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Using quantization in the Fock space of operators, we compute the nonequilibrium steady state in an

open Heisenberg XY spin 1=2 chain of a finite but large size coupled to Markovian baths at its ends.

Numerical and theoretical evidence is given for a far-from-equilibrium quantum phase transition with the

spontaneous emergence of long-range order in spin-spin correlation functions, characterized by a

transition from saturation to linear growth with the size of the entanglement entropy in operator space.
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The nonperturbative physics of many-body open quan-
tum systems far from equilibrium is largely an unexplored
field. In one-dimensional locally interacting quantum sys-
tems, equilibrium phase transitions—quantum phase tran-
sitions (QPTs)—can occur at zero temperature only and
are by now well understood [1]. QPTs are typically char-
acterized by vanishing of the Hamiltonian’s spectral gap in
the thermodynamic limit at the critical point and (logarith-
mic) enhancement of the entanglement entropy and other
measures of quantum correlations in the ground state [2].
Much less is known about the physics of QPTs out of
equilibrium, studies of which have been usually limited
to near-equilibrium regimes or using involved and approxi-
mate analytical techniques (e.g., [3,4]).

There exist two general theoretical approaches to a
description of nonequilibrium open quantum systems:
namely, the nonequilibrium Green’s function method [5]
and the quantum master equation [6,7]. In this Letter, we
adopt the latter and present a quasiexactly solvable ex-
ample of an open Heisenberg XY spin 1=2 chain exhibiting
a novel type of phase transition far from equilibrium,
characterized by a sudden appearance of long-range mag-
netic order in the nonequilibrium steady state (NESS) as
the magnetic field is reduced, and the transition from
saturation to linear growth with the size of the operator
space entanglement entropy (OSEE) of NESS.

The Hamiltonian of the quantum XY chain reads
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where �x;y;z
m , m ¼ 1; . . . ; n, are Pauli operators acting on a

string of n spins. We may assume that parameters �
(anisotropy) and h (magnetic field) are non-negative. It is
known that XY model (1) exhibits (equilibrium) critical
behavior in the thermodynamic limit n ! 1 along the
lines �¼ 0, h � 1, and h ¼ 1. Here we consider an open
XY chain whose density matrix evolution �ðtÞ is governed
by the Lindblad master equation [6] (we set @ ¼ 1)
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and study a phase transition in NESS. The simplest non-
trivial bath (Lindblad) operators acting only on the first and
the last spin are chosen (M ¼ 4):
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where ��
m ¼ ð�x

m � i�y
mÞ=2 [8]. For h � 1, the ratios

��
2=�

�
1 ¼ expð�2h=T�Þ are simply related to canonical

temperatures of the end spins T�, � ¼ L; R.
Note that Lindblad equation (2) can be rigorously de-

rived within the so-called Markov approximation [7],
which is justified for macroscopic baths with fast internal
relaxation times. As shown in Ref. [9], Eq. (2) with (1) and
(3) can be solved exactly in terms of normal master modes
(NMMs), which are obtained from diagonalization of 4n�
4n matrix A written in terms of 4� 4 blocks

Al;m ¼ �l;mð�2hR0 þ �l;1BL þ �l;nBRÞ
þ �lþ1;mR� � �l�1;mR

T
�; l; m ¼ 1; . . . ; n; (4)

where R� ¼ 12 � ði�y � ��xÞ=2 and B� ¼ � 1
2 �ð��
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1 Þð�z þ i�xÞ � �y.

Following Ref. [9], the key concept is 4n-dimensional
Fock space of operators K spanned by an orthonormal
basis P�1;...;�2n

:¼ w�1

1 . . .w�2n

2n , �j 2 f0; 1g, where
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anticommuting operators fwj; wkg ¼ 2�j;k. We introduce

canonical adjoint Fermi maps overK, defined as ĉjjP�i ¼
��j;1jwjP�i, so the quantum Liouvillean (2) becomes bi-

linear L̂ ¼ â 	Aâþ const1 in Hermitian maps â2j�1 ¼
ð1= ffiffiffi

2
p Þðĉj þ ĉyj Þ and â2j ¼ ði= ffiffiffi

2
p Þðĉj � ĉyj Þ, satisfying

fâp; âqg ¼ �p;q. The eigenvalues of 4n� 4n antisymmet-

ric matrix A (4) called rapidities come in pairs
�1;��1; . . . ; �2n;��2n, Re�j 
 0. The corresponding

eigenvectors vp, p ¼ 1; . . . ; 4n, defined by Av2j�1¼
�jv2j�1 and Av2j¼��jv2j, can always be normalized

as v2j�1 	v2j¼1 and vp 	vq¼0 otherwise. Writing NMM

maps as b̂j ¼ v2j�1 	 â and b̂0j ¼ v2j 	 â, in general b̂0j �
b̂yj , obeying fb̂j; b̂kg ¼ fb̂0j; b̂0kg ¼ 0 and fb̂j; b̂0kg ¼ �jk,

the Liouvillean (2) takes the normal form L̂ ¼
�2

P
2n
j¼1 �jb̂

0
jb̂j. Thus a complete set of 4n eigenvalues
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of L̂ (real parts being the relaxation rates) can be con-
structed as�2

P
j	j�j, where 	j2f0;1g are eigenvalues of

2n mutually commuting, non-Hermitian number operators

b̂0jb̂j.
Let jnessi be the element of K corresponding to the

stationary solution �ness (NESS) of Eq. (2), i.e., zero ei-

genvalue of L̂, 	j � 0. The main result of Ref. [9]

(Theorem 3) takes into account the fact that jnessi is a

right vacuum of L̂—the left vacuum being the trivial
identity state j1i—and asserts that any quadratic physical
observable can be explicitly computed in terms of eigen-
vectors vp, trðwjwk�nessÞ ¼ �j;k þ h1jĉjĉkjnessi,

h1jĉjĉkjnessi ¼ 1

2

X2n

m¼1

ðv2m;2j�1v2m�1;2k�1 � v2m;2jv2m�1;2k � iv2m;2jv2m�1;2k�1 � iv2m;2j�1v2m�1;2kÞ: (5)

Higher order observables can be computed using the Wick theorem. For example, noting �z
m ¼ �iw2m�1w2m, the spin-

spin correlator which we shall study later reads

Cl;m ¼ trð�z
l�

z
m�nessÞ � trð�z

l�nessÞtrð�z
m�nessÞ

¼ h1jĉ2l�1ĉ2mjnessih1jĉ2lĉ2m�1jnessi � h1jĉ2l�1ĉ2m�1jnessih1jĉ2lĉ2mjnessi if l � m:
(6)

As proven in Ref. [9], the NESS is unique iff the rapidity
spectrum is nondegenerate, �j � 0 for all j, and (almost)
any initial state approaches NESS asymptotically exponen-
tially with the rate � ¼ 2minj Re�j if �> 0.

Let us now proceed to detailed analytical and numerical
investigation of the structure of the NESS in the XY chain.
The bulk spectrum of rapidities for n ! 1 is insensitive to
the coupling to the baths and is given by � ¼ �i
ð�Þ,
� 2 ð��;��, where 
ð�Þ ¼ ½ðcos�� hÞ2 þ �2sin2��1=2
is the quasiparticle dispersion relation in an infinite XY
chain (see, e.g., [10]). For a finite chain (1) with the bath
coupling on the edges (3), we find that the bulk (nearly
continuous) rapidity spectrum gains a small never-
vanishing real part Re�ð�Þ ¼ Oðn�1Þ. At the spectral
edges ��, ��jn¼1 ¼ �i
ð��Þ, with �� defined by
d
ð��Þ=d� ¼ 0, the gap is actually much smaller Re�� ¼
Oðn�3Þ (analytical result, generalizing [9]). Thus, the
asymptotic relaxation time to NESS 1=� ¼ Oðn3Þ di-
verges in the thermodynamic limit n ! 1.

We note, however, that the structure of the quasiparticle
spectrum 
ð�Þ qualitatively changes as the magnetic field
crosses a critical value

hcð�Þ ¼ 1� �2; (7)

namely, for h < hc the minimal quasiparticle energy exists
for a nontrivial value of quasimomentum �� ¼
arccos½h=hcð�Þ� yielding a new, nontrivial band edge ��,
whereas for h > hc the band edges can exist only at points
�� ¼ 0; � (see Fig. 1). Consequently, complex rapidities
of an open XY chain shape up a third condensation point
near the imaginary axis for h < hc which is composed of
NMMs (eigenvectors of A) with quasimomenta near �� �
0; � and has a dramatic effect on the structure of the NESS
as we demonstrate below.

Indeed, as h < hc, we find the emergence of long-range
magnetic correlations (LRMCs) characterized by nonde-
caying structures in the correlation matrix Cl;m (6). The

typical size ‘ of the correlation patches is of the order ‘

1=�� (Fig. 2). For h � hc one finds critical scaling �� �
½2ðhc � hÞ=hc�1=2, which agrees with the data.

In the critical case h ¼ hc [see Fig. 3(a)], one finds
power-law decay of the correlation matrix Cl;m /
jl�mj�4 if neglecting finite size or boundary effects. If
we scale the distance, we find numerically a finite size
scaling n	Cl;m ¼ fðjl�mj=nÞ, where 	 ¼ 4:09 and fðxÞ
is some function describing data for all large n [inset in
Fig. 3(a)]. Critical point h ¼ hc is also characterized by
faster closing of the spectral gap � of Liouvillean; namely,
there we find Re�� ¼ Oðn�5Þ, meaning n2 times longer
relaxation times of generic solutions �ðtÞ of (2).
For h > hc, we have �� ¼ 0 and no LRMC in NESS.

Then one finds an exponential decay of the correlation
matrix Cl;m / expð�jl�mj=
Þ with the localization

length which can be estimated theoretically from a scat-

tering problem defined by the matrix (4): 
�1 ¼
4cosh�1ðh=hcÞ � 4½2ðh� hcÞ=hc�1=2, where the factor 4
reflects the fact that Cl;m is a 4-point function in NMM

amplitudes vp [see Fig. 3(b)].

The above results are summarized in a nonequilibrium
phase diagram of the XY chain (Fig. 4) showing the resid-

ual correlator Cres ¼
Pjl�mj>n=2

l;m Cl;m=
Pjl�mj>n=2

l;m 1 (which

is found to be always negative) in the �-h plane, with the
critical curve hcð�Þ separating the two phases. Note that

β

β

βφ

FIG. 1 (color online). Rapidity spectrum f�jg around the
imaginary axis for n ¼ 640, �L

1 ¼ 0:5, �L
2 ¼ 0:3, �R

1 ¼ 0:5,
�R
2 ¼ 0:1, � ¼ 0:5, and h ¼ 0:3< hc (left, blue curve) and h ¼

0:9> hc (right, red curve), compared to the free XY dispersion

ð�Þ (center), dashed curve indicating the critical case h ¼ hc.
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the other boundary lines � ¼ 0 (XX chain) and h ¼ 0 (XY
with zero field) are not in the LRMC phase.

In analogy to equilibrium QPTs [11,12], we wish to
characterize the nonequilibrium transition in terms of
quantum information theoretic concept, namely, with the
difficulty of classical simulation of �ness which is de-
scribed in terms of the OSEE [13] (or block entropy in
K), i.e., von Neumann entropy SðnÞ ¼ �tr½1;n=2�R̂log2R̂ of

the reduced density matrix of a half-chain R̂ ¼
tr½n=2þ1;n�jnessihnessj. tr½j;k� is a partial trace over the sub-

lattice ½j; k�. Straightforward calculation, combining
Refs. [9,12], results in SðnÞ¼�P

n
j¼1½ð12þ�jÞ �

log2ð12þ�jÞþð12��jÞlog2ð12��jÞ�, where �j are n posi-

tive eigenvalues of an upper-left 2n� 2n [14] block of
4n� 4n Hermitian matrix Dpq ¼ hnessjâpâqjnessi=
hnessjnessi. D can be computed by expressing âp in terms

of NMM maps b̂j and b̂yj (not b̂0j), â ¼ Q�b̂þQb̂y, as
D ¼ Q�TQT , where Tj;k ¼

P
4n
p¼1 v2j�1;pv

�
2k�1;p is a 2n�

2n matrix and Q ¼ VoK12, where K12 designates the
upper-right 2n� 2n quarter of 4n� 4n matrix K ¼
�ðVoj � V�

oÞ�1ðVej � V�
eÞ and ðVeÞp;k ¼ v2k;p, ðVoÞp;k ¼

v2k�1;p are 4n� 2n matrices. (XjY) denotes the vertical

concatenation of two 4n� 2n matrices into a single 4n�
4n matrix.
The resulting behavior of SðnÞ in the NESS of the XY

chain is striking (see Fig. 5): LRMC phase h < hc is
characterized with a linear growth SðnÞ ¼ snþ const,
with some constant s > 0. This has to be contrasted with
a logn growth found for equilibrium critical models [12].
As h approaches hc, the slope s approaches 0 as s / ðhc �
hÞ�, with numerically determined critical exponent � �
0:80, and the fluctuations of SðnÞ around an average linear
growth increase. These fluctuations can be explained by
the sensitive dependence of NESS on boundary conditions
(bath couplings or size changes) due to long-range corre-
lations, evident also in the structures of the correlation
matrices (Fig. 2). Note also an interesting ‘‘quantization
of bipartite entanglement’’ which is observed for very
small hc � h where SðnÞ can take only approximately a
discrete set of values SðnÞ � S0 þ k, k 2 Zþ and which
can be explained by the quasiparticle picture of the NMM.
At and above the critical field h 
 hc, we find saturation
SðnÞ ¼ Oð1Þ and vanishing fluctuations of SðnÞ, since there
the NESS becomes insensitive to boundary conditions due
to fast decay of magnetic correlations. Only there can the
NESS be efficiently simulated, e.g., in terms of matrix
product states [15], by numerical methods such as the
density matrix renormalization group (DMRG) [16].
All of the numerical results presented above have been

obtained for fixed nonequilibrium bath couplings �L
1 ¼

0:5, �L
2 ¼ 0:3, �R

1 ¼ 0:5, and �R
2 ¼ 0:1. However, the re-

sults did not change qualitatively, in particular, the phase
boundary, when we (i) varied the bath couplings ��

� [8],

ξ

FIG. 3 (color online). Spin-spin correlator CðrÞ computed as
an average of Cl;m with fixed r ¼ jl�mj and jlþm� nj �
0:08n. In (a) we plot CðrÞ in the critical case h ¼ hc ¼ 0:75
(� and ��

� are the same as in Fig. 1) for several sizes n ¼ 160,

320, and 640 (indicated), while the dashed line indicates asymp-
totic r�4 decay. The inset shows the scaled correlator n	CðrÞ
versus r=n with 	 ¼ 4:09 for the same data. In (b) we plot
CðrÞ for changing h ¼ 0:7505; 0:751; 0:752; 0:755; 0:76; 0:77>
hc (right-to-left colored curves). The inset shows numerically
determined localization length 
 versus �h ¼ h� hc (points) as
compared to theoretical estimate [see text] (dashed line).

FIG. 2 (color online). Spin-spin correlation matrices (6) for
three different sizes n (columns) and different values of �h ¼
h� hc (rows) surrounding the critical value (7). � and ��

� are

the same as in Fig. 1. The color scale is proportional to logjCl;mj
and ranges from log10�18 (dark blue) to log1 (white).
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(ii) coupled several spins around each end to Lindbladian
baths, or (iii) even set the bath couplings equal �L

� ¼ �R
�.

The latter case (iii) does not represent an equilibrium situ-
ation; i.e., �ness is not a thermal state �T ¼ Z�1�
expð�H=TÞ as the XY chain is not ergodic [10]. For
example, no discontinuity at h ¼ hc appears in the prop-
erties of �T for any T, and correlator CðrÞ decays with
T-dependent rates [10], whereas in the non-LRMC phase
of the NESS decay length 
 is asymptotically insensitive to
bath parameters. Furthermore, thermal states in one dimen-
sion have bounded OSEE in n [17] and related quantities
[18]; hence, the simulation complexity of NESS is quali-
tatively different.

In spite of the demonstrated discontinuity in the spin-
spin correlation function, the local observables such as en-
ergy or spin density in the NESS are numerically found to
be smooth functions of h at hc, so the nonequilibrium tran-
sition appears to be of high or infinite order (similar to the
Kosterlitz-Thouless transition). The LRMC phase could
perhaps be difficult to detect experimentally as the residual

correlation Cres is not larger than a few times 10�4 (Fig. 4)
even in the optimal case (with respect to varying ��

�).

In conclusion, we report on the QPT in the NESS of an
open quantum XY spin chain, whose theoretical and nu-
merical description is formally analogous to equilibrium
QPTs in spin chains at zero temperature inasmuch as the
NESS can formally be treated as a ‘‘ground state’’ of the
quantum Liouvillean. We show that the phase transition is
of mean-field type as the quasiparticle picture gives a
satisfactory theoretical description, in particular, the phase
boundary between long-range and exponentially decaying
magnetic correlations. We demonstrate that the two phases,
respectively, correspond to linearly growing and saturating
entanglement entropy of the NESS in operator space as a
function of the chain length. This behavior is drastically
different than in equilibrium XY chains.
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022103 (2008).

[18] M.M. Wolf et al., Phys. Rev. Lett. 100, 070502 (2008).

FIG. 5 (color online). OSEE SðnÞ (symmetric chain biparti-
tion) for � and ��

� of Fig. 1 and different h � hc ¼ 0:75

(indicated). The best fitting linear growths are indicated with
straight lines. Dashed horizontal lines indicate S0 þ 1 and S0 þ
2, S0 being the saturation value for h ¼ hc. The left inset just
magnifies the scale, while the right inset shows the slope of SðnÞ
growth vs hc � h (log-log), and jhc � hj0:8 (dashed line).

FIG. 4 (color online). Phase diagram �-h showing the residual
correlator �Cres (log scale indicated) for size n ¼ 160 (��

� as in

Fig. 1). The red curve is the critical line (7). Note that Cres is
practically insensitive to increasing n in the LRMC phase
(bright).
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