+1 − un−1)

2 + cosh un

)

∆ + 1
2
cosh(un)πn∆2 + O(∆3)

]

. (11)

Izergin and Korepin have shown that the above discretized sinh-Gordon model (8) is com-

pletely solvable by the method of inverse scattering, and hence they have explicitly demon-

strated its integrability.

We have used the above exact completely integrable model (8) in order to check the

nature of energy transport in an IK-SG lattice. Since we have not found any natural intuitive

way of coupling the variables φ±
n (for n = 1, N) to the heat baths, we have decided to study

the propagation of an initially localized pulse in an autonomous (isolated) lattice of very
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large size N and with periodic boundary conditions φ±
0 ≡ φ±

N . We start by initially exciting

field variables at only one site (say n = n0 = N/2) and setting all the others to the ground

state (vacuum) value φ±
n6=n0

= 0. Then we measure, numerically, after time t, the spatial

spreading of the disturbance

σ2(t) =
1

E

∑

n

(n − n0)
2hn(t), E =

∑

n

hn(t) = const. (12)

For the numerical integration we use the adaptive step-size 4th order Runge-Kutta algorithm

from Ref.32. Clearly, for diffusive energy transport, one would find σ(t) ∝ t1/2, whereas for

ballistic transport, σ(t) ∝ t. In figure 2 we show results of two numerical experiments with

different values of the lattice parameter (δ or ∆); both show very clearly that (independent

of the lattice parameter) the transport is ballistic, σ(t) ∝ t.

This strongly suggests that integrability alone (the existence of an infinite number of

independent conserved quantities in one-to-one correspondence with the set of degrees of

freedom) is enough to yield anomalous (in fact, ballistic) heat transport, irrespective of the

presence of on-site potential. This provides a second illustration, this time in a nonlinear

context, of the result that momentum conservation is not necessary for anomalous transport.

C. Chaotic Models with smooth potentials

1. Chaotic but momentum conserving: the FPU models

In a series of recent studies12,13,20,21 of the celebrated FPU β chain1,7, for which

Uos(q) = 0, V ip(q) = 1
2
q2 + 1

4
βq4, (13)

several groups have shown by careful numerical analyses that despite strongly chaotic be-

havior (characterized by almost everywhere positive Lyapunov exponents), the model ex-

hibits power-law divergence of thermal conductivity in thermodynamic limit, κL ∼ Lα, with

α ≈ 0.4. Later, Hatano has shown15 that for the diatomic Toda chain (same as (7) but for

different (dimerized) masses, m2n = m2 6= m2n+1 = m1) there exists practically the same
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scaling with α ≈ 0.4 as for FPU models. More recently, a similar scaling has been shown

for two other models: namely, for 1D chains where V ip(q) has the form of Lennard-Jones

or Morse potentials33. These results suggests possible universality of the scaling exponent

α ≈ 0.4 (perhaps 2/5) of the divergence of thermal conductivity for strongly chaotic, mo-

mentum conserving lattices. This universality has been partially explained

by Hatano15 using hydrodynamic arguments or by Lepri et al20,21,8 using mode-coupling

theory48.

However, recently Narayan and Ramaswamy23 proposed another ‘thermodynamic’ ap-

proach to mode-mode coupling theory, which using a mapping to Burgers equation and the

renormalization group predicts the universal exponent for the divergence of heat conduc-

tivity to be α = 1/3. It should be mentioned that there exist other models with no-onsite

potential which should conform to 1D hydrodynamics in theormodynamics, for example di-

atomic hard-point gas in 1D, which seems to have a smaller exponent α. Depending on the

range and type of simulation34,24,35 one finds values in the range α ∈ [0.25, 0.35].

On the other hand, there exist certain momentum conserving particle chains which seem

to exhibit normal heat conduction to a very high numerical accuracy. This is the case for

the so-called rotator model36,37, with no on-site potential U os ≡ 0, and cosine interparticle

potential V ip(q) = V0 cos q. This model has a characteristic feature, namely it cannot support

a non-vanishing pressure, and thus the infinite-wavelength phonons cannot carry any energy

current22, but it is not clear why it should be excluded from the universality arguments23.

Thus there remain still unsettled issues in connection to the heat transport in momentum

conserving though chaotic lattices. For some recent progress see e.g. Refs38,39.

In any case, note that the existence of anomalous conductivity in models that exhibit

strong chaos proves that chaos is not sufficient for normal conductivity, refuting earlier

claims7. In Section IV, we shall show the still more surprising result that chaos is also not

necessary for normal conductivity.
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2. Chaotic but momentum nonconserving: the Frenkel-Kontorova model

Apart from a few more or less artificial models, such as ding-a-ling17 and ding-dong18

chains, which combine smooth and hard-core potentials, only one chaotic momentum non-

conserving model with a smooth potential has been studied recently: namely, the Frenkel-

Kontorova chain, with

Uos(q) = U0 cos q, V ip(q) = 1
2
q2. (14)

The numerical results of Hu, Li, and Zhao16 establish convincingly that this model exhibits

normal heat transport— κL ∼ L0—provided that the temperature is low enough: specifically,

the thermal energy (∼ kBT ) must be smaller than the amplitude of the on-site potential

barrier (U0 in Eq. (14). However, for temperatures well above U0/kB, the mean free path of

the phonons becomes (exponentially) large, so the Fourier law is no longer simple to observe

numerically. Very recently, Ref.40 reports on extensive numerical simulations which appears

to confirm the normal heat transport in FK chain even for temperatures above U0/kB.

IV. MOMENTUM CONSERVATION AND ANOMALOUS TRANSPORT

In this section we discuss some interesting and important connections between momen-

tum conserving lattices and anomalous heat transport in 1D which follow from considering

Kubo formula and the linear response theory.

In the absence of an on-site potential, the general Hamiltonian of Eq. (2) becomes

HMC =
N−1
∑

n=0

(

1

2mn

p2
n + Vn+1/2(qn+1 − qn)

)

, (15)

where Vn+1/2(q) is an arbitrary (generally non-linear) interparticle interaction and the sub-

script “MC” stands for momentum conserving. As in Eq. (2) the inter-particle potential,

Vn+1/2(qn+1 − qn), and the masses, mn, may depend on the site label n. However there is

now no “on-site” potential, U os(qn), depending on the individual coordinates. Thus, HMC

is invariant under translations qn → qn + b for arbitrary b, and this spatial translational
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symmetry corresponds to total momentum conservation. As before, we consider the (finite)

system to be defined on a system of length L = Na with periodic boundary conditions

(qN , pN) ≡ (q0, p0), where the actual particle positions are xn = na + qn.

We may write the Hamiltonian in Eqn.(15) as HMC =
∑N−1

n=0 hn+1/2, where hn+1/2 is the

Hamiltonian density

hn+1/2 =
p2

n+1

4mn+1

+
p2

n

4mn

+ Vn+1/2(qn+1 − qn), (16)

Our aim is to estimate κ, the coefficient of thermal conductivity. Using the standard

Kubo formula expression for κ of linear response (see e.g. Ref.41)

κ = lim
T→∞

lim
L→∞

β

L

∫ T

−T

dt〈J(t)J〉β, (17)

then one can show, from very elementary arguments22, that κ = ∞ provided the thermo-

dynamic pressure φ (i.e. average force between an arbitrary pair of adjactent particles) is

non-vanishing. Here 〈〉β denotes a canonical phase space average at inverse temperature β.

The approach of Ref.22 has been criticized25,23 by the claim that the heat current of the

Kubo formula (17) needs a modification for the case of a system with Gallilean invariance:

Namely, the center of mass motion should be subtracted from the current, or one should

put oneself into the frame where the total momentum is zero.

However, the formulation of Ref.22 was based on a slightly non-standard, though ther-

modynamically completely equivalent heat current, namely the so-called lattice current

J =
N−1
∑

n=0

jn (18)

where jn is the heat current density16, given by

jn = {hn+1/2, hn−1/2} = (19)

=
pn

2mn

(

V ′
n+1/2(qn+1 − qn) + V ′

n−1/2(qn − qn−1)
)

. (20)

{, } is the usual canonical Poisson bracket. Note that this form of jn does correspond to the

intuitive definition that the time rate of change of the energy at location n which should be
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given by the (net) force ∼ (V ′
n+1/2(qn+1 − qn) + V ′

n−1/2(qn − qn−1)) times the velocity pn

2mn
.

More importantly, the current density jn by construction satisfies the continuity equation

d

dt
hn+1/2 = jn+1 − jn. (21)

Since the usual derivation of linear response and Kubo formula are based on the real-space

heat current Jrs =
∑

n
1
2
mnv

3
n, where vn = pn/mn is the velocity of n−th particle, one needs

to rederive carefully the linear response formalism for the lattice current. This has been done

in Ref.24. Now, we wish to stress that the lattice current J and the real-space current Jrs are

only equivalent if the center of mass motion is zero, precisely as required by the arguments

of25,23. In other words, adding a nonvanishing center-of-mass motion to the current Jrs, does

not change the lattice current J . Sitll, as shown in Ref.24 the Kubo formula (17) does not

refer to the proper perturbation of the equilibrium state so it does not describe the steady

heat current between two heat baths.

This result is quite interesting and consistent with the interpretation given in

Ref.25,23.The unmodified Kubo formula (17), with the current (19), is the correct one if one

considers a particular kind of non-equillibrium initial state, namely such with a spactially

uniform density (or uniform chemical potential). This we call the isochoric initial state, and

in such a case we find rigorously22 that

β

L

∫ T

0

dt〈J(t)J〉β ≥ t0
am̄

φ2T, (22)

so the transport is ballistic.

However, such a state cannot approximate a steady state of a large piece of the lattice

between two heat baths at sligthly different temperatures. In such a physical situation, a

steady state is formed where the pressure is constant along the system and not the density.

Typically, in colder regions of the lattice, the density is larger and vice versa. This we call

the case of isobaric initial state. Then, due to non-uniform density, a gradient of chemical

potential is established as well, which drives the heat current in the opposite direction. To

leading order in L, the contributions to the heat current due to the temperature and chemical
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potential gradients cancel each other. The difference of the two currents still produces the

anomalous transport, since it decreases as Lα−1. This has been demonstrated in a numerical

experiment with high accuracy24. The modified Kubo furmula referring to the isobaric

situation24 reads

κ = lim
T→∞

lim
L→∞

β

L

∫ T

−T

dt {〈J(t)J〉β + φ〈V (t)J〉β} , (23)

where V =
∑

n vn is the sum of all particles’ velocities vn.

Although we have learned that the issue of anomalous transport cannot be resolved easily

solely only on the basis of momentum conservation, it is clear from this analysis that the

momentum conservation is a key attribute of the problem. It is also interesting to observe

that in the case of vanishing pressure φ = 0 the isochoric and isobaric situations are described

by identical Kubo formulae (17,23).

V. CHAOS AND NORMAL TRANSPORT: THE “BING-BANG” MODEL

The relationship between “chaos” and normal transport has been the subject of consid-

erable interest, and it has even been claimed7 that chaos is both necessary and sufficient

for the existence of normal transport. We have already shown that there exist models that

exhibit both chaotic behavior and anomalous transport, so chaos is clearly not sufficient for

normal transport. In this section, we establish the perhaps more surprising result that chaos

is also not necessary for normal transport. We demonstrate this result using numerical stud-

ies of a 1D lattice model which, while exhibiting no chaos at all in the strict mathematical

sense, nonetheless exhibits normal conductivity.

We call the particular class of many-body 1D classical lattices we study in this section

the “bing-bang” models. As we shall see, they are manifestly non-chaotic in the sense of

having Lyapunov exponents that are almost everywhere vanishing, but they are are also non-

integrable. The bing-bang models have infinite hard wall forms for both the interparticle

potentials V ip(q), and the on-site potentials U os(q). If we fix the units such that the average
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lattice spacing is equal to unity, a = 1, then the general (homogenous) bing-bang model

would depend, apart from the masses mn, on a triple of parameters b, c, d ∈ R
+ which

determine the potentials via

V ip(q) =

{

0, −1 ≤ q ≤ b;

∞, otherwise
(24)

Uos(q) =

{

0, −c ≤ q ≤ d;

∞, otherwise
.

In fact, for a lattice of N particles, the bing-bang model can be identified with the motion

of a point billiard particle inside an N -dimensional polytope. Since the boundary consists

solely of (N − 1)-dim. flat hyperplanes — i.e.,−1 ≤ qn ≤ b,−c ≤ qn+1 − qn ≤ d — (almost)

any orbit is marginally stable, i.e., parabolic with zero asymptotic Lyapunov exponents.

However, there is an infinite set (of vanishing Lebesgue measure in the full phase space)

of very unstable orbits (which may also be called “diffractive” since they would produce

diffraction of quantum mechanical waves) that eventually hit the (hyper)corners, edges, etc,

either in finite future or in finite past. The simplest singular (infinitely unstable) orbits of

this type are those that contain: (i) three particle collisions, or (ii) simultaneous collisions

of a pair of particles and one of the walls.

Our main goal in studying such physically pathological systems is to gain insight into

the extent to which the properties of exponential instability and metric chaos (which our

bing-bang models do not posses) are neccessary to produce normal transport (or perhaps

anomalous transport with a “universal” exponent α if the total momentum is conserved).

The insights gained in previous studies of models with pathological, hard wall potentials—

such as the “ding-a-ling”17 and “ding-dong”18—provide ample motivation and justification

for the current study. On the other hand, our results on decay of correlations (and, hence,

perhaps on the mixing property) of non-hyperbolic (non-chaotic) systems with many-degrees

of freedom should stimulate development of new tools in ergodic theory to deal with such

systems in a rigorous way.

With respect to the global dynamical proerties we define two subclasses of bing-bang
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models.

(i) Pseudo-integrable bing-bang (PIBB) models in which the masses of all particles are

equal (set to unity) mn = 1. The pseudo-integrability of the model is easy to understand as

follows. Upon interaction with interparticle potential V (qn+1 − qn) (interparticle collisions)

the particles n and n+1 just exchange their momenta/velocities, and upon interaction with

the on-site potential U(qn) (collisions with a static hard wall) the momentum/velocity of the

particle n just changes sign. Therefore, the dynamics in momentum space acts as a discrete

group (C2)
N × SN , and any symmetric function of the squares of momenta f(p2

1, . . . , p
2
N)

is an invariant of motion. In fact, N independent analytic invariants of motion Ik can be

systematically evaluated; they are the symmetric homogeneous polynomials of {p2
n}

I1 =
L
∑

n=1

p2
n

I2 =
∑

1≤n<m≤L

p2
np

2
m

...

Ik =
∑

1≤n1<...<nk≤L

k
∏

l=1

p2
nl

(25)

Therefore, any orbit of a PIBB model lies on an invariant surface of dimension N in 2N -

dimensional phase space, and the system is not ergodic on the entire energy surface. However,

the invariant surface is not a simple N -torus as in the case of a completely integrable system,

but is an object of (vastly) increasingly complex topology as N increases.

This is precisely the defining propery of pseudo-integrable systems: namely, that there

should exist a sufficient number of independent conservation laws for integrability but that

the topology of invariant surfaces is more complicated than that of N -dimensional tori. This

can only happen in the cases with singularities in the system: for instance, planar billiards

in the shape of a polygon with angles that are rational multiples of π are the most commonly

studied class of (two-dimensional) pseudo-integrable systems42.

In the case of our PIBB models, the dimensionality of the phase space 2N can be arbi-

trarily large and increasing N brings in new aspects and questions on dynamics that to the
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best of our awareness have not yet been considered in the literature.

Our analysis below suggests that the topology of invariant surfaces can become arbitrarily

complex as one approaches the thermodynamic limit N → ∞ and that then such invariant

surfaces can more and more densely and uniformly cover the entire energy surface, so that

at the end, statistical mechanics cannot distinguish the system from a truly ergodic (and

mixing) one. We suggest (but cannot prove) that the topological genus of the invariant

surfaces in our PIBB lattices increases faster than any power of N . Since it is not essential

to our current discussion, we shall leave the rigorous characterization of topology of invariant

surfaces of high-dimensional PIBB models as a very interesting open mathematical problem.

(ii) Ergodic bing-bang (EBB) models. We have good heuristic arguments (and strong

numerical evidence) to support the conjecture that the generic bing-bang model with differ-

ent masses mn (which should be generic, perhaps satisfying some irrationality conditions) is

ergodic, since it corresponds to the motion inside N−dimensional polyhedral billiard. For

example, it is rigorously known in the mathematical literature (see e.g.42 for a recent review,

and references therein) that the set of ergodic polygonal billiards (N = 2) is (at least) a

dense set in the set of all polygonal billiards with a fixed number of vertices. It seems fairly

obvious that the same result should apply (even more likely) in higher dimensions N > 2.

An even stronger result has been suggested recently:, namely that the generic polygonal

billiard in the plane (e.g. triangular billiard with all angles having irrational ratio with π)

is truly mixing dynamical system and therefore exhibits fast decay to statistical equilibrium

from (almost) any initial state43,44.

With respect to the key issue of total momentum conservation, we will study both mo-

mentum conserving bing-bang models (MC-PIBB or MC-EBB) which are characterized by

c, d = ∞ (or saying that U os = 0); and momentum non-conserving bing-bang models (MNC-

PIBB or MNC-EBB), for which translational invariance is broken and generally at least one

of parameters c, d is finite.
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A. Momentum conserving bing-bang models

In this subsection we study two variants of momentum-conserving bing-bang models,

one pseudo-integrable (MC-PIBB) and one ergodic (MC-EBB). Although they both behave

as anomalous heat conductors we study both in order to show the subtle but important

differences that are a consequence of qualitatively different positions in the ergodic hierarchy

(pseudo-integrability versus ergodicity).

In our numerical simulations we will study either (i) an open bing-bang lattice between

two thermal baths at temperatures TL and TR, or (ii) a closed bing-bang lattice with periodic

boundary conditions where N + 1 ≡ 1. The thermal bath is realized as a wall (see e.g.45)

which works in the following way: when the edge particle (with label 1 or N) hits the

reservoir, it collides inelastically so that the new momentum (being independent from the

old one) is given with the probability distribution

dP/dp1,N ∝ p1,N exp(−p2
1,N/(2m1,NTL,R)). (26)

The velocity (momentum) prefactor takes into account the fact that the faster particles col-

lide with the wall more often than the slow ones, so that the resulting velocity (momentum)

distribution of the near-bath particles is indeed canonical Maxwellian (Gaussian).

Typical trajectories of the individual particles are shown in Fig.3 for the MC-PIBB

model and in Fig. 4 for MC-EBB model, in order to give a reader an impression about the

complex geometry of the orbits in bing-bang models despite their manifest non-chaoticity.

In both cases, MC-PIBB and MC-EBB, the models are put between two heat reservoirs

at the same temperature TL = TR = T = 1. In the following we will present results of

numerical simulations of heat conduction in a non-equillibrium stationary state with the

bath temperatures TL = 1 and TR = 2. We measure the average heat flux J(L) through the

system as the function of the size L(= N , since a = 1) and the kinetic temperature profile

Tn =
〈p2

n〉
2mn

.
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First, we observe that temperature profile is typically a non-linear function (non-constant

∇T ), although it has a scaling propery: namely, the local temperature for a given system is

only a function of the scaled coordinate n/N and reservoir temperatures

Tn = τ(n/N, TL, TR). (27)

In Figs.5, and 6, we show the sets of rescaled temperature profiles (for different lattice

sizes) for the two models, MC-PIBB, and MC-EBB, respectively. However, note that in

the light of the theorem of the previous section, it may be also important to distinguish

the cases, of (i) the symmetric interparticle potential with zero pressure (b = 1, φ = 0),

and (ii) nonsymmetric case with nonvanishing pressure (b 6= 1, φ 6= 0). We find that for

both models (MC-PIBB and MC-EBB), at zero pressure φ = 0, b = 1, a non-flat but also

non-linear temperature profile is established. However, for nonvanishing pressure, b = 2.5,

the MC-PIBB model exhibits a vanishing temperature gradient, which is consistent with

completely ballistic transport (behavior similar to that found for the integrable models),

whereas the MC-EBB model, which is “more ergodic”, even in the case of nonvanishing

pressure, establishes a “non-flat” (and non-linear) temperature profile.

From our general theorem of Section IV, we expect that all these momentum conserv-

ing bing-bang models should exhibit anomalous conductivity. Using our extensive data on

lattices of different sizes, we can confirm this by calculating for each of the models the de-

pendence of the thermal conductivity κ(L) on the size L of the system. To account for the

observed nonlinearity in the temperature gradients across the system, we have determined

“average” temperature gradients ∇T with least squares linear fit of temperature profiles

in the range n = N/4 . . . 3N/4. Since the temperature profiles are scaling (27), any other

choice would just redefine κ by a constant factor (independent of the size L). In Fig.7 we

plot κ(L) for both lattices (MC-PIBB and MC-EBB) and find significant agreement with

the intermediate power-law behavior

κ(L) ∝ L0.4. (28)
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This result is in agreement with the existing results on non-integrable, momentum-conserving

lattices in the literature13,20,21,15,33 and provides further support for the conjecture that there

may be some form of universality present in these models16,15. Clearly this is an important

question worthy of further study.

Our numerical data also permit us to study two other major issues related to the anoma-

lous conductivity and more generally to the applicability of the concepts of statistical me-

chanics to these systems. First, we can examine the consistency of the above κ(L), which we

have determined by studying numerically a non-equilibrium steady state, with the behavior

of κ as determined by applying the Kubo formula to a large but finite system. To perform

this consistency check, we have computed the temporal current-current auto-correlation

function, C(t) ≡ 〈J(t)J〉β/L, and spatio-temporal current-current auto-correlation func-

tion, S(x = m, t) = 〈jm(t)j0(0)〉β. The homogeneity in space and time imply that all the

averages are invariant under the space and time shifts, 〈Fm(t)〉β = 〈F0(0)〉β, so the temporal

correlation function can be writen as the spatial integral of the spatio-temportal one,

C(t) =
N−1
∑

m=0

S(m, t). (29)

We assume that the tails of the current-current autocorrelation function are mainly governed

by the acoustic sound vave propagation which moves ballistically with a group sound velocity

cs = dx/dt. This will be clearly revealed for the models studied here by inspecting the full

spatio-temporal correlation S(x, t) below.

In order to describe κ(L) for a finite sistem of size L by the conventional Kubo formula,

we need to integrate C(t) up to a finite time t0 ∼ tL ≡ L/cs ∝ L, since for the ultimate

asymptotic result, the thermodynamic limit L → ∞ has to be taken prior to the time

t0 → ∞ limit. Therefore, divergence of κ(L) ∝ Lα is consistent with a slow power-law decay

of current-current autocorrelation function

C(t) ∝ t−(1−α). (30)

In fig.8 we show temporal correlation functions C(t) for three different models: (a) for

MC-PIBB with vanishing pressure (b = 1); (b) for MC-EBB with vanishing pressure (b = 1);
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and (c) for MC-EBB with non-vanishing pressure (b = 2.5). Only the case (b) is clearly

consistent with the decay C(t) ∝ t−0.60 whereas for the case (a) (MC-PIBB) the decay of

correlations seems to be slightly faster C(t) ∼ t−0.78 (although the power may approach 0.60

as N → ∞), and the bumps where the sound-wave collides with its symmetric copy after

transversing the half of the system are quite remarkable) and for the case (c) (MC-EBB

with non-vanishing pressure), we obtain a finite plateau for C(t), in accordance with our

theorem of Section IV.

From these results we conclude that the finite-size relation (30) appears to break down

when either (i) the pressure is non-vanishing or (ii) the autonomous dynamics is non-ergodic

(pseudo-integrable or even integrable); however, it appears to hold if the pressure is vanishing

and the dynamics is ergodic, and of course even more so if dynamics is ergodic and chaotic,

as demonstrated by20,21. We believe that our results indicate that EBB models are mixing

as well, although it is very difficult to make any precise statements about mixing based on

numerical results on decay of time correlations of just one or few observables, like C(t).

Further insight into the nature of the anomalous conductivity comes from studying the

full spatio-temporal correlation function S(x, t). In fig.9 we show S(x, t) for the same three

cases studied in fig.8. Note the clear tongues of ballistic propagation in S(x, t), from which

we can easily compute the sound velocity cs. For the above three cases the observed sound

velocity is: (a) cs ≈ 1.75, (b) cs ≈ 1.67, (c) cs ≈ 1.63. In addition to the ballistic component,

we also observe in all three cases a quite pronounced diffusive component of S(x, t) which

is the central enhancement (around x = 0) inside a band whose width spreads diffusively as

xdiff ∝
√

t.

The interpretation of these ballistic modes is clarified by the following simple but in-

structive observation and numerical experiment. Since there is no on-site potential in our

MC-models, they behave macroscopically like a liquid or a gas. When such a system (for a

large size L = N) is confined between hard walls or between heat reservoirs, we expect it to

exhibit standing acoustic waves whose frequencies can be computed directly from the size

L and the speed of sound cs. Since the displacements of the particles must vanish at the
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reservoir walls, we also know the appropriate boundary conditions. Thus we should find the

same eigen-frequencies as for the acoustic “flute” closed at both ends:

νl =
lcs

2L
, l = 1, 2, 3 . . . (31)

Can we excite the long wavelength acoustic eigenmodes by simple thermal excitation of the

reservoirs? We explore this question in Fig.10a by plotting the total displacement qn of the

middle particle (in units of unit mean particle spacings) n = N/2 of a MC-EBB chain of

size N = 400 which is simply put between the heat reservoirs at unit temperature TL =

TR = 1. We observe a nearly periodic signal with a frequency ν1 = 0.0204, corresponding

to a very clear and pronounced dominant excitation of the longest wave-length mode l =

1. In the remainder of Fig. 10, we plot the power spectra of the signal, |q̃N/2(ω)|2 and

|q̃N/4(ω)|2, for the four different cases of (see Figs10b-e): (b) a MC-EBB chain with vanishing

pressure (b = 1), (c) a MC-EBB chain with non-vanishing pressure (b = 2), (d) a MC-

PIBB chain with vanishing pressure (b = 1), and (e) a MC-PIBB chain with non-vanishing

pressure (b = 2). In all these cases we observe a dominant excitation of the longest wave-

length mode l = 1 and also clear but weaker excitations of higher eigenmodes (l > 1) with

integer multiple frequencies νl = lν1, whose power is a rapidly decreasing function of l. The

basic acoustic frequencies of the four cases are: (b) 2πν1 = 0.0128, (c) 2πν1 = 0.0116, (d)

2πν1 = 0.0135, (e) 2πν1 = 0.0116, from which we can independently calculate the sound

velocities: (b) cs = 1.63, (c) cs = 1.48, (d) cs = 1.72, (e) cs = 1.48. The cases (d) and

(b) exactly correspond (except for the different boundary conditions) to cases (a) and (b) of

Figs.8,9, respectively, and indeed the agreement of the sound velocities is very good. Another

interesting observation, which we believe is in fact the physical essence of the “proviso” in

our theorem of Section IV, is that the power spectra of the “acoustic” signals of models with

non-vanishing pressure show a peak (as in Fig.10(c)), or at least relatively large power (as

in Fig.10(d)), at zero frequency, whereas models with vanishing pressure have practically

vanishing power at zero frequency. In other words: the zero-frequency mode, which is a

rigid displacement of all particles (at least in a large local domain, since a global rigid
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displacement is prohibited by the boundary conditions), can support energy transport only

if the pressure is nonvanishing.

Let us turn now to the second general issue related to the anomalous conductivity and

more generally to the applicability of the concepts of statistical mechanics to these systems:

namely, is the non-equilibrium state in which we study the heat transport a state of local

thermal equilibrium? To study the question of the existence of local thermal equilibrium in

both PIBB and EBB models in the non-equilibrium stationary state with TL = 1, TR = 2,

we analyze the velocity/momentum distribution across the system and compare it to the

ideal Maxwellian,

dP/dpn ∝ exp
(

−p2
n/(2mnTn)

)

.

To simplify this comparison, we factor out the local temperature by comparing the normal-

ized higher moments

M2m(n) =
〈p2m

n 〉
〈p2

n〉m
(32)

with the Gaussian values M gauss
2m = (2m − 1)!!.

That we cannot expect to find local thermal equilibrium in a pseudo-integrable (PI)

model is shown by the following argument46: the momenta of particles in the pseudo-

integrable lattice cannot change due to interactions (collisions) with other particles but

only due to interactions (collisions) with the reservoirs. Therefore, the velocity distribution

at the site n inside the PIBB chain is equal to a linear combination of two Maxwellians with

temperatures TL and TR, the coefficients being just the probabilities that given velocity has

been injected from the left/right. Strictly speaking, for this argument46 to be completely

justified, we must assume that the diffusion rate of fixed velocities (or “velocitons”) is (at

least to some good approximation) independent of the actual value of the velocity. This is

indeed the case, for example, if we assume completely uncorrelated random walks for the

individual velocities — “velocitons”. But this assumption may be really justified only for

strongly chaotic systems, like the Lorentz gas46, whereas for PI systems we can consider it

just as a qualitative argument that suggests the absence of local thermal equilibrium.
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The results of studying the moments of the local velocity distributions in the MC-EBB

and MC-PIBB models are shown in Fig.11. The reader should observe very convincing local

thermal equilibrium for the MC-EBB model, while for MC-PIBB model we have notable

deviations, as anticipated by the qualitative argument presented above.

B. Momentum non-conserving bing-bang models

The two 1D bing-bang models studied in the previous subsection exhibited both trans-

lation invariance (momentum conservation) and the absence of metric chaos. Hence the

result that they also exhibited anomalous transport is not surprising, given previous results

and discussion of Section IV. Nonetheless, our numerics were useful in establishing that

the anomalous transport can be viewed as arising from the sound-wave ballistic tongues

in spatio-temporal current-current autocorelation function S(x, t). Further, our simulations

also established results—perhaps somewhat surprising, given the complete absence of met-

ric chaos in the bing-bang models—that (i) instead of behaving like integrable systems, the

momentum-conserving bing-bang models exhibited the same scaling of κ(L) as the generic

non-integrable, and even strongly chaotic, models like the FPU lattice; and (2) that in

the MC-EBB model, local thermal equilibrium is established in the conducting stationary

steady state. Taken together with previous results (for instance, those on the FPU system)

that chaos is not sufficient to produce normal conductivity, our new results show that the

relationship between metric chaos (positive Lyapunov exponents, positive Kolmogorov-Sinai

entropy) and “statistical mechanical” behavior—including normal transport, local thermal

equilibrium, it etc.—is perhaps less direct than previously anticipated.

In this subsection, by studying a momentum non-conserving bing-bang model, we further

weaken the link between metric chaos and “normal” statistical behavior by establishing

numerically that a model in which metric chaos is absent (in the strict sense) nonetheless

exhibits normal conductivity: that is, we show by a (numerical) counterexample that chaos

is also not necessary for normal conductivity.
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For simplicity and clarity, we focus on a single momentum non-conserving bing-bang

model—the “the less ergodic” pseudo-integrable chain (MNC-PIBB) chain—which is defined

by the relations (24) with b = c = d = 1, and mn = 1. Physically, this corresponds to a

chain of equal mass point particles that collide elastically and are each subject to a hard-

wall, confining on-site potential. A typical trajectory of such a model of with nine particles

(N = 9) is depicted in Fig.12.

When the MNC-PIBB lattice is placed between heat baths, with temperatures T1 = 1 and

T2 = 2, a linear temperature profile is established, as shown in Fig. 13, except for the edge

particles n = 1 and n = N , which are in contact with the reservoirs. At the reservoirs, we

observe a strong drop in temperature arising from manner in which the particles are coupled

to the heat bath: in particular, fast particles are more likely than slow ones to collide again

with the reservoirs before they “transmit” their velocity to the rest of the chain. Apart from

this effect, which can be essentially avoided by defining “renormalized reservoirs” which

include one (or a few) particles near to the reservoir, the transport in the MNC-PIBB is

completely normal: a linear thermal gradient is established and κ(L) is independent of L.

And this normal transport behavior occurs despite the fact that the autonomous MNC-

PIBB system has no metric chaos and is not even ergodic! We should note, however, that

due to pseudointegrability of MNC-PIBB, the local thermal equilibrium is not established

in non-equilibrium heat-flow simulation. Instead, the local velocity distribution has been

found to be a linear combination of two Maxwellians at different temperatures.

In Fig.14 we show the convergence of κ(L) to its L-independent asymptotic value; the

figure shows that the convergence has occurred already for lattice sizes L ≈ 100.

We have conducted three additional numerical experiments to confirm and clarify the

normal heat transport in this MNC-PIBB model. First, in fig.16, we show the magnitude

of current-current autocorrelation function |〈J(t)J〉β|/L for MNC-PIBB lattices of several

different sizes N . We observe a rapid (perhaps exponential) initial decay of the correlations

(over three decades) and afterwards a slower, oscillatory decay (so it integrates out and

(hopefully) does not produce a divergence in the Kubo formula even if its envelope may not
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decay exponentially).

Second, and perhaps more conclusive, is the behavior observed for the spatio-temporal

correlation function S(x, t) of the MNC-PIBB model, which we show in Fig.16. In contrast

to the behavior observed in the systems with anomalous heat conductivity (see Fig.9), there

are no ballistic tongues here but instead a clearly diffusive pattern emerges.

Third, we can study the behavior of the imaginary test particles (“velocitions”) that

carry constant (fixed) velocity and which can be clearly defined due to pseudo-integrability

of the many-body model: When the velocities vn, vn+1 of a pair of particles n and n + 1 are

exchanged due to the collision, the velociton hops (by definition) from site n to site n + 1,

or vice versa. Choosing the velociton initially to be at the site n(t = 0) = n0, clearly deter-

mines the evolution n(t) is for all times. If the overall motion of the velociton is diffusive,

this provides an indication of the diffusive (normal) nature of energy/heat transport in the

system. We start by placing a velociton of velocity v0 somewhere in a large MNC-PIBB lat-

tice (with periodic boundary conditions) and with a canonically thermalized “background”,

i.e. the momenta of all other particles are distributed according to a Gaussian distributiuon.

We then simulate the dynamics, and ask whether the velociton undergoes a normal diffusive

proccess. If n(t) labels the real particle that carries a velocity v0 at time t, then we check

for the linear growth

〈[n(t) − n(0)]2〉β = D(v0)t. (33)

In Fig.17 we show 〈[n(t)−n(0)]2〉β as a function of time, for both an intermediate velociton

v0 = 1 (the background temperature is T = 1) and a fast velociton v0 = 10. We find normal

diffusion in both cases, although the diffusion coefficient D(v0) is obviously an increasing

function of velocity v0. In Fig.17 we also study velocitons in a “microcanonically thermalizd

background”, by which we mean that momenta/velocities of the real particles all have values

±1 (with equal probability of both signs). Remarkably, even in this case we find normal

diffusive proccesses for both intermediate and fast velocitons.

We believe all these results provide conclusive numerical confirmation of normal diffusive
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heat transport in the MNC-PIBB lattice, which is neither ergodic nor chaotic but only

pseudo-integrable. This strongly supports the result that metric chaos is not nesseccary to

have normal transport.

This result seems quite surprising and indeed paradoxical, but we believe that the reso-

lution of the seeming paradox lies in the complexity of the N -dimensional invariant surfaces

in the MNC-PIBB model: namely, these surfaces become more and more dense and uni-

formly covering of the energy surface as the thermodynamic limit (i.e.., as N → ∞), while

dynamics on the invariant surface is probably mixing (decay of time correlations of arbitrary

observables), which means that any phase-space distribution function on invariant-surface

relaxes into statistical equilibrium. Thus, in the thermodynamic limit N → ∞, the macro-

scopic properties of the dynamics of this complex pseudo-integrable system cannot really be

distinguished from those of a truly chaotic system. For example, as we saw in the beginning

of this section, the sets of modula of momenta of PIBB lattices are preserved under time evo-

lution. Hence the invariant surface can be written as a direct product (CN
2 ×SN)× [−1, b]N .

where CN
2 ×SN is the group of all possible permutations SN and sign exchanges C2 on a set of

initial momenta (p1, p2, . . . , pN) and really represents the discrete momentum part of an in-

variant surface which consists of 2NN ! N-dimensional configurational sheets [−1, b]N . When

N is large and if initial condition of on the momenta (~p) has been chosen with a “canonical

measure” for each component pn (which is the case with probability 1 in thermodynamic

limit) then it seems plausible that the dynamics of a single orbit of the PIBB system on its

invariant surface can uniformly cover the phase-spaces of small subsystems of size N ′ ¿ N

with a canonical measure, just as is the case for a truly ergodic covering system. Obviously,

these observations require considerable further mathematical study to be convincing, but

we feel that they are well justified as conjectures.

We close this subsection with one final calculation. Since the MNC-PIBB model is

equivalent to a (multidimensional) billiard model, we can in this case actually derive the

dependence of κ(T ) on the temperature by a simple scaling analysis, either from Kubo

formula, or, more directly, from the definition κ = −j/∇T . The heat current is proportional
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to the average particle energy, i.e. v2 (where v is a typical velocity), times the inverse of the

typical time in which a particle scatters with its neighbors and transfers energy: this time is

roughly a/v, where a is the lattice spacing. Therefore, jn ∼ v3 for billiard-like models. On

the other hand, the temperature gradient ∇T = Tn+1 − Tn scales as ∼ v2, so that κ ∝ v, or

κ(T ) ≈
√

8T (34)

The factor of
√

8 is an approximation obtained from our numerical simulations, but the

scaling with temperature is exact since it is a simple consequence of scaling dynamics of

billiards. The above result is meaningful, of course, only in the close-to-equilibrium situation

where typical (average) temperature has a well-defined value of T .

We note that a similar model which exhibits normal heat transport and lacks metric

chaos has been recently discussed in Ref.47.

VI. SUMMARY AND DISCUSSION

A. Summary

The analyses, analytic and numerical, described in the previous sections, have established

several results concerning normal and anomalous heat transport in classical 1D lattices. We

have adduced convincing numerical evidence and several theoretical arguments22–24 to jus-

tify the claim that total momentum conservation is sufficient for anomalous heat transport

provided the average pressure is non-vanishing. There seem to be momentum-conserving

models that have normal conductivity36,37 but these models cannot sustain pressure, con-

sistent with heuristic arguments that in such a case, the Goldstone modes cannot carry

energy.

We have also presented numerical results that convincingly support two other claims:

• total momentum conservation is not necessary for anomalous heat transport, as shown

by the counterexamples of the linear optical chain and the nonlinear integrable IK-SG

model;
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• metric chaos, defined in the usual sense of having a set of non-zero measure in phase

space in which there are positive Lyapunov exponents and positive Kolmogorov-Sinai

entropy, is neither sufficient (as shown by the anomalous behavior of the FPU and

diatomic Toda models) nor necessary (as shown by the momentum non-conerving

pseudo-integrable bing-bang (MNC-PIBB) model) for normal (diffusive) heat trans-

port. Furthermore, even ergodicity is not neccessary for normal transport, as shown

by our studies of MNC-PIBB models. From our analysis it follows that perhaps even

multidimensional pseudo-integrability is sufficient, provided the topology of invariant

surfaces becomes sufficiently complex in thermodynamic limit.

As is often the case, these results raise at least as many questions as they answer, so we

phrase the remainder of our discussion in terms of several questions.

B. What is needed for normal transport?

Our results establish that the full set of conditions needed to guarantee normal transport

in 1D models is more subtle and less “clean” that previously believed7. We know that normal

transport for all temperatures requires

• Confining on-site potential16, or vanishing pressure with effective means of scattering

of long-wavelength Fourier modes36,37.

• Anharmonicity in either on-site or interparticle potential: this is necessary to exclude

the pathological linear systems;

• Absence of integrability: integrable models (which can be hard to identify a priori !)

must also clearly be excluded;

• An effective means of achieving dynamical mixing in the thermodynamic limit, al-

though this means can be subtle and perhaps more topological than dynamical, as the

results for the pseudo-integrable bing-bang model imply.
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C. What about dimensionality?

Why do we expect our arguments to be limited to one dimension? We could develop a

formal analysis of the vector current in two (or higher) dimensions, but intuition gained from

thinking of coupled chains is key. The neighboring chains provide an environment for a given

chain that leads to an effective on-site potential: this was original motivation for Frenkel-

Kontorova model. Based on hydrodynamic or mode-coupling arguments48, one would expect

ln L divergence of κ in 2D and normal conductivity κ L0 in 3D. The expected logarithmic

divergence in 2D has been confirmed in recent numerical experiments33. Nonetheless, fur-

ther studies in explicit lattice models in higher dimensions will certainly provide additional

insights.

D. What are other open issues?

• An outstanding problem in mathematical physics is a rigorous proof of what is really

necessary and sufficient for normal conductivity.

• Compelling calculations of the exponents for anomalous transport. Is κ ∼ L1.0 the

fastest increase possible ? Is α universal, or are there universality classes? Numerical

data suggest α ∼ 0.4 is widespread, but other arguments suggest α = 1/3. Is there a

systematic “universality theory” that can predict α, as was done for the Feigenbaum

constants in the period doubling transition to chaos?

• What happens when systems are driven non-linearly away from equilibrium? What

are the corrections to Kubo formula?

Knowledgeable colleagues, many of whom have contributed to this Focus Issue of Chaos

on the Fermi-Pasta-Ulam problem, can doubtless add still further questions. There is still

much to be found in exploring the rich trove of physically relevant and mathematically

challenging problems that has been uncovered in seeking to explain FPU’s remarkable “little

discovery”1.
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18 Tomaž Prosen and Marko Robnik, “Energy Transport and detailed verification of Fourier

heat law in a chain of colliding harmonic oscillators,” J. Phys A: Math. Gen. 25, 3449-3472

(1992).

19 Robert S. Northcote and Renfrey B. Potts, “Energy Sharing and Equilibrium in Nonlinear

Systems,” J. Math. Phys. 5, 383-398 (1964).

20 Stefano Lepri, Roberto Livi, and Antonio Politi, “Energy Transport in anharmonic lattices

close to and far from equilibrium,” Physica D 119, 140-147 (1998).

21 Stefano Lepri, Roberto Livi, and Antonio Politi, “On the anomalous thermal conductivity

of one-dimensional lattices,” Europhys. Lett. 43 271-276 (1998).
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FIG. 1. Temperature profile for the linear optical chain with the parameter ν̃ = 0.25 and with

reservoir temperatures TL = 1.3, TR = 0.7. The size of the lattice here is N = 40. As discussed in

the text, this profile is the same as for the linear acoustic chain discussed in Ref. (11)
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FIG. 2. The width, σ(t) ≡
√

(
∑

n n2hn)/(
∑

n hn), of a pulse spreading from an initial single-site

disturbance as a function of time in the IKSG model for two different values of parameter b = tan δ.

The initial excitation is delta-like with φ+
0 = 2, φ−

0 = 3, φ±
n = 0, n 6= 0. A finite lattice of length

N = 800 with periodic boundary conditions has been used in the simulation. The line with slope

1 is used to guide the eye: the figure provides clear evidence of ballistic transport, σ(t) ∼ t.
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FIG. 3. Typical trajectories of the individual particles in a MC-PIBB model with constant unit

masses and size L = 9. The ordinate shows particle positions (xn(t)) where for clarity the odd n

particle trajectories are plotted with full lines while the even n trajectories are dashed. The walls

at x = 0 and x = 10 act as thermal baths at temperature T = 1.
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FIG. 4. Typical trajectory of a MC-EBB model with mass ratio m2/m1 = 0.382 and size

L = 9. As in Fig.3, the ordinate shws particle positions (xn(t)) where for clarity the odd n particle

trajectories are plotted with full lines while the even n trajectories are dashed. The walls at x = 0

and x = 10 act as thermal baths at temperature T = 1. .
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FIG. 5. Scaling of temperature profiles (temperature vs. x/N for different system sizes N) in a

MC-PIBB model with thermal baths at temperatures TL = 0.5, TR = 1.0. The triple of steep curves

refers to a system with symmetric interparicle potential b = 1.0 (so that the pressure vanishes),

while the triple of horizontal curves (at T =
√

TLTR, so zero temperature gradient over the bulk

of the chain) refers to b = 2.5 (and a non-vanishing pressure).
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FIG. 6. Scaling of temperature profiles (temperature vs. x/N for different system sizes N) in

a MC-EBB model with mass ratio m2/m1 = 0.382. All other parameters are the same as in Fig.5.

Note that here a nonvanishing temperature gradient is established even in the non-symmetric case

b = 2.5 with nonvanishing pressure.
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FIG. 7. The finite-size thermal conductivity κ(L) vs. size L for the MC-EBB

(m2/m1 = 0.382, b = 1) and MC-PIBB (m2/m1 = 1, b = 1) models.
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FIG. 8. The current-current temporal autocorrelation function 〈J(t)J〉β/L (at temperature

T = 1) for: (a) the pseudointegrable (m2/m1 = 1) momentum-conserving bing-bang model with pe-

riodic boundary conditions and vanishing pressure, b = 1.0; (b) the ergodic momentum-conserving

bing-bang lattice (m2/m1 = 0.382) with vanishing pressure, b = 1.0; and (c) the ergodic momen-

tum-conserving lattice with non-vanishing pressure b = 2.5. In each case, three different system

sizes are shown. Note that the dotted line in (c) indicates the lower bound from the theorem from

section IV.
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FIG. 9. The spatiotemporal correlation function S(m, t) = 〈jm(t)j0(0)〉β for the same three

cases as in Fig.8. Note the apparent ballistic propagation. Regions between contours of equidis-

tantly spaced base-e logarithm ln S(x = m, t) are shaded with 20 different and uniformly increasing

levels of greyness in the range [−10, 0].
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FIG. 10. Thermal excitation of acoustic modes: (a) the time dependence of the displace-

ment qn(t) of the particle in the middle n = L/2 of the diatomic (m2/m1 = 0.382, b = 1.0)

bing-bang lattice of size L = 400 between thermal reservoirs in equilibrium (TL = TR = 1); (b)

the power-spectrum of the same signal (n = L/2, full curve) and for the displacements at the

one-quarter of the chain (n = L/4, dashed curve); dotted vertical lines denote integer multiples of

the basic acoustic frequency; (c) the same plot as in (b) but for the MC-EBB with b = 2 (nonvan-

ishing pressure); (d) the same plot as in (b) but for the MC-PIBB with b = 1 (vanishing pressure);

and (e) the same plot as in (b) but for the MC-PIBB with b = 2 (non-vanishing pressure).
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FIG. 11. Moments of the velocity distributions M2n(m) = 〈p2n
m 〉β/〈p2

m〉nβ for n = 4, 6, and 8 for

two different momentum conserving bing-bang lattices of size L = 3200 with TL = 0.5, TR = 1.0.

The results for the EBB model (with m2/m1 = 0.382, plotted as solid lines) are essentially indis-

tinguishable from those of the Gaussian model (Mn = (2n−1)!!), plotted as dotted lines), showing

that local thermal equilibrium is established in the MC-EBB model, whereas the results for the

MC-PIBB model (dashed lines) deviate substantially from the Gaussian model, showing that local

thermal equilibrium is not established, as anticipated by the heuristic argument presented in the

text.
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FIG. 12. A typical trajectory of MNC-PIBB chain (L = 9). As in Fig.3, the ordinate shows

particle positions (xn(t)) where for clarity the odd n particle trajectories are plotted with full lines

while the even n trajectories are dashed. The walls at x = 0 and x = 10 act as thermal baths at

temperature T = 1.
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FIG. 13. The scaling of linear temperature profiles, T vs x/L, for MNC-PIBB chain for different

sizes L. The dashed-dotted straight line is drawn to guide the eye. The temperatures of stochastic

heat baths are TL = 1 and TR = 2.
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FIG. 14. Convergence of the thermal conductivity κ(L) to its L-independent asymptotic value

for the MNC-PIBB model. In the simulations, TL = 1, and TR = 2.
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T = 1) for the MNC-PIBB model with periodic boundary conditions for different system sizes.
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FIG. 16. The spatiotemporal correlation function S(m, t) = 〈jm(t)j0(0)〉β for the same parame-

ters as in previous Fig.15 and using the same graphical presentation as in Fig.9. Note the apparent

diffusive propagation. The superimosed full curve is t = 0.09x2.
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FIG. 17. Diffusion of ‘velocitons’ in MNC-PIBB lattice. We show root-mean-square displace-

ments vs. time for velocitons with v = 1 and v = 10, in either canonically thermalized background

with temperature T = 1 or in ‘microcanonically thermalized’ background (all background particles

have equal unit velocities but random signs and initial positions). Full lines give the slopes of best

linear fits which support the existence of normal diffusion.
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