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We study the full counting statistics for interacting quantum many-body spin systems weakly coupled to
the environment. In the leading order in the system-bath coupling, we derive exact spin current statistics for
a large class of parity symmetric spin-1=2 systems driven by a pair of Markovian baths with local coupling
operators. Interestingly, in this class of systems the leading-order current statistics are universal and do not
depend on details of the Hamiltonian. Furthermore, in the specific case of a symmetrically boundary driven
anisotropic Heisenberg (XXZ) spin-1=2 chain, we explicitly derive the third-order nonlinear corrections to
the current statistics.
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Introduction.—In the past couple of decades substantial
progress has been made in understanding the physics of
nonequlibrium systems [1–5]. These systems, after long
times, evolve to steady states. One of the key aspects, and
one may even say defining properties, of out-of-equilibrium
statistical physics is the existence of macroscopic currents
of charge, particles, heat, etc., which flow through the
system even after the system has reached the nonequili-
brium steady state. Although several methods exist for
studying the average current in the steady state, it is much
more challenging to study fluctuation properties of the
current, which in general depend not only on the (asymp-
totic) steady state of the system, but also on the correlations
at earlier times.
Apart from being challenging, studying the probability

distribution of the current in various systems has attracted a
lot of attention in recent years since it offers much more
insight into the nature of the system studied than merely
the average of the current [6]. Analytical results for
nonequilibrium interacting quantum systems are particu-
larly rare and progress has been made, only very recently,
for some integrable spin chains in the Markovian approxi-
mation for the master equation describing driving of the
system [7–9] and, even then, only the averages of the
currents can be calculated by the methods used. Analytical
results for nonintegrable systems out of equilibrium are
unheard of, even more so for the current statistics. Existing
exact results for current statistics include small systems,
such as quantum dots [10], noninteracting systems, such
as Fermi gas and the XX spin chain [11], and, as of very
recently, classical stochastic processes [12], a Luttinger
liquid conductor [13], and critical systems using conformal
field theory [14].
These results hold only for very specific systems. On the

other hand, in this Letter we find a perturbative (in leading
order of the system-bath coupling) universal law for spin
current statistics, which holds for all nonequilibrium spin-
1=2 systems, provided that they fulfill three requirements:

(i) the coupling between the system and the baths (envi-
ronment) is weak (and Markovian), (ii) and local, and
(iii) the systems fulfill a very weak condition of a parity-
type symmetry (defined later).
The strongest of these requirements, the Markovian

and locality approximations [(i) and (ii)], are justifiable
if the system is weakly coupled to the environment and
the interaction between the system and the environment
is short range (which is, indeed, the case for spin
interactions). Although still very strict (mostly due to
the difficulty of isolating the environment degrees of
freedom from the system degrees of freedom), the first
two requirements are quite physical and experimentally
realizable. For instance, important progress has been
made recently in controlling the Markovianity of the time
evolution of many systems [15–17]. Requirement (iii) is
shown to hold in a wide range of systems, which,
remarkably, include even (frustrated) spin chains with
parity symmetric but possibly long-range and inhomog-
enous interactions. Such systems are more realistic than
the integrable models usually studied (for instance, see
Ref. [18]). In fact, applicable systems even include
multidimensional spin systems, such as spin lattices,
systems studied in the context of coherent transport in
photosynthetic complexes [19], where the action of the
environment is usually taken to act locally, and even other
interacting complex networks with spinlike (or qubit)
degrees of freedom [20]. Our results should therefore be
particularly important for experimental realizations of spin
systems with cold atoms and trapped ions [15–17] and
possibly for quantum information transfer [21] and quan-
tum computing, where weakness of decoherence is crucial.
We also note that the third cumulant of the current has
been measured recently for certain systems [22]. Using our
leading-order (in system-bath coupling) results helps us
to also calculate explicit third-order (nonlinear) system-
specific corrections for the integrable case of the
boundary-driven XXZ spin-1=2 chain.
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A powerful method which we use, first developed within
quantum optics [23], is the method of full-counting
statistics [6,24], based on introducing a counting field
which counts the number of times the system has had a
unit of charge or spin pushed in a certain direction. The
counting field allows one to compute all the moments of the
current, which is equivalent to computing the full current
distribution, and gives deep insight into the physical nature
of the system studied.
Full-counting statistics in weakly coupled open spin-1=2

quantum systems.—Let us consider a system of n spins-1=2
described by Pauli operators σ�j ¼ 1

2
ðσxj � iσyjÞ, σzj,

j ¼ 1;…; n acting on a tensor product space ðC2Þ⊗n.
We aim at computing the full spin current statistics in
the limit of weak system-bath coupling when the
Markovian approximation for the system’s density matrix
ρðtÞ is appropriate [25]. The dynamics of the latter is then
dictated by the system’s Hamiltonian H and a set of
Lindblad jump operators Lm, m ¼ 1; 2;…, via the
Lindblad equation

dρðtÞ
dt

¼ −i½H; ρðtÞ� þ ε½D̂jumpρðtÞ þ D̂dissρðtÞ�; (1)

where the nonunitary part of the generator is split, respec-
tively, into the quantum jumps and the dissipation

D̂jumpρ≔
X
μ

LmρL
†
m; D̂dissρ≔

1

2

X
m

fL†
mLm;ρg; (2)

and ε is a parameter describing the strength of the system-
bath coupling, which we will assume to be small enough to
allow for applicability of perturbation theory. We shall
consider the current of magnetizationM ¼ P

n
j¼1 σ

z
j, which

is assumed to be conserved by the Hamiltonian ½H;M� ¼ 0.
We consider the most general form [26] of jump operators
acting locally on a pair of sites only,

Lþ;þ ¼ ffiffiffi
a

p
σþ1 ; Lþ;− ¼

ffiffiffi
b

p
σ−1 ;

L−;þ ¼ ffiffiffi
c

p
σþn ; L−;− ¼

ffiffiffi
d

p
σ−n ; (3)

changing magnetization by �1, ½M;Lμ;ν� ¼ νLμ;ν, for μ,
ν ∈ f�g, where a, b, c, d represent incoherent transition
rates for the two coupled spins (see Fig. 1). By suitably
adjusting ε, we shall fix aþ bþ cþ d ¼ 2. We argue that
our jump operators represent a general model of transport
between a pair of baths, attached to j ¼ 1 and j ¼ n spins,
provided the bath dynamics are fast compared to the
dynamics generated by H on initial excitations localized
on site 1 or n, which is the condition ensuring ultralocality
of operators Lm (3) in derivation of the master equation
[25]. Let us denote the amount of quantityM transported in
time t from the first bath to the second bath by NðtÞ.
Intuitively, we may see that the Lindblad jump operators

acting on site 1, Lþ;ν, will either drive spin from the first
bath into the system (Lþ;þ) or from the system into the bath
(Lþ;−), and similarly for L−;ν acting on site n. Hence, Lμ;ν
with positive μν ¼ þ will drive the current in the positive
direction and those with negative μν ¼ − in the negative
direction. In fact, in the open system’s framework, NðtÞ is
exactly the sum of the times the Lindblad operators acting
on site 1, Lþ;ν inject spin from the first bath to the system
minus the number of times they inject spin out of the
system and back into the first bath in time t, and conversely
for site n. In the steady state (long time) limit, the currents
calculated at sites 1 and site n are the same.
In this limit, I ¼ limt→∞ð1=2tÞNðtÞ then equals the

current of M, and the factor 2 in the denominator comes
from counting the flow twice, on site 1 and on site n.
The statistics of currents can be asymptotically, for t → ∞,
fully characterized by the growth rates of cumulants of
NðtÞ, which can be elegantly formulated [6,10] in terms
of introducing a counting field χ into the jump super-
operator D̂jump

χ ρ ≔
P

μ;νe
iμνχLμ;νρL

†
μ;ν,

hImic ≔ lim
t→∞

1

2t
h½NðtÞ�mic ¼

∂mλðχÞ
∂ðiχÞm

����
χ→0

: (4)

Here, λðχÞ is a leading eigenvalue (of maximal real part) of
the modified Liouvillian

½−iadH þ εðD̂jump
χ þ D̂dissÞ�ρðχÞ ¼ λðχÞρðχÞ; (5)

with ρðχÞ ≔ limt→∞ρðχ; tÞ the corresponding right eigen-
vector, introducing a superoperator ðadHÞρ≡ ½H; ρ� acting
linearly on the space of operators. Note that λð0Þ ¼ 0 and
ρð0Þ is the nonequlibrium steady state density operator.
This method may be intuitively understood by observing

a reduced density matrix ρNðtÞ, which is ρðtÞ projected to a
subspace of N spin transfers between the two baths in
time t. The trace of this, PNðtÞ ¼ tr ρNðtÞ, is the probability
of N spin transfers in time t. By performing a Fourier
transform (in N) of this reduced density matrix,

a

b

spin 1

d

c

spin n

FIG. 1 (color online). The spin transport model. Exemplar
parity-symmetric system is coupled locally to two spin baths
(represented by boxes), at spin sites 1 and n. The baths act on the
system via jump operators (3) with the corresponding rates (a, b,
c, d). The arrows beneath the jump rates indicate the direction in
which the spin current is being driven.
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ρðχ; tÞ ¼ P
NρNðtÞe−iχN , it may then be shown (by observ-

ing the action of the generator of the time evolution) that the
Lindblad master equation, Eq. (1), has the jump super-
operator modified, D̂jump

χ ρ ≔
P

μ;νe
iμνχLμ;νρL

†
μ;ν, so that it

depends on the counting field χ and in which direction (μν) a
specific Lindblad operatorLμ;ν drives the flow. Furthermore,
if we normalize tr ρðχ; t ¼ 0Þ ¼ 1, the largest eigenvalue of
the Liouvillian, λðχÞ, corresponds to the cumulant generating
function for the current distribution in the long time limit
[6,24], since for large t, ρðχ; tÞ ≈ eλðχÞtρðχ; t ¼ 0Þ.
Let us turn to our problem and consider formal pertur-

bation expansion of ρðχÞ and λðχÞ in the system-bath
coupling strength ε, namely,

ρðχÞ ¼
X∞
p¼0

ðiεÞpρðpÞ; λðχÞ ¼
X∞
p¼1

ε2p−1λð2p−1Þ; (6)

where all even orders of λ vanish due to the fact that the
current and all its cummulants should be odd functions of ε.
We may also normalize ρ so that tr ρðpÞ ¼ δp;0. We will
assume that the conditions of the Evans theorem hold (or
the Liouvillian can be symmetry reduced [27]) so the fixed
point ρðχÞ is unique. The first two orders satisfy (defining
D̂χ ≔ D̂jump

χ þ D̂diss)

ðadHÞρð0Þ ¼ 0; (7)

ðadHÞρð1Þ þ D̂χρ
ð0Þ ¼ λð1Þρð0Þ: (8)

The zeroth order solution to (7) can be formally written
in terms of a full set of linearly independent operators Qk

that commute with H, ½H;Qk� ¼ 0, ρð0Þ ¼ P
kαkQk=

ðtrPkαkQkÞ. We may now make two general observations.
(i) Taking the trace of (8), we find

λð1Þ ¼ tr D̂χρ
ð0Þ: (9)

(ii) Furthermore, to determine ρð0Þ it is sufficient to require
that ðD̂χ − λð1ÞÞρð0Þ is in the image space of the commu-
tator, Im adH, without actually solving Eq. (8). We shall
demonstrate below that this results in a very weak require-
ment for the Hamiltonian in the case of two-gate coupling
to the environment via local spin-flip jump operators.

Leading order for spin-1=2 systems with two gates to the
environment.—Guided by Ref. [28] we make an ansatz for
the zeroth order in terms of a magnetized infinite temper-
ature equilibrium state,

ρð0Þ ¼ 2−n
Yn
j¼1

ð1þ νσzjÞ; (10)

with free parameter νðχÞ. Furthermore, we observe that
since ρð0Þ can be written in the form expðθMÞ,
½H; ðρð0ÞÞ−1� ¼ 0, so multiplying by ðρð0ÞÞ−1 conserves

the image space of adH; hence, Eq. (8) has a solution if
and only if ðρð0ÞÞ−1ðD̂χ − λð1ÞÞρð0Þ ∈ Im adH. Using
Eqs. (9) and (10), the expression ðρð0ÞÞ−1ðD̂χ − λð1ÞÞρð0Þ
is found to be a general combination of four terms, 1, σz1,
σzn, and σz1σ

z
n. Requiring cancellation of the first and the

last term results in two equations, determining uniquely λð1Þ
and ν:

λð1Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðe−2iχ − 1Þadþ ðe2iχ − 1Þbc

q
− 2;

ν ¼ λð1Þ − ðe−iχ − 1Þðaþ dÞ þ ðeiχ − 1Þðbþ cÞ
ðe−iχ − 1Þða − dÞ þ ðeiχ − 1Þðb − cÞ ; (11)

while the remainder is a simple algebraic condition

−σz1 þ σzn ∈ Im adH; (12)

which, if fulfilled, validates the initial simple ansatz (10).
We may now see that a paritylike symmetry is sufficient

to ensure condition (12), requiring the action of the
dissipator on the equilibrium density operator of the system
to be orthogonal—in the Hilbert-Schmidt sense—to all
operators which commute with the Hamiltonian (i.e., it
must be in the image of adH). Namely, it is easy to
show that (12) holds generally for parity-symmetric
Hamiltonians, i.e., if there exists an operator P, with
P2 ¼ 1, such that PH ¼ HP, and satisfying at least one
of the following properties,

Pσz1 ¼ σznP or Pσz1;n ¼ −σz1;nP; (13)

with an additional weak requirement, namely, that also all
conserved operators Qk, e.g., as written in terms of eigen-
space projectors, are parity symmetric, ½P;Qk� ¼ 0 [29].
Proof: Because of Hermiticity of adH with respect to
the Hilbert-Schmidt innerproduct, the condition (12) is
equivalent to trð−σz1 þ σznÞQk ¼ 0, ∀Qk. Indeed, trð−σz1þ
σznÞQk ¼ trPð−σz1 þ σznÞQkP ¼ −trð−σz1 þ σznÞQk.
We then apply Eq. (11) to calculate all the cumulants

for this wide class of spin systems via Eq. (4). For instance,
the expectation value of the spin current is hIð1Þic ¼
ðε=2Þðad − bcÞ. Closed-form expressions for higher cumu-
lants were obtained in the same way, but are lengthy and
therefore we will not write them. However, they signifi-
cantly simplify if we consider a symmetric driving instead
of a general one (3),

a ¼ d ¼ ð1þ μÞ=2; b ¼ c ¼ ð1 − μÞ=2; (14)

where the driving strength μ controls the nonequilibrium
forcing due to unequal average spin polarizations of the
two baths. Then we have ν ¼ 0, ρð0Þ ¼ 2−n1, so
λð1Þ ¼ −1þ cos χ − iμ sin χ, and hI2kþ1

ð1Þ i
c
¼ εμ=2 for

odd cumulants and hI2kð1Þic ¼ ε=2 for even cumulants.
Extreme driving μ ¼ 1 hence results in the Poisson dis-
tribution hImic ¼ const.

PRL 112, 067201 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

14 FEBRUARY 2014

067201-3



Our results, stating that current statistics may not depend
on details of H, hold generally only below a certain
perturbative border, ε < ε�, where clearly [see (5)]
ε� ∝ jjHjj, so they cannot be applied in the trivial case
when one switches off the coherent interactions H → 0.
Explicit third-order solution for the XXZ chain.—The

preceding discussion for the leading-order correction holds
for all spin systems satisfying the parity-symmetry require-
ment. We may also find an explicit third-order solution of
the XXZ spin chain with Hamiltonian

HXXZ ¼
Xn−1
j¼1

ð2σþj σ−jþ1 þ 2σ−j σþjþ1 þ Δσzjσ
z
jþ1Þ (15)

and symmetric driving (14), where we are able to find the
third-order correction to the current cumulants by general-
izing the solution for the steady state given in Ref. [7]. P is
realized as a permutation of spins j↔nþ 1 − j or asQ

n
j¼1 σ

x
j [30]. Solving Eq. (8), we find that the first order

is now the same as without the counting field [7], 2nρð1Þ ¼
cð1ÞðZ − Z†Þ [7], but multiplied by a different constant,
cð1Þ ¼ ð−μ − μ cos χ þ i sin χÞ=2. Z is the pseudolocal
almost-conserved operator given in terms of a matrix
product in Ref. [7].
Let us now turn to the second-order equation reading

ðadHÞρð2Þ þ D̂χρ
ð1Þ ¼ λð1Þρð1Þ: (16)

We make an ansatz for the second-order solution, similar in
form to the one for χ ¼ 0 [7], namely,

2nρð2Þ ¼ cð1Þcð2Þ1 ðZ − Z†Þ2 − cð1Þcð2Þ2 ½Z; Z†�: (17)

The dissipator acts only on the two boundary sites. Thus,
we need to check the action of the dissipator on these sites
only. We use ½H; ½Z; Z†�� ¼ ðD̂þ þ D̂−ÞðZ − Z†Þ and
½H; ðZ − Z†Þ2� ¼ −ðD̂þ − D̂−ÞðZ − Z†Þ, where, D̂�ρ ≔
2σ�1 ρσ

∓
1 − fσ∓1 σ�1 ; ρg þ 2σ∓n ρσ�n − fσ�n σ∓n ; ρg; as was

shown in Ref. [7], to rewrite Eq. (16) as ½cð2Þ1 ðD̂þ − D̂−Þþ
cð2Þ2 ðD̂þ þ D̂−Þ þ D̂χ − λð1Þ�ðZ − Z†Þ ¼ 0, which actually
gives us six independent equations, only two of which turn
out not to be redundant, and are solved by cð2Þ1 ¼ 1

4
ð−μ −

μ cos χ þ i sin χÞ and cð2Þ2 ¼ 1
2
ðcos χ − iμ sin χÞ. The

second-order solution [of Eq. (16)] can be modified,
however, by the addition of arbitrary conserved quantities,
Qk, where ½H;Qk� ¼ 0, namely, ρð2Þ0 ¼ ρð2Þ þP

kαkQk.
As we have checked by means of computer algebra, the
existence of a solution to the third-order equation,

ðadHÞρð3Þ þ D̂χρ
ð2Þ0 ¼ λð3Þρð0Þ þ λð1Þρð2Þ0 ; (18)

in fact requires nontrivial coefficients αk. By taking the
trace of this equation, we find that the third-order correction
to the current fluctuations reads

λð3Þ ¼ trðD̂χρ
ð2Þ0 − λð1Þρð2Þ0 Þ: (19)

We can calculate λð3Þ despite not knowing the full second-
order solution by observing several properties. First, only
terms of the formO ∈ f1; ð−σz1 þ σznÞg in ρð2Þ0 can possibly
contribute to (19). Second, because trðD̂χ1Þ ¼ λð1Þtr 1, the
contribution from 1 cancels out. Finally, since ð−σz1 þ σznÞ
is obviously in the image of the adjoint of the Hamiltonian
[due to the existence of a solution to (8)], the second-order
solution cannot be modified by this term. We therefore have

λð3Þ ¼ ð−μþ μ cos χ þ i sin χÞtr½ð−σz1 þ σznÞρð2Þ�; (20)

which can be interpreted as, up to a constant, the drop in
magnetization from one end of the chain to the other. The
third-order correction to the current fluctuations can now be
computed similarly as before, yielding, separately for even
or odd m,

hI2kð3Þic ¼ −ε3fðnÞ ð9
k − 1Þð3μ2 þ 1Þ
128ð2kÞ! ;

hI2kþ1
ð3Þ ic ¼ −ε3fðnÞ μ½9

kþ1 − 1þ 3ð9k − 1Þμ2�
256ð2kþ 1Þ! ; (21)

where fðnÞ ¼ hLjTnjRi − hLjTn−1jRi and T is exactly
the transfer matrix from Ref. [7], acting on auxiliary
Hilbert space with two ground-state vectors jRi and jLi.
This can be evaluated in a closed form for any anisotropyΔ
of the form Δ ¼ cosðπl=mÞ, l, m ∈ Z. For instance,
for Δ ¼ 1, we have fðnÞ ¼ n − 1, and for Δ ¼ 1=2,
fðnÞ ¼ ð1=45Þð−1Þ−n81−n½5ð−8Þn − 6ð−5Þn þ 10�. We
have checked our results numerically using the wave
function Monte Carlo method of quantum trajectories
(see, e.g., the appendix of Ref. [31]) for the symmetrically
driven XXZ spin chain with n ¼ 4, Δ ¼ 0.5, μ ¼ 0.5,
ε ¼ 0.1. The high order of our result allows for precise
computations even at that not-so-small coupling, as shown
in Fig. 2. We have also contrasted our example with a

h�0

h�0.5

�Im
�1��c��Im

�3��c

�Im
�1��c

1 2 3 4
0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

m

�
Im
�

c

FIG. 2 (color online). The first four current cumulants obtained
numerically for the XXZ spin chain and staggered field XXZ spin
model, H ¼ HXXZ þP

n
j¼1 hð�1Þjσzj, with field strength h, for

n ¼ 4, Δ ¼ 0.5, μ ¼ 0.5, ε ¼ 0.1. Dot-dashed (dashed) lines
indicate analytical results up to second (fourth) order in ε.
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numerical simulation for the XXZ spin chain in the
staggered field which breaks the P symmetry (13) and
for which the general results for hImic do not apply.
Discussion.—We have calculated the full current statis-

tics, which does not depend on the details of the system’s
Hamiltonian, for a wide class of spin models with two-gate
Markovian coupling to the environment up to the second
order in the system-bath coupling. In the case of symmetric
driving, Eq. (14), our results are easy to appreciate: the spin
flow, between the two baths (or leads), basically behaves as
a biased random walk (with odd cumulants hI2kþ1

ð1Þ i
c
¼

εμ=2 and even cumulants hI2kð1Þic ¼ ε=2), completely inde-
pendent of the Hamiltonian. Rather counter-intuitively, the
Hamiltonian (which has to be strong compared to the
dissipation) plays a marginally important role and is there
only to ensure correlation between spins flowing in and out
of the system via conservation of total magnetization, and
the properties of the spin current depend only on the details
of the weaker dissipation. Apart from the universal leading-
order result (in system-bath coupling), we have also found
exactly the full current statistics for up to fourth order for
the integrable boundary-driven Heisenberg XXZ spin
chain. We feel that the condition of locality could some-
times be weakened, that the degrees of freedom described
by σα1 and σαn need not be spatially localized; it is only
important that they are simultaneously measurable.

We acknowledge useful comments by B. Žunkovič,
E. Ilievski, and M. Žnidarič and support from Grant
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