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Tomaž Prosen and Marko Žnidarič
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We propose to quantify the complexity of nonequilibrium steady state density operators, as well as of

long-lived Liouvillian decay modes, in terms of the level spacing distribution of their spectra. Based on

extensive numerical studies in a variety of models, some solvable and some unsolved, we conjecture that

the integrability of density operators (e.g., the existence of an algebraic procedure for their construction in

finitely many steps) is signaled by a Poissonian level statistics, whereas in the generic nonintegrable cases

one finds level statistics of a Gaussian unitary ensemble of random matrices. Eigenvalue statistics can

therefore be used as an efficient tool to identify integrable quantum nonequilibrium systems.
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Introduction.—Random matrix theory (RMT) [1] is one
of the most abstract yet successful models of statistical
physics that is capable of universally describing such
diverse phenomena in nature and society as quantum chro-
modynamics [2] and stock exchange volatility [3]. In gen-
eral terms, RMT characterizes universal features of a
certain phenomenon based on statistical correlations
between the eigenvalues of a Hermitian matrix that
describes the problem, be it the system Hamiltonian in a
typical state basis or the covariance matrix of stocks in a
portfolio. RMT then explains these eigenvalue correlations
in terms of those of a probabilistic ensemble of random
Hermitian matrices.

The so-called quantum chaos conjecture (QCC) [4–6]
provided a deep connection between the eigenvalue corre-
lations of quantum Hamiltonians of nonlinear single- (or
few-) particle problems and the algorithmic complexity of
the underlying classical trajectories. Namely, it has been
shown [7] that dynamics where all classical trajectories
are chaotic, i.e., exponentially unstable, results in a RMT
spectral fluctuation of the corresponding quantum
Hamiltonian. For Liouville integrable systems on the other
side, following the argument by Berry and Tabor [8], the
existence of a complete set of integrals of motion resulting
in a full set of quantum numbers prohibits any statistical
correlations in the quantum spectra and renders the corre-
sponding level statistics Poissonian. Similarly, based on
observations [9] it has been suggested that simple many-
body quantum Hamiltonians that do not have classical
limits possess Poissonian or RMT level statistics whenever
they are integrable or strongly nonintegrable, respectively.
As there is no systematic algorithmic method by which one
can establish whether a certain system is integrable, i.e.,
exactly solvable or not, the level statistics has become a
standard empirical indicator of integrability. It has been
corroborated by a vast amount of numerical and experi-
mental data [10].

The QCC describes the situation of closed quantum
systems. In equilibrium, the density operator is given by

the Gibbsian �eq ¼ Z�1 expð��HÞ, i.e., a mixture of

eigenstates of the Hamiltonian H, HjEni ¼ EnjEni, with
probabilities pn ¼ Z�1e��En . Since a smooth, monotonic
transformation � ! log� does not change the local
level correlations, one can rephrase the old problem of
level statistics for closed system Hamiltonians in terms
of level statistics of the corresponding equilibrium density
operator and formulate the QCC for �eq.

In open quantum systems, however, the evolution of
the density operator is given in terms of a master equation
with the Liouvillian generator that contains both the
Hamiltonian and the dissipative terms, the latter coming
from the interaction between the system and the environ-
ment. Within the Markovian approximation such evolution
is given in terms of the Lindblad equation [11]

d

dt
� ¼ L̂� :¼ �i½H;�� þ D̂�; (1)

with D̂� :¼ P
�2L��L

y
� � fLy

�L�; �g being the quantum
dissipation fully specified by a set of quantum-jump
(Lindblad) operators L�. The positive semidefinite

Hermitian operator �ðtÞ describes the quantum relaxation
process from some initial state �ð0Þ to the steady state

�0 ¼ �ðt ! 1Þ, satisfying L̂�0 ¼ 0.
In this Letter we formulate the QCC for nonequilibrium

density operators, say for the nonequilibrium steady state
(NESS) �0 or even Hermitian decay modes (HDMs), i.e.,

right eigenoperators of L̂ with real [12] eigenvalues �m,

L̂�m ¼ �m�m, where�0 ¼ 0. We consider level statistics
of the NESS and HDMs for several models of open quan-
tum spin chains with boundary Lindblad driving and find,
quite remarkably, that the former is Poissonian for all
interacting and noninteracting cases that are exactly solv-
able, i.e., for which we can write �0 explicitly in terms of a
matrix product ansatz.
For models for which already the bulk HamiltonianH is

nonintegrable we find, consistently, that level statistics of
the NESS and HDMs is described by a Gaussian unitary
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ensemble (GUE) of complex Hermitian random matrices
(due to lack of time-reversal symmetry in generic nonequi-
librium situations). We find GUE level statistics also for
several models with integrable H but for which dissipative
boundary conditions break integrability [13]. This leads us
to a generalization of the QCC to nonequilibrium density
operators.

In the last 30 years many solvable master equations
describing classical nonequilibrium models have been dis-
covered, in particular among lattice gas models [15].
Exactly solvable quantum many-body master equations
though are only beginning to emerge, with so far only a
handful of examples, namely, quasifree (quadratic) fermi-
onic [16–18], or bosonic [19], systems with linear, or
Hermitian quadratic [20–23], noise (Lindblad) operators,
and maximally boundary driven XXZ chains [24]. One of
the main difficulties is in the first place identifying prom-
ising candidates of solvable quantum master equations.
The criterion suggested in this Letter, namely the general-
ized QCC, could be found very useful in this respect. For
instance, in our study we find Possonian level statistics for
the XXZ spin 1=2 chain at large anisotropy �, indicating a
possibility of a yet unknown exact solution for the NESS in
the asymptotic regime j�j � 1. This could be particularly
interesting as the model exhibits diffusive spin transport in
this regime [25–27].

The models and the method.—We shall demonstrate our
conjecture on a number of one-dimensional spin 1=2 sys-
tems that are driven at chain boundaries and optionally
exhibit a bulk dephasing. All can be described by the
XXZ type of Hamiltonian H ¼ P

n�1
j¼1 ð�x

j�
x
jþ1 þ

�y
j�

y
jþ1 þ ��z

j�
z
jþ1Þ þ

P
n
j¼1 bj�

z
j for a chain of n sites.

The dissipator D̂ ¼ D̂driv þ �D̂deph
is composed of a

driving part D̂driv
that acts on the first and the last

spin and is described by four local [28] Lindblad opera-

tors L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��þ ��Þp

�þ
1 , L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ�� ��Þp

��
1

at the left end and L3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ�þ ��Þp

�þ
n , L4 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1��� ��Þp
��

n at the right end, and of a dephasing

�D̂deph
described by one Lindblad operator at each site

L
deph
j ¼ ð1= ffiffiffi

2
p Þ�z

j, j ¼ 1; . . . ; n. Relevant XXZ chain pa-

rameters are the anisotropy � and the external magnetic
field bj. For a homogeneous field the system is integrable

[30], with the anisotropy changing the magnetization trans-
port properties from ballistic for j�j< 1 to diffusive for
�> 1 (in the absence of the field bj � 0). A staggered

magnetic field renders the system quantum chaotic [31].
Dissipative parameters, describing the influence of envi-
ronmental degrees of freedom, are the dephasing strength
� (a nonzero value causes the system to become diffusive),
the coupling strength � (its precise value is inessential),
and two driving parameters: the driving strength � that
determines how far from equilibrium we are (� ¼ 0 causes
an infinite-temperature equilibrium state) and �� that deter-
mines the average magnetization.

The above class of systems includes solvable as well as
nonsolvable out-of-equilibrium models. We shall first
study spectral statistics of NESSs and at the end consider
also HDMs. In each case we calculate the NESS �0 (or a
HDM) numerically exactly by using either an explicit
solution, if it is known, or, by numerically finding the

eigenvector of the Liouvillian L̂ using the Arnoldi method.
For verifying the generalized QCC we have to assess as
large a system as possible. The exponentially growing
dimension of �0 limits us to about n ¼ 20 sites for solvable
models; for nonsolvable systems the limiting factor is
actually not the diagonalization of �0 (being of dimension

2n) but rather solving for the NESS, L̂�0 ¼ 0 (a set of 4n

linear equations). In all systems studied the total magneti-
zation Z ¼ P

n
j¼1 �

z
j is a constant of motion, i.e.,

UZL̂ð�ÞUy
Z ¼ L̂ðUZ�U

y
ZÞ for UZ ¼ e�i�Z. For spectral

analysis we consider a block of dimension ðnZÞ of �m with

a fixed Z (m ¼ 0 for the NESS and m � 1 for the HDM)
and compute its unfolded [32] spectrum f�jg. Spectral

statistics is then characterized by the level spacing distri-
bution (LSD)—a histogram pðsÞ of level spacings s ¼
�jþ1 � �j, and compared to a Poissonian model of uncor-

related levels ppoissonðsÞ ¼ expð�sÞ or the Wigner surmise

of the GUE pGUEðsÞ ¼ ð32=�2Þs2 expð�ð4=�Þs2Þ [1].
Solvable open spin chains.—We study three instances of

qualitatively different nonequilibrium solvable systems, a
quadratic noninteracting one, a nonquadratic noninteract-
ing one, and an interacting system, thus enabling us to
explore a full range of complexity of solvable nonequilib-
rium systems.
Perhaps the simplest solvable nonequilibrium model is a

boundary driven XX spin chain without dephasing (� ¼ 0,
bj ¼ 0, � ¼ 0). Using a Jordan-Wigner transformation the

Liouvillian becomes quadratic in fermionic operators and
can be readily diagonalized [16]. The system is ballistic
due to a noninteraction of fermionic normal modes. We
calculate the NESS using a compact matrix product opera-
tor form of �0 with matrices of fixed dimension 4 [33]. For
�� ¼ 0 the nonequilibrium XX chain has a parity symmetry
P ¼ XR, where X ¼ Q

n
j¼1 �

x
j and R is a left-right reflec-

tion Rjs1; s2; . . . ; sni :¼ jsn; . . . ; s2; s1i, sj 2 f"; #g, as well
as an additional antiunitary symmetry T ¼ Z2K, where K

is a complex conjugation and Z2 ¼ Qn=2
j¼1 �

z
2j. To remove

these two symmetries we use a nonzero �� ¼ 0:3. In
Fig. 1(a) the LSD is shown; small deviations from
Poissonian statistics can be attributed to finite-size effects.
The next solvable model that we consider is the XX

chain (� ¼ 0, bj ¼ 0) with nonzero dephasing for which

the system becomes diffusive. The dephasing term L̂deph
is

quartic in fermionic operators; nevertheless, the NESS can
be explicitly written [22] in powers of the driving � due to
a closing hierarchy of correlation functions [23]. Nonzero
dephasing removes the antiunitary symmetry T while non-
zero �� ¼ 0:3 breaks the parity P. We can see in Fig. 1(b)
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that the LSD agrees, within statistical fluctuations, with the
Poissonian statistics.

The last and least trivial solvable nonequilibrium case is
the XXZ model (bj ¼ 0) at maximal driving � ¼ 1,

�� ¼ 0, where �0 can be written in terms of an infinite
rank matrix product ansatz [24]. As one can see in Fig. 1(c)
the LSD is again Poissonian which suggests the existence
of Bethe equations for f�jg and the Bethe ansatz form of

eigenvectors of the NESS �0 [34].
Nonsolvable open spin chains.—Here we consider two

instances without dephasing: the XXZ model without a
magnetic field bj ¼ 0 (solvable via the Bethe ansatz in

its closed-system formulation [30] that has, however, so far
evaded all attempts of finding a nonequilibrium solution at
nonmaximal �< 1), and the XXZ chain in a staggered
magnetic field for which the Hamiltonian is quantum
chaotic.

For the XXZ model without a magnetic field (bj ¼ 0,

� ¼ 0) we break parity P by using �� ¼ 0:3 (antiunitary T
is broken by �). For nonzero and nonmaximal driving �,
nonequilibrium exact solutions are not known. The LSD of
the NESS, shown in Fig. 2(a) for � ¼ 0:5 and � ¼ 0:2,
agrees with the LSD of the GUE, describing complex
quantum systems without antiunitary symmetry. This
seems to indicate that such a nonequilibrium system is
not solvable. Note that in nonequilibrium states that carry

a current, as is the case in all NESSs studied here, we
expect the LSD to display GUE statistics and not the one
for the Gaussian orthogonal ensemble (GOE) irrespective
of the symmetry class to which the Hamiltonian belongs
(boundary driving will in general break the time-reversal
symmetry of H). Fixing the system size n and increasing
the anisotropy � (see Fig. 3), the LSD becomes increas-
ingly Poisson-like. This might suggest that by increasing�
the nonequilibrium XXZ model is perhaps amenable to
an exact solution. Note that, not surprisingly, the limits
n ! 1 and � ! 1 do not commute. Taking a fixed � and
increasing n one gets a GUE statistics while fixing n and
increasing � one gets a Poissonian statistics.
Switching on an inhomogeneous magnetic field the XXZ

model becomes nonintegrable evenwithout driving.We use
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FIG. 2 (color online). LSD for NESSs of nonsolvable systems.
(a) XXZ chain with � ¼ 0:5 (� ¼ 1, � ¼ 0:2, �� ¼ 0:3).
(b) XXZ chain with � ¼ 0:5 in a staggered field (� ¼ 0:1,
�� ¼ 0, � ¼ 1). Both cases are for n ¼ 14 in the sector with
Z ¼ 7. Full black curve is the Wigner surmise for the GUE; the
dotted blue curve is for the Gaussian orthogonal ensemble.
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FIG. 1 (color online). LSD for NESSs of solvable nonequilib-
rium systems. (a) XX chain (n ¼ 16, Z ¼ 10). (b) XX chain with
dephasing of strength � ¼ 1 (n ¼ 14, Z ¼ 7). (c) XXX chain
with maximal driving � ¼ 1 (n ¼ 20, Z ¼ 5, � ¼ 1). Cases (a)
and (b) are for � ¼ 1, � ¼ 0:2, �� ¼ 0:3, while (c) is for � ¼
0:1, � ¼ 1, �� ¼ 0.
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FIG. 3 (color online). LSD for NESSs of XXZ chain at differ-
ent �. Increasing � at fixed size n, LSD becomes increasingly
Poisson-like. All for n ¼ 13 and the sector with Z ¼ 7,� ¼ 0:2,
�� ¼ 0:3, � ¼ 1. Dotted black curves are Poissonian and GUE
statistics.
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a period 3 staggered field b3j ¼ 0, b3jþ1 ¼ �1, b3jþ2 ¼
�1=2, and� ¼ 0:5, for which the Hamiltonian is quantum
chaotic [31]. Out of equilibrium at � ¼ 0:1 the NESS
spectrum displays nice GUE statistics [see Fig. 2(b)].

Level spacing distribution of decay modes.—Apart from
quadratic nonequilibrium models solvable by canonical
quantization in Liouville space [16] no analytic solution
for the decay modes of the quantum Liouvillian is known
(in the limit n ! 1). Calculating two nondegenerate
HDMs with the longest decay time for the XX chain with
dephasing, we obtain the LSD shown in Fig. 4. We can see
that the statistics is for HDMs the same as for the NESS.
This suggests that the decay modes in the XX chain with
dephasing should also be amenable to an analytic calcu-
lation. For the nonsolvable XXZ chain in a staggered field
the LSD in Fig. 5 agrees with the distribution for the GUE
[HDMs for the XXZ chain without an external field (data
not shown) also agree with the GUE]. Small deviations
from the GUE theory visible in Fig. 5 are due to a smaller
size n ¼ 13 than n ¼ 14 used in Fig. 2. We can mention
that we also calculated LSD for HDMs in a maximally
driven XXZ chain (� ¼ 1). Unfortunately, the sizes avail-
able (n � 13) do not allow us to make a reliable conclusion
about the behavior in the thermodynamic limit and hence
to speculate about the exact solvability of decay modes.
LSD data for HDMs at n ¼ 13 (not shown) exhibit a
Poissonian tail while at the same time showing also some
level repulsion for small spacings.

Conclusion.—By analyzing Markovian master equa-
tions for a variety of boundary driven quantum spin chains
we have put forward a generalization of the quantum chaos
conjecture for nonequilibrium density operators. We show
firm empirical evidence for the correspondence between
exact solvability (integrability) and Poissonian level spac-
ing statistics, on the one hand, and between nonintegrabil-
ity and random-matrix statistics, on the other hand.
Consistent results have been found inspecting also other
spectral statistics, such as number variance (not shown).
We identify possible new instances of solvable nonequi-
librium steady states and decay modes.

Eigenvalues of many-body density operators can be
interpreted in terms of occupation probabilities.
Statistical fluctuations of these probabilities, discussed
here, will influence information-theoretic quantities, like
von Neumann entropy, and therefore are of general interest
in nonequilibrium quantum physics.
The work has been supported by Grant No. P1-0044 of

the Slovenian Research Agency (ARRS).
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