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We discuss the current carrying nonequilibrium steady state of an open fermionic Hubbard
chain that is strongly driven by Markovian incoherent processes localized at the chain ends. An
explicit form of an exact many-body density operator for any value of the coupling parameter is
presented. The structure of a matrix product form of the solution is encoded in terms of a novel
diagrammatic technique that should allow for generalization to other integrable nonequilibrium
models.
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The single-band fermionic Hubbard model is the key
paradigm of many-body quantum physics. Despite being
conceptually extremely simple, involving only coherent
hopping (tunneling) and on-site electron-electron interac-
tion, the model is believed to describe fundamental
phenomena, in particular in two-dimensional lattices where
it is believed to be the model of superconductivity in
cuprates. In one dimension (1D), the Hubbard Hamiltonian
has been diagonalized by a coordinate Bethe ansatz by Lieb
and Wu [1], while Shastry later completed the toolbox of
algebraic Bethe ansatz [2] by finding a nontrivial R-matrix
satisfying the star-triangle equation. However, even in 1D,
these existing (zero temperature or equilibrium) exact
solutions [3] seem to be useless for describing interesting
physics far from equilibrium, either time dependent [4] or
steady state [5].
The Hubbard model is one of the prime candidates

to model many fundamental and emergent equilibrium and
nonequilibrium phenomena in strongly correlated many-
body systems, many of which can nowadays be simulated
in the laboratory [6–9] but are still awaiting clear theoretical
explanation. Among the key problems is the understanding
of the breakdown of the Mott insulator by a strong bias or
external field [10–15] and the characterization of dynamics
in terms of some (perhaps universal) nonequilibrium states
[16], in particular for systems with a lot of internal
structure, such as integrable systems [17,18]. Even within
the linear-response theory, the main question on precise
conditions for quantum transport in 1D to be diffusive,
ballistic, or anomalous is still open [19,20], whereas the
issue is somewhat better understood in the particular case of
Heisenberg XXZ spin 1=2 chain due to recent numerical
[21,22] and analytical [23,24] advances.
One may describe a finite (say thermal, voltage, or

chemical) bias on the system by means of a boundary-
driven quantum master equation where the incoherent
processes, realized by the so-called jump operators, are
localized at the system’s boundaries. The fixed point of

such a dynamical semigroup then gives the many-body
density operator in the nonequilibrium steady state
(NESS). Recently, two techniques have been proposed
to look for exact solutions of NESS in interacting spin
chains, the main example being the XXZ model. In the
first approach [23,24], later referred to as the isolating
defect operator (IDO) method, the matrix product operator
(MPO) form of NESS was obtained by enforcing cancel-
lation of all the terms for which a certain defect operator
appears in the bulk (away from the boundaries). This
resulted in a peculiar homogeneous cubic algebra for the
generating matrices of MPO. Later, this solution was
rederived [25] in terms of a local operator “divergence”
(LOD) relation resulting in inhomogeneous quadratic
algebra (in fact sl2 and its q deformation) in close analogy
to the treatment of classical stochastic exclusion processes
[26]. LOD has been in turn explained [27] as a conse-
quence of an infinitely dimensional star-triangle equation
at a complex representation parameter [28–30]. It remains
unclear, however, if and how the two approaches are
related.
In this Letter, wewrite down an explicit form of NESS for

the many-body boundary-driven Lindblad equation for the
FermiHubbard chain. By an identification of the key general
aspects of the IDO technique, the cancellation mechanism
can be, in general, facilitated locally in terms of a particular
graph, being trivial for theXXZmodel, but exhibiting quite a
nontrivial structure in the present case. The NESS density
operator for an n-site chain is expressed in terms of an
operator sum over all recurrent walks of length n over the
graph. We outline a new, constructive technique that has a
potential of being generalizable to other integrable non-
equilibrium models.
We consider an n-site Hubbard chain, which may be

conveniently formulated in terms of a spin 1=2 ladder,
i.e., using two sets of Pauli operators σsj, τsj,
s ∈ J ≔ fþ;−; 0; zg, j ∈ f1…ng, σ0j ≡ 1, with the
Hamiltonian
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Hn ¼
Xn−1

j¼1

ðσþj σ−jþ1 þ τþj τ
−
jþ1 þ H:c:Þ þ u

4

Xn

j¼1

σzjτ
z
j (1)

with nondimensional interaction strength u (measured in
units of hopping energy). We seek a fixed point of the
Liouville master equation [31]

d
dt

ρ ¼ L̂ρ ≔ −i½Hn; ρ� þ
X4

l¼1

�
LlρL

†
l − 1

2
fL†

l Ll; ρg
�

(2)

with boundary dissipative processes that incoherently
create electrons at the left end and annihilate electrons at
the right end, with the rate ϵ

L1 ¼
ffiffiffi
ϵ

p
σþ1 ; L2 ¼

ffiffiffi
ϵ

p
τþ1 ; L3 ¼

ffiffiffi
ϵ

p
σ−n ; L4 ¼

ffiffiffi
ϵ

p
τ−n :
(3)

The standard fermionic Hubbard Hamiltonian HnðuÞ ¼
−Pj;sðc†s;jcs;jþ1 þ H:c:Þ þ u

P
jðn↑;j − 1

2
Þðn↓;j − 1

2
Þ is

reconstructed via Jordan-Wigner transformation c↑;j ¼
PðσÞ
j−1σ−j and c↓;j ¼ PðσÞ

n PðτÞ
j−1τ−j , ns;j ≔ c†s;jcs;j, where

PðσÞ
j ≔ σz1…σzj, P

ðτÞ
j ≔ τz1…τzj. It can be shown [32] that,

in the presence of local boundary dissipation, taking the
jump operators as c†↑;1,c

†
↓;1, c↑;n, c↓;n, the spin-ladder and

fermionic models have equivalent NESSs.
The main result of this Letter is the following:
Theorem: A unique [33] un-normalized NESS den-

sity operator of the boundary-driven Hubbard chain
[Eqs. (1)–(3)] reads

L̂ρ∞ ¼ 0; ρ∞ ¼ SnS
†
n (4)

where

Sn ¼
X

e
¯
∈Wnð0;0Þ

ae1ae2…aen
Yn

j¼1

σ
b1ðejÞ
j τ

b2ðejÞ
j : (5)

Wnðv; rÞ is a set of all n-step walks e
¯
¼ ðe1;…; enÞ,

ej being the corresponding directed edge at step j,
starting at the node v and ending at node r of the directed
graph G depicted in Fig. 1. The set of nodes VðGÞ is
composed of the origin 0, the diagonal nodes k, and
upper- and lower-diagonal nodes ðk − 1

2
Þþ and ðk − 1

2
Þ−,

for k ∈ N. Each node v ∈ VðGÞ can also be identified
with a pair of Cartesian components v≡ ðv1; v2Þ in
the corresponding planar diagram (Fig. 1), namely,
k≡ ðk; kÞ, ðk − 1

2
Þþ ≡ ðk − 1; kÞ, ðk − 1

2
Þ− ≡ ðk; k − 1Þ.

The set of directed edges EðGÞ contains vertical, horizon-
tal, diagonal, skew diagonal, and self-connections, as

indicated in Fig. 1, where only self-connections of
diagonal nodes are degenerate with multiplicity two.
Edges may also be identified with triples
e≡ ðpðeÞ; qðeÞ; μðeÞÞ, pointing from node pðeÞ to qðeÞ
and having degeneracy label μðeÞ, where μ ¼ 1
for all edges except diagonal self-connections ðk; k; μÞ
where μ ∈ f�1g.
To each edge e ∈ EðGÞ we associate a unique operator

σb
1ðeÞτb2ðeÞ ≡ ωðeÞ over C2 ⊗ C2 via index functions

b1;2∶EðGÞ → fþ;−; 0; zg defined as follows: bνðeÞ ¼ �
if qνðeÞ − pνðeÞ ¼ �1, while for qνðeÞ ¼ pνðeÞ,
bνðeÞ ¼ 0, if e connects white nodes, and bνðeÞ ¼ z,
if e connects black nodes. For diagonal self-connections
(on black-and-white nodes), the index functions are
determined by the degeneracy index bνðk; k; 1Þ ¼ 0,
bνðk; k;−1Þ ¼ z. To each node v we associate a scalar
or spinor vector space Hv, namely, for diagonal
nodes Hv ≡ C2 whereas for the other nodes
H0;Hðk−1=2Þ� ≡ C1. To each edge e we then associate a
linear map ae∶HqðeÞ → HpðeÞ, namely (omitting the
degeneracy label when trivial),

FIG. 1 (color online). A semi-infinite graph G (structure
repeating periodically beyond the upper-right corner) showing
the allowed transitions for building up the MPO form of
NESS for the Hubbard chain. Nodes are in black, edges with
multiplicity 1 are in red, and edges with multiplicity 2 are in
blue. Each edge e is associated with a physical product-operator
ωðeÞ ¼ σb

1

τb
2

where bν ¼ 0 (bν ¼ z) for edges connecting
white (black) nodes, where ν is that Cartesian component
which does not change along such e in the diagram. Degenerate
edges correspond to operators σ0τ0 (μ ¼ þ1) and σzτz (μ ¼ −1).
Insets indicate all possible terms (two in each, orange and
brown) for two examples of [h, ωðeÞ ⊗ ωðfÞ], namely,
[h, σþτþ ⊗ σþτ0] (a) and [h, σ0τ− ⊗ σ0τ0] (b). Full arrows
denote valid edge factors, whereas dashed arrows correspond to
defect operators.
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að0;0;þ1Þ ¼ 1; að0;0;−1Þ ¼ 0; að0;1Þ ¼ ð2iϵ 0 Þ; að1;0Þ ¼
1

2

�
iϵ− u

−2
�
; að0;1=2�Þ ¼ ϵ; að1=2�;0Þ ¼ −i;

aðk;ðkþ1=2Þ�Þ ¼
�
ϵ

0

�
; aðk;ðk−1=2Þ�Þ ¼

1

4

�−ð−1Þkðiϵ− kuÞϵ
ð−1Þ⌊ðkþ1Þ=2⌋2ϵ

�
; aððk−1=2Þ�;ðk−1=2Þ�Þ ¼ ð−1Þk 1

2
iϵ;
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1

4
ð−ð−1Þkð4i− kϵuÞ ð−1Þ⌊ðkþ1Þ=2⌋2ϵ Þ; aððk−1=2Þ�;ðk−1=2Þ∓Þ ¼ −iϵ;
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�
1 0

0 0

�
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1

4

� ð−1Þkð2i− 1
2
kϵuÞðϵþ iðkþ 1ÞuÞ −ð−1Þ⌊ðkþ1Þ=2⌋ðϵþ iðkþ 1ÞuÞϵ;

−ð−1Þ⌊k=2⌋ðikϵuþ 4Þ −2iϵ

�

aðk;k;ð−1ÞkÞ ¼
1

4

� ð−1Þkðikϵuþ 4Þ ð−1Þ⌊ðkþ1Þ=2⌋2iϵ

0 0

�
; aðk;k;−ð−1ÞkÞ ¼

1

4

� ð−1Þkðϵþ ikuÞϵ 0

ð−1Þ⌊ðkþ1Þ=2⌋2iϵ 0

�
: (6)

Proof: We start by noting that the walking graph state
expression (5) can be cast in the MPO form

Sn ¼
X

s1;t1…sn;tn∈J
h0jAs1;t1…Asn;tn j0i

Yn

j¼1

σ
sj
j τ

tj
j (7)

by introducing a set of 16 infinitely dimensional operators
over auxiliary Hilbert space H ¼ ⊕

v∈VðGÞ
Hv

As;t ¼ ⊕
e∈EðGÞ

δs;b1ðeÞδt;b2ðeÞae; (8)

with j0i being the state with component 1 in H0 and 0
elsewhere. Note that Az;0 ¼ A0;z ¼ 0. In full analogy with
the proof for the XXZ model of Ref. [24], i.e., by observing
local properties of the dissipative part of L̂ (2), one shows
that L̂ðSnS†nÞ ¼ 0 is implied by the relation

½Hn; Sn� ¼ iϵ
X

s∈f0;þg
ðσzτs ⊗ P0;s

n−1 þ σsτz ⊗ Ps;0
n−1

−Q0;−s
n−1 ⊗ σzτ−s −Q−s;0

n−1 ⊗ σ−sτzÞ; (9)

introducing the operators Ps;t
n−1, Q

s;t
n−1 over C4n−1

Ps;t
n−1 ¼

trfðσs1τt1Þ†Sng
trfðσsτtÞ†σsτtg ; Qs;t

n−1 ¼
trfðσsnτtnÞ†Sng
trfðσsτtÞ†σsτtg

(10)

where trj denotes the partial trace with respect to four-
dimensional local space at site j. Note the Hilbert-Schmidt
orthogonality of Pauli products σsτt. The main part of the
proof is then to show Eq. (9) for the ansatz of Eq. (5) with
the amplitudes of Eq. (6).
In order to do this, we elaborate here on a local IDO

method with respect to the graph G. Let us consider
an arbitrary walk of length 2, i.e., a pair of subsequent
edges e, f ∈ EðGÞ, with qðeÞ ¼ pðfÞ. Writing an arbitrary
Hubbard-type Hamiltonian density on a pair of sites as
h¼ ðσþτ0 ⊗ σ−τ0 þ σ0τþ ⊗ σ0τ− þH.c.Þ þ u1σzτz ⊗ 14þ
u214 ⊗ σzτz, one finds the following general form of the
local commutator of h with a tensor product of two valid
edge factors for a pair of consecutive edges (2-walks) e,
f ∈ EðGÞ, qðeÞ ¼ pðfÞ

½h;ωðeÞ ⊗ ωðfÞ� ¼
Xpðe0Þ¼pðeÞ;qðfÞ−qðe0Þ¼dðs;tÞ

s;t∈J ;e0∈EðGÞ
Xs;t
e;fωðe0Þ ⊗ σsτt þ

Xqðf0Þ¼qðfÞ;pðeÞ−pðf0Þ¼dðs;tÞ

s;t∈J ;f0∈EðGÞ
Ys;t
e;fσ

sτt ⊗ ωðf0Þ; (11)

for suitable c-number coefficientsXs;t
e;fðu1; u2Þ,Ys;t

e;fðu1; u2Þ.
We define a displacement vector associated with a pair of
Pauli indices, namely, dð�Þ ¼ �1, dð0Þ ¼ dðzÞ ¼ 0, and
write ðdðsÞ; dðtÞÞ≡ dðs; tÞ. Equation (11) has the following
crucial property: Any tensor factor σsτt in the first (or
second) sum on the rhs of Eq. (11) is (i) neither of the form
ωðf0Þ [orωðe0Þ], for any edge f0 (or e0) that would complete
the 2-walk (e0, f0) to connect the same nodes as (e,f), (ii) nor
is the missing link dðs; tÞ between qðe0Þ and qðfÞ [or pðeÞ

and pðf0Þ] provided by any edge of G at all. We shall call
such a factor a “defect operator.” See the insets of Fig. 1 for a
few examples. Since theHamiltonian is a sumof local terms,
the entire commutator [Hn, Sn] written in the tensor product
expansion [like Eq. (5)] is composed of terms that corre-
spond to n-walks over a defected graph with exactly one
defect operator. As the rhs of Eq. (9) has only boundary
defects, in the first or last factor, all the terms with defects
in the bulk should, therefore, identically vanish. Picking any
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pair of nodes, v, r ∈ VðGÞ, which can be connected with at least one 3-walk, it is then sufficient that the following local
conditions are satisfied:

X

ðe;f;gÞ∈W3ðv;rÞ
aeafagtrfðωðe0Þ ⊗ σsτt ⊗ ωðg0ÞÞ†½H3;ωðeÞ ⊗ ωðfÞ ⊗ ωðgÞ�g ¼ 0; (12)

for any pair of edges e0, g0 ∈ EðGÞ for which pðe0Þ ¼ v, qðg0Þ ¼ r and any defect component s, t ∈ J . Of course, for many
combinations (v, r, e0, g0, s, t) the above equation is trivial, i.e., always satisfied, e.g.,when σsτt ¼ ωðf0Þ for somevalid edgef0
between qðe0Þ and pðg0Þ. The remaining equations that need to be checked are those for which the defect operator sits at the
first j ¼ 1 or the last j ¼ n tensor factor. Again, one can factor out sufficient local conditions, which can now be formulated
on two sites, in terms of 2-walks, namely,

X

ðe;fÞ∈W2ð0;vÞ
aeaftrfðσsτt ⊗ ωðf0ÞÞ†ð½H2;ωðeÞ ⊗ ωðfÞ� − iϵP̂ðωðeÞÞ ⊗ ωðfÞÞg ¼ 0; (13)

X

ðe;fÞ∈W2ðv;0Þ
aeaftrfðωðe0Þ ⊗ σsτtÞ†ð½H2;ωðeÞ ⊗ ωðfÞ� þ iϵωðeÞ ⊗ P̂ðωðfÞÞÞg ¼ 0; (14)

for all e0, f0 ∈ EðGÞ, with qðf0Þ ¼ v, and pðe0Þ ¼ v. P̂ is a
map over 4 × 4 matrices defined as P̂ðρÞ ≔ 1

2
σz ⊗ trσðρÞ þ

1
2
trτðρÞ ⊗ τz where trσ (or trτ) denotes the partial trace over σ

(or τ) qubit. Now, the set of possible defect operators is
quite limited, namely, ðs; tÞ ∈ fð0; zÞ; ðz; 0Þ; ðþ; zÞ; ðz;þÞg
for the left boundary conditions (13) or to ðs; tÞ ∈ fð0; zÞ;
ðz; 0Þ; ð−; zÞ; ðz;−Þg for the right boundary condition (14).
Summarizing, checking all the three-point conditions in

the bulk (12) and the two-point boundary conditions (13,14)
is sufficient for establishing the validity of Eq. (9) for any n.
Verification of Eqs. (12)–(14) has been implemented by
means of a computer algebra program in Mathematica.
Since the amplitudes (6) are at most quadratic in the node
label k, modulated with periodicity 4 of sign factors ð−1Þk,
ð−1Þ⌊k=2⌋, ð−1Þ⌊ðkþ1Þ=2⌋, it is enough to check recurrence
relations (12) for a sufficiently large finite piece of G
(comfortably estimating, for k ≤ 28). Thus, all that is needed
to prove our solution rigorously for any n has been done in
finitely many computer steps. In fact, what has been done
in practice, at first, is that Eqs. (12)–(14) have been used to
compute the amplitudes ae recursively, for increasing node
labels k. This procedure has nevertheless been quite tedious,
and we are unable to express it in a short algorithmic form.
Before closing, let us make a few remarks on the

properties of our solution. (i) Similarly to the solution [24]
of the XXZ model, Eq. (4) is again a Cholesky decom-
position of the many-body density operator. Indeed, in the
eigenbasis of σzj, τ

z
j, the operator Sn is an upper-triangular

matrix. (ii) Sn is a polynomial of degree not more than 2n
in dissipation ϵ and polynomial of degree not more than n
in interaction strength u. (iii) Ordering basis sets in the
auxiliary space with respect to the increasing node index k,
the matrices As;t [generating MPO (7)] are block tridiag-
onal, with blocks of size 4. In fact, the maximal Schmidt
rank for the bipartition of Sn in the Pauli basis is 4⌊n=2⌋.

(iv) Efficient computation of local observables, such as
spin or charge densities, currents, etc., can again be
facilitated with a concept of a transfer matrix (which is
now a block tridiagonal matrix) introduced in Refs. [23,24].
Details will be given elsewhere. (v) Following the idea
of Ref. [25] and writing a Lax operator over H ⊗ C4, as
L ¼ P

s;t∈JAs;tσ
sτt, Eq. (9) follows if another operator

B ¼ P
s;t∈JBs;tσ

sτt overH ⊗ C4 exists such that the LOD
relation would hold

½h;L ⊗p L� ¼ B ⊗p L −L ⊗p B; (15)

where h ¼ H2ðu=2Þ is a symmetric translationally invariant
Hamiltonian density, and ⊗p denotes a tensor product
with respect to the physical spaces C4 and ordinary matrix
product in H. On knowing the operator L explicitly,
Eq. (15) is an overdetermined set of linear equations for
matrix elements of B, and a simple computer-algebraic
calculation suggests the existence of a nontrivial solution
with a simple 4 × 4 block tridiagonal form of matrices
Bs;t. However, any possible relationship to SOð4Þ≃
SUð2Þ × SUð2Þ=Z2 symmetry of the Hubbard model
and its Yang-Baxter algebra [3] remains open. (vi) It can
be shown that the dissipative boundary conditions break
the global symmetry of the open Hubbard chain to
SUð2Þ × Uð1Þ; i.e., ρ∞ commutes with generators S�, Sz
and ηz of Ref. [3]. We find trSsρ∞ ¼ trηzρ∞ ¼ 0 and
tr½ððSxÞ2þðSyÞ2þðSzÞ2Þρ∞�=trρ∞ ¼ 3n=8. (vii) We also
observe empirically, for small n, that similarly to the XXZ
model [28,29], SnðϵÞ has a commuting-transfer-matrix
property with respect to the dissipation parameter, i.e.,
½SnðϵÞ; SnðηÞ� ¼ 0;∀ϵ; η ∈ C. The first derivative Z ¼
−iðd=dϵÞSnjϵ¼0 gives a quadratically extensive almost
conserved operator ½H;Z� ¼ σz1 þ τz1 − σzn − τzn, which
should be explored in studying high-temperature transport
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properties [34] of Hubbard chains. (viii) The same NESS
(4) applies to more general, chemically shifted Hubbard
Hamiltonians Hþμ↑N↑þμ↓N↓, with N↑ ¼

P
j
1
2
ð1− σzjÞ,

N↓ ¼ P
j
1
2
ð1 − τzjÞ, as clearly all walks in Eq. (5) conserve

Ns, implying ½Ns; ρ∞� ¼ 0. Yet, ρ∞ corresponds to, on
average, a half-filled state with zero magnetization, due to
symmetry of the driving (3).
In conclusion, the results presented here have, on one

hand, the potential to be applied to some of the outstanding
problems for the 1D fermionic Hubbard model and, on the
other hand, may inspire exact solutions for other models
and, hence, provide a general method of analyzing exactly
solvable fixed points of interacting Markovian semigroups.
The concept of a walking graph state (5) should be
explored as a general ansatz for classifying and deriving
new solutions in terms of graph diagrams (such as Fig. 1).
For example, the solution of the open XXZ chain of
Refs. [23,24] can be identified with a linear semi-infinite
chain graph G, with nodes VðGÞ ¼ f0; 1; 2…g, edges
EðGÞ ¼ ∪∞

k¼0fðk; kÞ; ðk; kþ 1Þ; ðkþ 1; kÞg, index func-
tion ωðk; kÞ ¼ σ0, ωðk; kþ 1Þ ¼ σþ, ωðkþ 1; kÞ ¼ σ−,
and σz as the only possible defect operator. Furthermore,
a walking graph state may be implemented as a variational
ansatz for efficient numerical simulations of nonintegrable
models.

Useful remarks from B. Buča, E. Ilievski, V. Popkov,
and B. Žunkovič are gratefully acknowledged as well as
support from Grants No. P1-0044 and No. J1-5439 of the
Slovenian Research Agency (ARRS).
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