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For fundamental integrable quantum chains with deformed symmetries we outline a general procedure

for defining a continuous family of quasilocal operators whose time derivative is supported near the two

boundary sites only. The program is implemented for a spin 1=2 XXZ chain, resulting in improved

rigorous estimates for the high temperature spin Drude weight.
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Introduction.—The quantum dynamics of locally inter-
acting systems in one dimension [1] continues to pose
fundamental challenges to theorists. For example,
complete integrability [2], which implies the existence of
a macroscopic number (i.e. of the same order as the num-
ber of particles or degrees of freedom) of local conse-
rvation laws can prevent a system from thermalizaing
[3,4] or stop a current from decaying [5–7], but precise
conditions for when and mechanisms for how this can
happen are still generally unclear. For instance, it is pos-
sible that due to general symmetry arguments all the local
conserved quantities following from the quantum inverse
scattering method [2] are irrelevant for the interesting
physical observables under study, like magnetization or
spin current. This happens, for example, in the anisotropic
Heisenberg spin 1=2 chain, the so-called XXZ model,
and allows for a surprising suggestion [8,9] of spin diffu-
sion in the Ising-like regime of high spin-coupling anisot-
ropy j�j> 1. Nevertheless, for j�j � 1, numerical [10,11]
and experimental [12,13] evidence exists for anomalous,
or even ballistic transport, which is characterized by pos-
itivity of spin Drude weight, despite the fact that at zero
magnetization (or in the absence of an external magnetic
field) the spin current is orthogonal to all local conserved
operators [14] and so the Mazur bound [15] for the Drude
weight vanishes [5].

The problem has recently been resolved by finding a
‘‘missing conservation law’’ Z [16]; namely, it has been
shown that a quasilocal operator exists in the form of a
rapidly converging series of local operators that almost
commutes with the Hamiltonian in the sense that the
residual terms are supported only near the boundary of
the chain and Drude weight can still be bounded away from
zero rigorously [17]. However, this exotic new object Z
appeared rather mysterious as the technique for deriving it
[16] did not seem connected to integrability structures such
as transfer operators and Yang-Baxter equations (YBE);
neither did it gave any clue on how it may be generalized
to other models. In this Letter we answer these puzzles
by deriving a whole family of quasilocal conservation laws
as a function of a complex parameter. These new objects,
including Z of Ref. [16] as a special case, are derived from

a novel, so-called highest-weight quantum Yang-Baxter
transfer operator based on an infinitely dimensional com-
plex spin s representation of the quantum group Uqðsl2Þ,
which is the symmetry of the XXZ model. Quasilocality
here emerges as a consequence of differentiation with
respect to s at the trivial point s ¼ 0, unlike in the standard
case [2,14] where locality is a consequence of taking the
logarithm of the trace transfer operator in the fundamental
representation s ¼ 1=2. We show how the new continuous
family of conservation laws can be applied to yield
improved rigorous Mazur bound [17] on spin Drude
weight. We focus our analysis to the case of a XXZ
spin 1=2 chain, but it should be generalizable to other
fundamental integrable models sharing quantum group
Yang-Baxter structure.
Holomorphic family of almost-conserved quasilocal

operators.—The starting point is in acknowledging
(see e.g., [18–20]) a general Yang-Baxter equation in a
triple vector spaceV s1 �V s2 �V s3 where s1, s2, s3 2 C
denote arbitrary complex representation parameters for
generally infinitely dimensional representations of quan-
tum group Uq½slð2Þ�. These so-called Verma modulesV s,

spanned by a semi-infinite orthonormal basis jki, k 2 Zþ,
are generated by deformed spin-s operators

Sz
s ¼

X1
k¼0
ðs� kÞjkihkj;

Sþs ¼
X1
k¼0

sinðkþ 1Þ�
sin�

jkihkþ 1j;

S�s ¼
X1
k¼0

sinð2s� kÞ�
sin�

jkþ 1ihkj;

(1)

satisfying the quantum group relations ½Sþs ;S�s � ¼
sin½2�Sz

s�= sin�, ½Sz
s;S

�
s � ¼ �S�s . For clarity of notation

we use bold symbols to denote objects that are not scalars
over infinitely dimensional module V s. For s 2 Zþ=2,
V s is reducible to a finite, 2sþ 1 dimensional irreducible
representation. The deformation parameter q ¼ expði�Þ is
related to the anisotropy parameter � ¼ cos� of the n-spin
1=2 XXZ Heisenberg chain with Hamiltonian
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Hn ¼
Xn�1
x¼1

12x�1 � h � 12n�x�1 ;

h ¼ 2�þ � �� þ 2�� � �þ þ��z � �z;
(2)

which can be considered as an operator over V �n
1=2 ’ C2n

and ��;z, �0 ¼ 12 is a set of standard Pauli matrices.
Let us define a two-parametric Lax operator in terms of

the universal R matrix over V s �V 1=2 [19], i.e. a 2� 2
matrix with entries in EndðV sÞ

Lð’; sÞ ¼ sinð’þ �Sz
sÞ ðsin�ÞS�s

ðsin�ÞSþs sinð’� �Sz
sÞ

 !
: (3)

Then the YBE in V s �V s0 �V 1=2 together with the fact

that h0j � h0j (j0i � j0i) is a left (right) eigenvector of the R
matrix [21] over V s �V s0 guarantees commutativity of
the highest weight transfer operators [22]

Wnð’; sÞ ¼ h0jLð’; sÞ�nj0i: (4)

Namely, for any pair of spectral parameters ’, ’0 2 C and
representation parameters s, s0 2 C, we have

½Wnð’; sÞ; Wnð’0; s0Þ� ¼ 0: (5)

Note that the special case S ¼ Wnð�=2; sÞ is exactly the
Cholesky factor of the nonequilibrium steady state density
operator SSy [23,24] of the boundary driven XXZ chain,
with Lindblad jump operators L1 ¼

ffiffiffi
"
p

�� � 12n�1 , L2 ¼ffiffiffi
"
p

12n�1 � �þ, if cotðs�Þ ¼ "=ð2i sin�Þ.
The operators Wnð’; sÞ are in general nonlocal and are

not commuting with the Hamiltonian Hn; however, setting
spectral parameters to ’0 ¼ ’þ � in the YBE and
expanding to first order in � results in a fundamental
divergence relation for local two-site commutators [25,26]

½h;L �L� ¼ 2 sin�ðL �L’ �L’ �LÞ; (6)

where L � Lð’; sÞ, L’�@’Lð’;sÞ¼cos’cosð�Sz
sÞ��0

�sin’sinð�Sz
sÞ��z.

Of fundamental importance to gain quasilocality in these
objects is a derivation with respect to a complex (deformed
spin) representation parameter at s ¼ 0, which is implied
by the following observation.

Lemma.—Let us define a modified auxiliary space ~V
with a split vacuum, namely, j0i replaced by a pair of distinct
highest weight states jLi and jRi, i.e. ~V being spanned
by a formal orthonormal basis fjLi; jRi; j1i; j2i; . . .g. Let
~S� ¼ S�

0 j ~V denote projected spin operators, which are

essentially given by (1) with summation index k running
from 1 [27], and define a modified Lax matrix

~Lð’Þ ¼ X
�2f0;�;zg

~L�ð’Þ � �� (7)

with components

~L0ð’Þ ¼ jLihLj þ jRihRj þ cosð�~SzÞ;
~Lzð’Þ ¼ cot’ sinð�~SzÞ;
~Lþð’Þ ¼ j1ihRj þ sin�

sin’
~S�;

~L�ð’Þ ¼ jLih1j þ sin�

sin’
~Sþ:

Consequently, we define also the corresponding modified
highest weight transfer operator

Znð’Þ ¼ hLj~Lð’Þ�njRi: (8)

Then, the normalized s derivative at s ¼ 0 can be expressed
as

1

ðsin’Þn @sWnð’; sÞjs¼0 ¼ 2�

sin�
Znð’Þ þ � cot’Mz

n; (9)

where Mz
n ¼

P
n
x¼1 12x�1 � �z � 12n�x is the total magneti-

zation operator.
The proof is just a formal expression of the fact that at

s ¼ 0 the transitions j0i ! j0i in @sh0jLð’; sÞ�nj0ijs¼0,
expressed via the Leibniz rule applied over an n-fold
matrix product operator, are only possible (i) via virtual
states j1i; j2i; . . . if the s derivative ‘‘acts’’ on the amplitude
h1jS�s j0i (1), which otherwise would vanish as s ¼ 0, or
(ii) directly where the s derivative acts on the amplitude at
h0jSz

sj0i. The cases (i) and (ii) correspond to the first and
second term on the right-hand side of Eq. (9), respectively.
Note that all the operators under discussion commute with
Mz

n, ½Wnð’; sÞ;Mz
n� ¼ ½Hn;M

z
n� ¼ 0; hence also Znð’Þ

form a commuting family

½Znð’Þ; Znð’0Þ� ¼ 0; 8 ’;’0 2 C: (10)

Equation (8) generates a matrix product operator

Zn ¼
X

�1;�2...;�n

hLj~L�1 ~L�2 � � � ~L�n jRi��1 � ��2 � � � ���n;

(11)

which can be written as a sum of local terms, since

hLj~L� ¼ ��;0hLj þ ��;�h1j, ~L�jRi ¼ ��;0jRi þ ��;þj1i,

Zn ¼
Xn
r¼2

Xn�r
x¼0

12x � qr � 12n�r�x ; (12)

where qr is an r-site density, i.e. an element of EndðV �r
1=2Þ

which acts nontrivially on sites 1 and r. In other words, qr
is of exact matrix product operator form (11) for n ¼ r
with �1 ¼ �, �r ¼ þ. We define [17] the operator Z �
Zn¼1 of the infinite chain to be quasilocal if 9�, � > 0
such that kqrk< � expð��rÞ, and we call the operator
sequence Zn to be almost conserved if for any n, ½Hn;Zn�¼P

n
r¼1ðbr�12n�r�12n�r�brÞ, where br 2 EndðV �r

1=2Þ and
9�0, �0 > 0 such that kbrk<�0expð��0rÞ. We have shown
in previous work [16,17] that existence of quasilocal
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almost-conserved operators (QLAC) implies nontrivial
bounds on ballistic transport.

We are now in position to state the main result.
Theorem.—For a dense set of commensurate easy-plane

anisotropies � ¼ �l=m, l, m 2 Zþ, l � m> 0, the opera-
tors Zð’Þ are strictly quasilocal and almost conserved for
all ’2Dm	C where Dm¼f’;jRe’�ð�=2Þj<ð�=2mÞg
is an open vertical strip of width �=m centered around
’0 ¼ �=2. Furthermore, Zð’Þ is holomorphic on Dm.

Proof.—We start by tensor multiplying the local diver-

gence relation (6) by L�ðj�1Þ � 
 �L�ðn�j�1Þ, then
summing over j ¼ 1 . . . n� 1, taking the highest weight
state expectation value h0j 
 j0i, and finally differentiating
@s 
 js¼0. Using the Lemma (9) and carefully bookkeeping
all the terms, we finally arrive at the key identity

½Hn;Znð’Þ�¼�z�12n�1�12n�1��z

�2sin�cot’ð�0�Zn�1ð’Þ�Zn�1ð’Þ��0Þ:
(13)

Exploring a one-element-per-row property of the matrices
~L�, the Hilbert-Schmidt product ðA; BÞ :¼ 2�ntrðAyBÞ of
any pair of Znð’Þ can be calculated in terms of a two-
parametric transfer matrix [28]

Knð’;’0Þ :¼ ðZnð �’Þ; Znð’0ÞÞ ¼ hLjTð’;’0ÞnjRi; (14)

Tð’;’0Þ :¼jLihLjþjRihRjþjLih1j
2
þj1ihRj

2
þT0ð’;’0Þ;

T0ð’;’0Þ :¼X1
k¼1

�
ðcos2ðk�Þþcot’cot’0sin2ðk�ÞÞjkihkj

þjsinðk�Þsinðkþ1Þ�j
2sin’sin’0

ðjkihkþ1jþjkþ1ihkjÞ
�
:

(15)

For � ¼ �l=m, the transition jmi  jm� 1i is forbidden,
hmjTjm� 1i ¼ 0, so T can be replaced by a ðmþ 1Þ �
ðmþ 1Þ matrix truncated to a finite set of states
jLi; jRi; j1i; . . . ; jm� 1i with a symmetric tridiagonal
matrix T0 being its orthogonal projection to the last m�1
states. Then we prove a sequence of statements. (i) T0 is
strictly contracting, i.e. for all its eigenvalues �j,

j ¼ 1 . . . ; m� 1, sorted as j�1j> j�2j> . . . , we have
j�jj< 1 if ’, ’0 2Dm. First, let us assume ’0 ¼ �’ and

write Re’ ¼ ð�=2Þ þ u. Defining a positive diagonal
matrix D ¼ P

m�1
k¼1 j sinð�lk=mÞjjkihkj, and tridiagonal

Toeplitz matrix A¼Pm�1
k¼1 cosð2uÞjkihkj�ð1=2Þ�P

m�2
k¼1 ðjkihkþ1jþjkþ1ihkjÞ, we have 1�T0¼
jsin’j�2DAD. Matrix elements of T0 are real and non-
negative so leading eigenvalue should be positive �1 > 0,
and T0 is contracting if 1� T0 > 0. This is equivalent to
conditionA> 0 which holds if juj<�=2m, i.e. ’ 2Dm.
For general ’, ’0 2Dm, T

0 is still contracting as a con-
sequence of Cauchy-Schwartz inequality jKnð’;’0Þj2 �
Knð �’;’ÞKnð �’0; ’0Þ. (ii) �j are also eigenvalues of T,

whereas the eigenvectors j�ji0 of T0 map to the correspond-

ing eigenvectors of T via j�ji¼j�ji0þjLih1j�ji0=ð2�j�2Þ.
(iii) Furthermore, T has an eigenvalue �0 ¼ 1 of
multiplicity 2 with a single eigenvector j�0i ¼ jLi
and a defective eigenvector jc i ¼ c RjRi þ

P
jc jjji,

ðT� 1Þjc i ¼ j�0i whose components can be calculated
from bottom-up substitution using explicit form (14),
resulting in a recurrence c m�k ¼ ½Tm�k;m�k�1=ð1�
Tm�k;m�kÞ�C�1k�1c m�k�1 and c 1 ¼ 2, c R ¼ 2½T21=ð1�
T22Þ�C�1m�2 where Ck form a continued fraction sequence
C0¼1, Ckþ1 ¼ 1� 1=½4cos2ð’þ ’0ÞCk�. Implementing
Jordan decomposition of Ref. [16] one finally obtains an
explicit estimation Knð’;’0Þ ¼ nKð’;’0Þ þOð�n1Þ where

Kð’;’0Þ ¼ � sin’ sin’0

2sin2ð�l=mÞ
sin½ðm� 1Þð’þ ’0Þ�

sin½mð’þ ’0Þ� : (16)

Note that Kð’;’0Þ is nonsingular when ’, ’0 2Dm,
whereas Kð �’;’Þ ¼ limn!1ðZnð’Þ; Znð’ÞÞ=n is becoming
singular exactly for Re’ ¼ �=2� �=ð2mÞ, i.e. on @Dm.
For densities qr (12) we write ðqrð’Þ; qrð’ÞÞ ¼
h1jT0ð �’;’Þrj1i, following (15), implying together with
elementary operator-norm inequality kAk2 � ðA; AÞ:

kqrð’Þk � �j�1ð �’;’Þjr=2; for some � > 0: (17)

This proves quasilocality of Zð’Þ for ’ 2Dm with expo-
nent � ¼ �ð1=2Þ logj�1j> 0. Almost-conservation with
the same exponent �0 ¼ � follows by rewriting the second
line of Eq. (13) as Zn�1ð’Þ � �0 � �0 � Zn�1ð’Þ ¼P

n
r¼2ðqr � 12n�r � 12n�r � qrÞ. Zð’Þ is also holomorphic

on Dm as it is given in terms of an exponentially converg-
ing sum, in operator norm, of strictly local operators, each
of which is holomorphic in ’. j
We note that Znð�=2Þ is exactly an isolated QLAC Zy

constructed in Ref. [16] via an alternative model-specific
method, whereas the technique described here should
be readily generalizable to other integrable models with
deformed symmetries.
Integral form of Mazur bound for spin Drude weight.—

Here we will show how the continuous family of
QLAC Znð’Þ can be applied to rigorously estimate the
spin Drude weightDwhich yields the ballistic contribution
to the real part of spin conductivity �0ð!Þ ¼ 2�D�ð!Þ þ
�0regð!Þ. Within the linear response theory the Drude

weight can be expressed in terms of a time-correlation
function as D ¼ limt!1limn!1ð	=2ntÞ

R
t
0 dt

0hJnðt0ÞJni	,
where JnðtÞ ¼ eitHnJne

�itHn , h
i	 ¼ trðe�	Hn
Þ=tre�	Hn ,

and Jn ¼ P
n�1
x¼1 12x�1 � j � 12n�x�1 is the spin current with

density j ¼ i�þ � �� � i�� � �þ.
Limiting ourselves, for simplicity, to infinite tempera-

ture 	 ¼ 0we apply the rigorous form of the Mazur bound
[5,15], namely, Theorem 2 of Ref. [17], stating that
D � limn!1ð	=2nÞPk;lðJn; QkÞðU�1Þk;lðQl; JnÞ where

Uk;l ¼ ðQk;QlÞ is a positive definite matrix and fQkg is
an arbitrary set of linearly independent QLACs (noting that
they need not be Hermitian). Here we take an incountable
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continuum of them, namely, fZnð’Þg [ fZyn ð’Þg labelled
by points ’ from a two-dimensional analyticity strip

’ 2Dm. Using elementary identities ðJn; Znð’ÞÞ ¼
�ðJn; Zyn ð’ÞÞ � �iðn� 1Þ=4, and ðZnð’Þ; Zyn ð’0ÞÞ � 0,
we arrive at the Drude weight estimate D � ð	=4ÞDK with

DK ¼ 1

4

Z
Dm

d2’fð’Þ; (18)

where fð’Þ is the solution of the complex-plane Fredholm
integral equation of the first kind

Z
Dm

d2’0Kð’;’0Þfð’0Þ ¼ 1; ’ 2Dm: (19)

The kernel Kð’;’0Þ defines a positive definite operator,
substituting for the matrix ð1=nÞUk;l in [17], which we

essentially have to invert. Fortunately, the form of solution
can be guessed in our case (16), namely, fð’Þ ¼ c=j sin’j4
where c is a constant that can be determined by elementary
integration, yielding an explicit, closed-form expression
for the Drude weight bound (see also Fig. 1)

DK ¼ sin2ð�l=mÞ
sin2ð�=mÞ

�
1� m

2�
sin

�
2�

m

��
: (20)

This is a nontrivial improvement over the previous lower
bound DZ¼½m=ð2ðm�1ÞÞ�sin2ð�l=mÞ¼½m=ð2ðm�1ÞÞ��
ð1��2Þ [16] based on a single QLAC Znð�=2Þ, DK >DZ,
but again is a nowhere differentiable function of � and,
remarkably, agrees with one of the debatable Bethe ansatz
results [29] at � ¼ �=m. It seems we have now fully
explored the known Yang-Baxter structure of the problem;
hence, we dare to conjecture that our bound (20) should in
fact be saturated. One might suggest that higher s deriva-
tives ðd=dsÞkWð’; sÞjs¼0 could also be candidates for
further independent QLACs; however, a brief inspection
shows that already the second derivative k¼2 at ’¼�=2
is a nonlocal operator.

Conclusion.—We have outlined a procedure for deriva-
tion of families of quasilocal conservation laws of the XXZ
chain that are orthogonal to previously known [14] strictly
local conserved quantities. The latter are given, for peri-
odic boundary conditions, in terms of logarithmic ’ de-
rivatives of a trace of a monodromy matrix in fundamental

representation FðkÞn ¼ ðd=d’Þk logtrLð’; 1=2Þ�nj’¼�=2 and
are irrelevant for the spin transport in the absence of exter-

nal magnetic fields since ðJn; FðkÞn Þ ¼ 0. The former, how-
ever, can be derived using related though more involved
integrability concepts, namely, in terms of derivation of a
highest-weight (vacuum) diagonal element of a quantum
monodromy matrix with respect to a complex spin repre-
sentation parameter at s ¼ 0.
We thank I. Affleck for pointing out how to construct

defective eigenvectors of matrices of type (14) and ackn-
owledge support by Slovenian ARRS Grant No. P1-0044.
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