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LETTER TO THE EDITOR

Quantum invariants of motion in a generic many-body
system

Toma& Prosen

Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska
19, 1111 Ljubljana, Slovenia

Received 9 June 1998

Abstract. A dynamical Lie algebraic method for the construction of quantum invariants of
motion in non-integrable many-body systems of infinite size is proposed and applied to a simple
but generic toy model, namely an infinite kickeel/ chain of interacting spinless fermions. The
transition from arintegrablevia quasi-integrableirftermediatg to aquantum ergodic (quantum
mixing) regime in parameter space is investigated.dykamical phase transitiobetween an
ergodic andintermediate(neither ergodic nor completely integrable) regime in thermodynamic
limit is proposed. The existence or non-existence of local conservation laws corresponds to the
intermediate or ergodic regime, respectively. The computation of time-correlation functions of
typical observables by means of local conservation laws is found to be fully consistent with
direct calculations on finite systems.

We investigate the existence of local quantum invariants of motion (LQI) (i.e. conservation
laws) in a generic quantum many-body system of locally interacting particles (with short-
range two-body interactions). For sufficiently strong nonlinear interactions between particles
one expects the dynamical properties of quantum mixing and quantum ergodicity to take
place in the thermodynamic limit (TL) (size — oo and density of particleg fixed) [1],

which is in general incompatible with the existence of LQI [2]. Infinite quantum many-body
systems will be calledjuantum mixing[1] if for an arbitrary pair of quantum observables

in Heisenberg representatioa(r) and B(t), time correlationgA(0)B(t)) — (A)(B) decay

to zero ast — oo. Quantum mixing impliegguantum ergodicitywhich in the case of
explicitly time-dependent, e.g. kicked systems, such as the one considered in this letter,
states that for an arbitrary observablg the time averageA equals a unit operator
times the Fock space (‘micro-canonical’) average= (A)1, (A) = lim; o trA/trl.

The properties of quantum ergodicity and mixing are necessary for the derivation of the
laws of normal transport within the linear response theory. In another extreme case of
a completely integrable quantum many-body systems, an infinite number of LQI exist,
and such systems are manifestly non-ergodic and hence non-mixing. Anomalous (ideal,
ballistic) transport properties of completely integrable quantum many-body systems have
recently been discussed [3]. However, the delicate and important issue is the transition from
integrable to quantum ergodic (and quantum mixing) dynamics in TL when a certain non-
integrability parameter, say, is continuously varied (analogous to order-to-chaos transitions
of classical few-body systems). L&k, denote agenericfamily of locally (non-randomly
interacting infinite { = oo) quantum many-body systems, such tiat is completely
integrable forA = 0, and (almost) ergodic and mixing for sufficiently large Based
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on recent results [4] on time evolution in a particular family of finite many-body systems
of increasing sizel., we propose a conjecture on the existencanbérmediate neither
integrable nor ergodic, dynamical regime in TL.

Conjecture.3),. > 0 such thatH, is non-ergodic and non-mixing fai| < A..

It is the purpose of this letter to reconfirm this conjecture by an independent approach
and to show that such an intermediate regime may be characterizgddntum quasi-
integrability: the existence of at least one (or more) LQI, which is a sufficient condition,
using a relation proposed by Mazur [5] and Suzuki [6], to prevent time correlations of
generic observables to decay to zero. We expect that the validity of our conjecture can
improve the general understanding of statistical dynamics, and in particular the transport
properties of generic quantum many-body systems.

In [4] a novel family of simple but generic many-body systems of locally interacting
particles has been introduced smoothly interpolating between integrable and ergodic regime,
namely akicked t—V mode[KtV) of spinless fermions with periodically switched nearest
neighbour interaction on an infinite chain with a time-dependent Hamiltonian

H(t)= Y [=3t(clejya+he) +8,(0)Viyn . (1)

j=—0

c;,cj,nj = c;cj are fermionic creation, annihilation and number operators, respectively,

andés,(t) = Y o 8(t —m — %) is a periodics-function of period 1 with kicks, for
convenience, occurring at half-integer values of time. The time-dependent Hamiltonian (1)
can be written agd (r) = t H1 + 6,(t)V Hp where the dimensionless kinetic enery and

the kick potentialHy may be rewritten in terms of independent séiwariables(oji, o?),
aji = (0] + ia]?)/\/i, on sitesj, via the Wigner—Jordan transformation,

1 +5- -+t _1 z,.Z
Hy =7 Z("j 0j41 10 0541) Ho = 3 ZUJ Oj11
j j

and hence the KtV Hamiltonian (1) may be rewritten as a kicked Heisenkef@
chain. Symmetric time evolution of a KtV system for one period is given by an
explicit unitary quantum many-body mamg (= 1), U = fexp(—ifoldr H(t)) =
exp(—it H1/2) exp(—iV Hp) exp(—it H1/2). Note thatV is a cyclic parameter of periodr2
and the dynamics is essentially invariant w.r.t. transformatiors —r andV — —V, so
we consider only the half-strip of parametérsV) € [0, co) x [0, 7). The KtV model is
completely integrable for = 0 (Ising model), or¥ =0 (mod 27) (free fermion model),
ort,V — 0 and:/V finite (XXZ model).

Let us consider the Heisenberg representation of quantum dynamics and write a map
over the algebral of quantum observables(r) for time evolution over one period,

Usg: An) > An+1) = UTAm)U
explicitly as
Uad = exp(%adHl) exp(iVadHo) exp(%adHl)

where ad is the usual adjoint map on the Lie algelty@adA : B — [A, B] = AB — BA.
Infinite-dimensional Lie algebrél of local quantum observables constitutedibert space
equipped with thénvariant bilinear form

.1 )
(AIB) = lim = tr, A'B 2
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which is a scalar product invariant under the adjoint map a# — [A, B], ((adA")B|C) =
(B|(adA)C). The trace tr refers to a finite chain of finite (though increasing) lendth
We should note that thiocality of an observabled (in a weak sense) is defined here to
be equivalent to its normalizabilityA|A) < oo in the metric (2). For example, spatially
homogeneous observables of the special f(ermZ, aj_; o;.[c, are local if and only if the
sequencey is in £y, i.e. |¢|?> < C/(|I| + 1)# for someC > 0 andg > 1. Our aim is to
check the existence of LQI which are the normalizable fixed paintsf the Heisenberg
map Uag

UsaA = A. ®)

However, we do not suggest to solve equation (3) in the full algebrevhich is a
highly prohibitive task. Instead, we construct the simplest invariant infinitely dimensional
subalgebra ofi{, namely the minimal invariant Lie algebra (MILAY, which is (by
construction) invariant to motions generated by the kinetic or the potential part of the
Hamiltonian and hence it is also invariant lfgd. Having the two generatorg{y, and Hi,
spanning two-dimensional subspace= {« Hy + BH1}, we construct the basis of MILA

S = |2 ,(ack)"s ordered by the order of locality as follows. We assign an observable
Flp,b to anordered pair of integers(p, b), order p, andcodeb, 0 < b < 2P with p binary
digits b,, b = Zf;é b,2", namely

H,, = (adHy, ,)(@dHj, ,) . .. (adHy,) Hy,.

p—1

Since not all observableﬁp,b up to a given maximal ordeqg, p < ¢, are linearly
independent we perform Gram—-Schmit orthogonalization w.r.t. the scalar product (2)

Gyo = | GoeV(GoelGoo) Goc#0
0

Gy.=0 )
. B (p,b)<(q,0) .
Gq,(' = Hq,c - Z Gp.b(Gp,b|Hq,c)'
(p,b)

The non-zero local observables, . form the orthonormal basis of MILA. Note that
observabless, . are local operators of order. they have been represented as expansions

Gq,c = Z g;oi‘l e Zsosl...s,, (5)

S(),Sl,...X

in terms of spatially homogeneous finite products of field operators

S'0 51
Zsoss.. Sq = 0; 0jy1- J+q

j=—00

wheres; € {0, +, —, z} and oj 1. The number of non-zero terms in expansion (5)
convenient orthonormal Euclidean baS|s w.r.t. (2) of the Hilbert sgaodé local spatially
homogeneous observables. Let us now consider truncated linear subspaces of MILA,
S, = Ul_,(ak)"s, with dimensionsd, = dim&,, linearly spanned by observablég, .

up to maximal ordep, g < p. LetH, ., « =0, 1, denote real and symmetric (Hermitian in
general) matrices of linar maps Hgl on G, with images orthogonally projected back@,.

It follows from the construction that they have (generally) a block-banded structure where
the blocks correspond to observables with fixed ogtemamely (G, .|adH,|G ) # 0

only if |¢ —¢q'| = 1.
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Our aim is to solve equation (3) numerically in truncated subspaces of M#,Aand
check whether the procedure convergespasicreases. This is quite feasible since the
dimensionsd, = dim&,, increase much less rapidly than, say, the dimensions of truncated
subspaces of a huge Lie algelssaof homogeneous observables, spannedfy;,. In the
case of the KtV model the former increase approximately/,as- 1.68”~1 (see table 2)
while the latter goes as-4”*1. The truncated adjoint map${, ., have non-trivial null
spaceN, , = {A € &,,[Hy, A] € 6,41 — 6,}, with dimensions, , = dim,, , which
increase approximately with the same exponerit68’. By means of extensive computer
algebra we managed to go as highjas- 14. An important observation was that a matrix

1—expi3rH, 1) expiVH, o) expiztH, 1)

possesses a high-dimensional null spaig(r, V) whose dimension is, for odg,
independentof parameterst, V and equal to the dimension of nullspace &f, 1,
dimMy_1 = dy-_11. Note also that for an odd order of truncatign = 2/ — 1, the
elements of null spac&l € M,(t, V) are spanned by combinations ofld powers of
generators, i.e(A|Gy,.) = 0, which are due to the time-symmetric construction of an
evolution operatol?ad. However, we are seeking for LQ1 € &, which are normalizable,
i.e. therelative normin the subspace of local operators of fixed orger defined as
Ny(A) =), |(A|Gq,c)|2, should be a rapidly decreasing function of the orgersince
(AlA) = 220:1 N,(A) < oo. Only the elements o91,(z, V) which are within certain
numerical accuracy independent of the order of truncapioare candidates for LQI. To
find them we minimize a quadratic form, the relative norm at truncation asjén), i.e.
we diagonalize the operatd¥, = Y. G, . ® G, in the subspacél,(z, V). In figure 1
we plot the relative normiv, (4,,) of the first three eigenvectors,, of Np with p = 13
corresponding to the smallest eigenvalues of the quadratic /(,,) against the (odd)
orderg € {1, 3, ..., p}. We give a mesh of plots for various values of the parametérs
Note thatNy(A,,) = 0 due to symmetry. In a certain region of parameter spatewe
have found a good agreement wiRkponential

NZl—l(Am) X eXp(_Sml) (6)

with a positive exponent, (¢, V) for the first observable: = 1, and in a smaller subregion
of parameter space even for the second observabte 2, with a smaller exponent,.
Positivity of s,, as determined from exponential fit (6) for 2 1= 3,5... p — 2 has been
used as a numerical criterion of convergence (locality} gf By making a comparison with
results for smaller truncation ordes,= 11, we have checked that the converged observables
are (almost) independent on the variation of the truncation gsddtor the rest of the null
spaceN,(t, V), m > 2, we found a roughly uniform distributioWy_1(A4,,) ~ 1 so these
observables cannot convergeas> oo. We conclude that this is evidence for the existence
of one or two LQI in certain region in the parameter space, whete.(V) ~ 1.5. Outside
this region, all exponents, (¢, V) are zero and none of the eigenvectdrs converges to
a LQI which is consistent with the property of quantum ergodicity. In figure 2 we show
a phase diagram of an exponents, V) of LQI A1(z, V). In table 1 we give explicitly
the first few coefficientsf, ., of an expansiom = 3, , f,..G, . of the one LQI for
t =V =1, and of the two LQI for = 0.2, V = 17.

Further, we use a theorem of Mazur [5] generalized by Suzuki [6] (MS) to compute
canonical averagésof time-averaged correlation functions of certain observables. We

1 Of course, at present we cannot completely exclude the possibility that such expansions are generically divergent
asymptotic series.
1 Our example corresponds to infinite temperature since we use a simple trace measure (2).
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13579 13 q
V=0. 4 V=1.0 V=1.6 V=2.2 V=2.8

Figure 1. The logarithmic relative norm of the first three candidatgs m = 1, 2, 3 for LQI,

log;9 Ny (An), is plotted against (odd) ordgr= 2/ — 1, for a square mesh of parameterand
V. The order of truncation ip = 13. Full curves:m = 1, broken curvesm = 2, and dotted
curves:m = 3.

consider dimensionless kinetic enerfly= H,, where(T) = (1|T) = 1, with averaged
time correlator

1 )
D= Nlinoo N ;}([T(O) —(TYIT () — (T)]) = (T|T) — (T)?

whereT = limy_ . (1/N) Z,’,V:O T (n) is a time average of observalile The MS equation
expressed in terms of a sum over all LQI

D= " [(AnlT)P/(AnlA). @

In the case of complete integrability there aménitely many LQI, in the case of quantum
ergodicity there ar@moneand the MS correlatoD is zero, while in intermediate regime the
sum (7) (for KtV) has one or two non-zero terms. The reader should observe that, according
to equation (7), the existence or non-existence of LQI having non-zero overlap with certain



L650

Letter to the Editor

10

on & @2

RERRRY
R
R

X

SR
“s:&:\\
N

N
X

N
O
SRR
R
X
&R

%

SRR
O\

R

R
SR
R

X
O
§s

X

N
R
Qx
R
KR
SRR
sé&
R
N

XX

R
&

X

S
X
X
R
N
3
oS
X
X
X

0,~'
5 2%
<

o
Vi
%5
K%

%Y

55

%

RS
SRS
R

O
R
s\ N
SRS
R
08

N
3

&

™

St

S ™
3

X
N
R

=
N
Q
‘s‘:
§ Y
R

N
S
$s‘¢
N

ﬂ‘gﬂé
R S
L
R
\\\_,s
R
R
XX

%
-

%

R

N
R
‘Q

OS
QX
B
O
SRS

SIS K

0

R

s
A
OO
~§~
e N

SRR
“
3
S

X
S

S
R

X
X
&

\

XX
X
N
QX
0N
X

W
N
3
X
N
R
R

55
R

,A‘,..,.
R
S8
R
R
N
R

X
R
X

\
R
N
o
N
R

N

“:
O
z“‘

55

(S5

N
X

S
=2

K
\&

Figure 2. The largest inverse order-localization lengttfor the first numerical LQU; (p = 13)
versus parameters V.

Table 1. Coefficients of expansion of the two LQI (columns 2, 3) foe 0.2, V = 1 and of the
single LQI (column 4) for = V =1 in terms of basis5, . (column 1,c is a binary code) up

to sixth order. Truncation order i = 13. Note that all the digits shown (except possibly the

last one) are the same for truncationpat 11. Other obsevableS, ., ¢ =1, 3,5, are zero by
construction (4).

Term A1(t =0.2) At=02 A1t=1
G1,0 —0.9652693 —0.18626 -0.61162
G11 —0.2609845 0.65767 —0.78843
G3,001 0.0116246 —0.69908 0.04195
G3101 0.0026499 -0.02756 0.049 28
Gso01001 2.487x 1074 0.20008 0.00507
Gso1101  4.200 % 107> 0.00337 0.004 50
Gsai1001  4.533x107°  0.00865 0.004 87
Gs 11101 9.884 % 10 0.00056 0.00555

Table 2. Dimensions of truncated MILAS ,, and of nullspaces aoff, ., for different orders of

truncationp.

P 2 3 4 5 6 7 8 9 10 11 12 13 14
dp 3 5 7 11 16 26 41 67 108 179 294 495 832
dpo 1 2 3 5 6 10 13 23 34 61 92 163 258
dp1 1 2 1 5 2 10 7 21 22 51 66 137 202

dynamical observabl& corresponds to the non-ergodicity or ergodicityZafrespectively.

However, analysis based solely on LQI cannot give us any further information on time-
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Figure 3. MS correlator (7)D (p = 13) versus parametersV.

correlation functions and the stronger property of quantum mixing [1, 4, 7]. In figure 3
we show a phase diagram of the kinetic time-correldoas determined from LQI (7).
Note a sharp (phase) transition between ergodic dynamics (disordered phase) and
intermediate dynamics (ordered phaBe> 0) which may also be characterized by the
maximal inverseorder-localization lengths; (figure 2) which linearly decreases to zero
when approaching the critical curvgV).

We have compared the above results on infinite KtV chains with direct calculations on
finite chains ofL sites with periodic boundary conditions, 1 = ¢;, which have a discrete
guasi-energy spectrum), and eigenstatela), U|n) = exp(—in,)|n). For a finite system of
size L, a time-correlator reads

2L 1 2
Dy=2"%" (Z<”'T'”> - <T>) : ®)
n=1

However, D; need not necessarily converge to the proper time correlator of an infinite
systemL = oo, since the time-limitt — oo (implicit in (8)) is taken prior to the size-limit
L — oo, whereas in general the two limits do not commute [1]. Nevertheless the behaviour
of D; for L = 16 shown in figure 4 as a function of parameter¥ is very similar to the
MS correlatorD of an infinite system (7) shown in figure 3. Agreement is even quantitative,
except in the region of the transition between dynamical phases (figure 5).

Note that the KtV mapUsq is invariant under the parity operatioA : ¢; — c_;
and MILA & may exhaust only the positive parity class of observableBA = A.
Unfortunately, theparticle current J = i(Zj c}cﬁl — h.c.), which, interestingly, gives
rise to ideal (ballistic) transport in intermediate [4] (integrable [2, 3]) regime, has a

T We have also tried to search for LQI in the entire (huge) algebra of homogeneus obsesyallescated at
orderp = 6), i.e. we have numerically solved equation (3) for the matrix of the Bigpn the basis of observables
Zs,...s,» and we found roughly identical (and no more) numerical LQI as in MILA, althogglt $).
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Figure 5. The comparison between MS correlator (F)of infinite KtV chain (heavy full curve)
and finite-size correlator (8, for L = 16 (dotted curve) and linearly extrapolated {d.1= 0

from data forL = 16 andL = 12 (broken curve) versus parameterand for fixed parameter

V = 1. Medium full curve and light full curve denote separate contributions of the first and
second LQI to MS correlatob (7), respectively.

negative parityPJ = —J, and hence zero overlap with the above LQI of MILA,
(AnlJ) = (PA,|PJ) = —(An|J) = 0. However, similar results have been found recently
for the negative parity class of observables as well [7].

The total occupation numbe¥f = Zj nj = % Zj (o +1), is a trivial invariant of motion
since it has zero overlap with dynamical observahiag&) = (N|J) = 0. One may either
consider observables over the Fock subspace of states with a fixed gensitV) € [0, 1]
(which is an additional external parameter), or as we do here using a full trace average (2),
consider the entire Fock space, which is in TL equivalent to a half-filled Iawiee,%.

We have found strong evidence for the existence of non-trivial LQI, in a simple
but generic non-integrable quantum many-body system in TL, namely a KtV model [4].
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The algebraic method, which should be applicable to other non-integrable quantum many-
body systems, is based on the (computerized) construction of minimal invariant infinitely
dimensional Lie algebra, MILA, generated by the essential parts of the Hamiltonian (in our
case, by kinetic energy and kick potential). LQI are found numerically as fixed points of the
adjoint map of the evolution operator (or of the Hamiltonian if system was autonomous) in
MILA. The existence of LQI is found to be fully consistent with deviations from quantum
ergodicity characterized by non-vanishing averaged time-autocorrelaflon$ a typical
observable; here we use the kinetic ener@lyis a suitable order parameter describing the
phase transition from the quasi-integrable (intermediate) regine-(0) to the quantum
ergodic regime D = 0).

Numerical results on quantum transport in a different model, namely a non-integrable
extended Hubbard chain, have recently been reported [8] which are in agreement with the
above conjecture.

Discussions with Professor P Presak and the financial support by the Ministry of Science
and Technology of the Republic of Slovenia are gratefully acknowledged.
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