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We study the level statistics of an interacting multiqubit system, namely the kicked Ising spin chain, in the
regime of quantum chaos. Long range quasienergy level statistics show effects analogous to the ones observed
in semiclassical systems due to the presence of short classical periodic orbits, while short range level statistics
display perfect statistical agreement with random matrix theory. Even though our system possesses no classical
limit, our results suggest existence of an important nonuniversal system specific behavior at short time scale,
which clearly goes beyond finite size effects in random matrix theory.
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I. INTRODUCTION

One of the key discoveries of quantum chaos has been the
so-called quantum chaos conjecture, originally proposed in
Ref. �1�. It claims that even simple nonintegrable quantum
systems, whose dynamics is sufficiently complex �say, dy-
namically mixing in the classical limit�, possess quantum
fluctuations which can be described by a universal ensemble
of random matrices without any free parameters �2�. Al-
though a strict mathematical proof of this conjecture is still
missing, its theoretical understanding has recently been con-
siderably deepened �3�. Still, it is known from the early years
of quantum chaos �4� that level fluctuations exhibit universal
features only on sufficiently small energy scales, or long time
scales, whereas one obtains system specific nonuniversal fea-
tures on long energy scales �short time scales� which can be
usually understood and computed in terms of short classical
orbits.

Therefore, it seems that the picture is quite complete and
satisfactory for systems possessing a well defined classical
limit. But what about simple systems which do not have a
classical limit, e.g., systems of interacting fermions, or sys-
tems of interacting qubits? In such systems, dynamical com-
plexity can be reached in the thermodynamic limit of many
interacting particles �5�. In some exactly solvable cases for-
mal similarities between the thermodynamic limit and the
semiclassical limit can be established �6�. For example, one
may start by considering simple, nonintegrable, many-
particle Hamiltonians with local interaction which are speci-
fied by only a few �nonrandom� parameters. Can quantum
spectral fluctuations of such systems be described by univer-
sal ensembles of random matrices? If yes, what are the en-
ergy scales of such universality? Is there a breaking of uni-
versality at sufficiently large energy ranges? How does the
universality breaking scale in the thermodynamic limit? In
this paper, we address these questions in a simple dynamical
system, namely an Ising chain of spin-1/2 particles on a one-

dimensional ring, kicked periodically with a homogeneous,
tilted magnetic field. We performed careful numerical calcu-
lations of quasienergy spectra and their statistical analysis.
For appropriate values of model’s parameters, corresponding
to strong integrability breaking, we indeed find both the uni-
versality regime for sufficiently small energy scales, where
no statistically significant deviations from random matrix
prediction of infinitely dimensional circular orthogonal en-
semble �COE� could be detected, and a nonuniversality re-
gime for large energy scales �or small times, corresponding
to few kicks�, where clear, statistically significant deviations
from random matrix theory �RMT� prediction have been
found. Most notably, our analysis shows that the spectral
form factor exhibits significant deviations from RMT at the
time scale corresponding to one or a few kicks �Floquet pe-
riods�. This result could be intuitively understood as a qubit
analogy of “shortest periodic orbit” correction, but its precise
theoretical understanding is at present open.

II. SYSTEM

The system we study is a kicked Ising chain �KIC� �7�,
namely a ring of L spin-1/2 particles which interact with
their nearest neighbors via a homogeneous Ising interaction
of dimensionless strength J and are periodically kicked with

a homogeneous magnetic field of dimensionless strength b� .
During the free evolution, i.e., between the kicks, the system
evolves with the unitary propagator

UIsing�J� = exp�− ıJ�
j=0

L−1

� j
z� j+1

z � , �1�

and the action of the kick is described by the unitary operator

Ukick�b�� = exp�− ı�
j=0

L−1

b� · �� j� , �2�

with � j
x,y,z being the Pauli matrices of particle j and �� j

= �� j
x ,� j

y ,� j
z�. The Floquet operator for one period is thus
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UKI = UIsing�J�Ukick�b�� . �3�

We must also impose periodic conditions in order to close
the ring: �� L��� 0. During this paper we shall use the so-
called computational basis, which is composed of joint
eigenstates of � j

z. This set of basis states can be written as
S={	m0m1 . . .mL−1
 , with mj � �0,1�}.

In order to understand the spectrum one must first discuss
the symmetries in the system. Let us start with the transla-
tional symmetry. The corresponding operator T is defined on
the computational basis as T	m0m1¯mL−1

= 	mL−1m0¯mL−2
, and is extended to the entire Hilbert
space by linearity. The action of this operator is to rotate the
particles in the ring by one site. The eigenvalues of T are
exp�2�ık /L� with k�Z/L. Hence the Hilbert space is foliated
into L subspaces H= �k�Z/L

Hk. The evaluation of the dimen-
sionality of each of these subspaces is described in Appendix
A. The evolution operator �3� is translationally invariant, and
hence �UKI,T�=0.

The next symmetry is an external reflection R. Its action
on the basis S reads R	m0m1¯mL−1
= 	mL−1mL−2¯m0
, and
also �UKI,R�=0. The two symmetries, T and R, do not com-
mute. It must be noticed that if 	�
�Hk, then R	�
�H−k.
This provides an additional symmetry within the subspace
H0 �and HL/2 for even L�. Thus these marginal subspaces are
regarded as “special” and have slightly different properties
than the rest. We shall not consider them for the purpose of
statistical analysis in this article.

Finally, we define the antiunitary symmetry K�. It acts as
a mirror reflection within each spin with respect to the plane

that contains both b� and the unitary vector in the z direction
�the direction of the Ising interaction�. We can rotate our

coordinate system around the z axis in each qubit so that b�

only has components in the x and z directions. Then, K� is
simply complex conjugation, provided that �x and �z are set
real, as is the usual choice. This symmetry operation also
changes the sign of the momentum. Composing K=K�R, we
arrive at an antiunitary symmetry that preserves the momen-
tum, i.e., an antiunitary symmetry within each Hk.

Concluding, UKI has a rotational symmetry R that foliates
the spectrum into L different sectors; the sector k has identi-
cal spectrum as the sector −k. Hence for a fixed number of
qubits we expect to have a maximum of �L−1� /2 relevant
sectors, each sector having a Hilbert space dimension N
2L /L. Since each sector has an internal antiunitary symme-
try, we shall compare the statistical properties of system’s
spectrum to those of Dyson’s circular orthogonal ensemble
�2� of random matrices, of appropriate dimension N.

For the rest of the presentation we fix parameter values of

our system J=0.7, b� = �0.9,0 ,0.9� for which the integrability
of the model is strongly broken. We believe that for these
parameter values the system is a generic representative of
quantum chaos. Using highly optimized numerical methods
�see Appendix B�, we have been able to diagonalize the
model accurately for sizes up to L=18 qubits. The eigenval-
ues of the Floquet propagator UKI have been written as
exp�−ı�n�, where �n are known as quasienergies, and have
been grouped with respect to the known quasimomentum k.

Statistical analyses of desymmetrized quasienergy spectra
��n� and their interpretation are given in the following sec-
tions. In order to compare with the RMT formulas we nor-
malize the quasienergies, i.e., write sn= �N /2���n, in order
to have mean level spacing equal to one �N denotes the
dimension of the Hilbert space�. Similarly, s= �N /2��� will
denote the spectral variable, normalized to a unit mean level
spacing.

III. UNIVERSALITY REGIME

Before starting to analyze spectral correlations we shall
first check the hypothesis that the level density is constant.
Let N�s�= # �sn�s� denote the level counting function,
which can be split into a sum of a smooth and fluctuating
part, N�s�=Nsmooth�s�+Nfluct�s�, where Nsmooth�s�=s for a flat
spectral density. Indeed we have carefully verified that all
spectral samples calculated fulfill this condition. In Fig. 1 we
show the mode-number fluctuation Nfluct�s� for a typical case
�k=6� of L=18 containing N=14 599 levels. We find with a
very high statistical significance level that Nfluct�sn� fluctuates
around zero and obeys a Gaussian distribution with a stan-
dard deviation � on the order of a single level ��1.34�.
Mode fluctuation distribution has indeed been predicted to be
a Gaussian for chaotic or general complex nonintegrable sys-
tems �8�. This finding indirectly proves that our assumption
of constant level density was correct since even tiny nonuni-
formities of spectral density should result in large deviations
in mode fluctuations. We note that there is a unique circular
ensemble of random matrices which obeys the full orthogo-
nal invariance of the measure, namely the Dyson’s COE�N�.
COE�N� can also be characterized by an equilibrium statis-
tical state, at an appropriate temperature, of a fictitious gas of
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FIG. 1. �Color online� We plot the mode fluctuation Nfluct as a
function of the level number n �upper panel� and its normalized
distribution �lower panel� for an example of a KI spectrum with L
=18 and k=6. A best fitting Gaussian is plotted for comparison with
a full curve, having �2=102.46, and 100 equal size bins have been
used. These results confirm �up to statistical fluctuations� a uniform
level density.
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N particles on a circle with a uniform external potential.
Such a gas clearly has a uniform equilibrium density.

Therefore, in line of investigations in the so-called quan-
tum chaology of classically chaotic systems in the 1980s �9�,
we shall define as universal those physical properties of a
quantum dynamical model which agree with COE�N� and
nonuniversal those which deviate from COE�N� within a
significant statistical confidence level.

Let us now focus on the study of spectral correlations in
the KI model. Let us now continue to analyze the most com-
monly studied spectral statistic of chaotic systems, that is the
nearest neighbor level spacing distribution P�s�. P�s�ds is the
probability that the distance between two nearby �unfolded�
quasienergies is between s and s+ds. P�s� has been com-
puted for the KIC and compared to the exact random matrix
COE result �computed from Padé approximants �10�� with
satisfactory results �not shown�. However, since the details
of such a plot depend on the size of the binning of histo-
grams, we prefer to show the cumulative �integrated� level
spacing distribution W�s�=�0

sds�P�s��. In Fig. 2 we show a
comparison of W�s�, both for the KIC and the exact infinitely
dimensional COE result, with the Wigner surmise
WWigner�s�=1−exp�−�s2 /4�. The expected statistical fluctua-
tion of cumulative probability can be estimated �11� as

�W =�W�1 − W�
N

�4�

and gives a very realistic estimate of actual fluctuations of
our dynamical system. We plot the results both for individual
quasimomentum k subspaces and averaged over all k. In con-

clusion, based on the nearest neighbor level spacing distribu-
tion, we find no significant deviations from universality, i.e.,
from COE model statistics.

Further on, we have studied other statistical measures of
quasienergy spectra, which are more sensitive to long-range
spectral correlations, namely the number variance and the
form factor �2�. The spectral form factor K2 is defined for
discrete time t as K2�t /�H�= 	Tr Ut	2 /N, and for infinitely di-
mensional COE has the form

K2,COE��� =�2	�	 − 	�	ln�2	�	 + 1� if 	�	 � 1,

2 − 	�	ln
2	�	+1

2	�	−1
if 	�	 	 1.� �5�

�H=N denotes the discrete Heisenberg time, namely the
number of kicks in which the average quasienergy level
separation grows to 2�. Asymptotic finite dimension correc-
tions to the form factor have been computed and, for small
��1, the result reads

K2,COE��,N� = �1 +
1

N
+ O�N−2��K2,COE��� . �6�

The number variance 
2�s� gives the variance of the number
of levels in an unfolded spectral interval of length s. The
RMT formula for infinitely dimensional COE predicts a
monotonically increasing variance 
COE

2 �s�= �2 /�2��ln�2�s�
+1+�−�2 /8�+O�s−1�, where �=0.5772. . . is the Euler con-
stant �2�. However, for a finite spectrum of N quasienergy
levels this is not possible, since when the energy difference
reaches the range of the spectrum the number of levels
counted will always be the maximum and hence the number
variance will be zero. For arbitrary finite dimension N, there
is an exact relationship �12� between 
2 and K2 that accounts
for the finite range of the spectrum:


2�s,N� =
2N
�2 �

m=1

�
1

m2sin2�m�s

N �K2� m

�H
� . �7�

Truncating the above series at finite m with the form factor
given by Eq. �6� provides an excellent asymptotic approxi-
mation to the COE number variance for finite N.

In Fig. 3 we compare the spectral form factor of the KIC
with the infinitely dimensional COE, on a global time scale
�on the order of Heisenberg time �H=N�. Of course, since
the form factor is not self-averaging we had to perform some
averaging over short time windows in order to wash away
the statistical fluctuations. We find no notable deviation from
the COE. In order to estimate the expected fluctuations due
to a finite sample of systems �namely a set of L /2 quasi-
momenta k� we have also generated a similar average over
the same number of random matrices of equivalent size. In
the inset we plot the deviations of the form factor computed
for the KIC, and the corresponding finite average over ran-
dom members of the COE, from the exact RMT prediction.
We observe that both behave similarly. In addition, we find
very good agreement for the number variance 
2 of the KIC
with the infinitely dimensional COE on short and intermedi-
ate spectral ranges s�10 �see Fig. 4�. In the inset the finite
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FIG. 2. �Color online� We study the behavior of the integrated
nearest neighbor spacing distribution, W�s�. The noisy curve shows
the difference between the numerical data for 18 qubits, averaged
over the different relevant Hk spaces, and the Wigner surmise. The
smooth �red� curve is the difference between the infinitely dimen-
sional COE solution and the Wigner surmise. The expected standard
deviation due to the finite size of the spectrum �W �see Eq. �4�� is
also indicated as the shaded area surrounding the RMT result. In the
inset we present a similar figure with the results for each of the Hk

subspaces plotted separately, together with the error associated with
each individual spectrum, as the thick black curves. �Different col-
ors represent different sectors, according to the coding shown in
Fig. 4.�
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size fluctuations are also compared with the ones computed
from appropriate finite samples of finite dimensional COE.
Again we observe agreement.

IV. DEVIATIONS FROM UNIVERSALITY

As explained in the preceding section, we expect that the
number variance for a finite spectrum reaches a maximal
value at �=� �i.e., s�N /2�. Actually, as already mentioned,
one can compute a good analytical approximation to COE
averages of number variance for finite N using Eq. �7�, and
the saturation can be understood as a consequence of dis-
creteness of time in the sinelike transformation on the right-
hand side of Eq. �7�.

Do the spectra of KIC in the regime of quantum chaos
follow the same saturation as would be expected for typical
members of the COE or not? We have performed detailed
numerical checks of these questions and report the results in
the following figures. In Fig. 5 we plot the number variance
for two different number of qubits �14 and 18� for the KIC.
We find a very clear and notable difference: The data for the
KIC tends to saturate at a different, lower value of the un-
folded spectral parameter s��N than COE, which typically
saturate only at s�N /2. Furthermore, the plateau is quite
notorious. In the next plot �Fig. 6� we have determined the
saturation threshold s� and the saturation value 
�

2 =
2�s��
as a function of the number of qubits L.

Numerical results suggest that s�0.062N2L /L,
namely that s� is proportional to N though it is smaller by a
large constant factor. The saturation value 
�

2 thus increases
logarithmically with N, or linearly with L.

Perhaps a more clear picture is obtained after going into
the time domain and inspecting the form factor K2 for a few
kicks, which correspond to large spectral ranges of 
2. This
regime is analogous to the nonuniversality regime corre-
sponding to the shortest classical periodic orbit in quantum
chaotic systems with well defined �semi�classical limit.
However, we should not forget that our spin chain does not
have any well defined classical limit or semiclassical regime.
Still, it seems that K2�1 /�H�, K2�2 /�H�, etc., notably deviate
from expectations of COE of the same dimensions as the
KIC propagator. Indeed, in Fig. 7 we show K2�1 /�H� as a
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FIG. 4. �Color online� We observe the variance 
2 for each
symmetry sector �as different symbols� and its average �thick black
curve�, for 18 qubits, for five random values of s. Note that the
lower abscissa indicates the unfolded spectral variable, while the
upper abscissa the one without unfolding. The average curve is
almost indistinguishable from the theoretical value �thin �red�
curve�. In the inset we compare the deviation of the averaged 
2 for
both the KIC �in black� and the COE �in red� from the theoretical
value 
COE

2 . No qualitative difference is observed.
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FIG. 5. �Color online� We plot 
2 for the KIC for L=14 �lower
plot� and L=18 �upper plot�. Different sectors are plotted using thin
colored curves �with the same color coding as in Fig. 4� and the
average value as the thick black curve. The theoretical �COE� pre-
diction for N dimensional circular random matrices �Eq. �7�� is also
plotted as a smooth �red� curve. We observe saturation of the stiff-
ness for the KIC, characteristic of semiclassical systems.
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FIG. 3. �Color online� In this plot we show the behavior of the
form factor for 18 qubits. The gray dots show its value at integer
times for the quasimomentum sector k=1. In order to appreciate
clearly its behavior it is necessary to perform a windowing over
short ranges of time ��H /25�. The results for each of the k spaces
are shown according to the symbol scheme in Fig. 4. Only certain
times are plotted for clarity. The average over the different spaces as
well as the theoretical curve is plotted as a black thick and thin �red�
line, respectively. In order to compare with the ensemble fluctua-
tions, we plot in the inset the difference from the theoretical predic-
tion of both the spectra for the KIC �in black� and the spectra of an
equal number of random realizations of COE members with the
same dimension with light red.
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function of L, both for individual quasimomentum k sub-
spaces and the average over all relevant k, and find very clear
and systematic deviation from COE expectation
K2,COE�1 /�H�=2 /N. Furthermore, deviation of K2�1 /�H�
is much bigger that expected COE fluctuation
of K2�1�H� which can be computed as
��K2�1 /�H�2
COE− �K2�1 /�H�
COE

2 =2 /N+O�N−2�. Actually,
in the limit N=�, few higher moments can be computed as
well and COE distribution of K2�1 /�H� is conjectured to be
exponential. In Fig. 8 we plot the relative deviation of
K2�t /�H�, for t=1,2 ,3 ,4, from the expected COE average in
terms of the number of expected standard deviations. It is
clear that, at least for one kick, the deviation is exceeding the
COE model significantly. Namely, we find the deviation in
the same direction for all different numbers of qubits L, and
for almost all L it is exceeding two standard deviations. We

also find statistically significant deviations from COE for
other values of t, in particular for t=3, while the deviations
for even arguments t=2,4 are less clear and conclusive.

A specialized reader may inquire for a comparison with
the DODO random matrix ensemble �which resembles
semiseparable systems �12��. We note that the deviations
from the COE observed in this article cannot be accounted
by the semiseparable structure of the Floquet operator �3�.

V. CONCLUSIONS

We have performed numerical calculations of large
quasienergy spectra of an interacting multiqubit system,
namely the kicked Ising chain. No analytical solution of the
model is known, i.e., the model is believed to be noninte-
grable. Consistent with previous results in the literature �13�,
we find good agreement of short-range level statistics of the
model with Dyson’s ensemble of circular random matrices.
However, when looking in detail at certain long-range spec-
tral statistics, corresponding to short times, we find notable
and significant deviations from random matrix theory. This
result reminds of nonuniversal regimes in semiclassical
chaos widely studied in the 1980s and 1990s �9�. However,
this behavior cannot be attributed to short periodic orbits,
since the system lacks any sensible definition of a classical
limit.

We believe that the numerical results are intriguing and
await theoretical explanation, perhaps in the direction of sug-
gesting a new, abstract semiclassical picture �perhaps along
the lines of Ref. �14��.
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APPENDIX A: DIMENSIONS OF THE INVARIANT
SUBSPACES

Consider the computational basis S= �	m0m1 . . .mL−1
 ,
mj � �0,1 , . . . ,d−1�� of the Hilbert space of L qudits H
=Hqudit

�L . Let us generalize the translation operator allowing
the mj’s to have integer values between 0 and d−1. The
Hilbert space H is foliated into L subspaces Hk such that for
any 	�
�Hk, T	�
=exp�2�ık /L�	�
 and H= �k=1

L Hk. Let Pk

be the orthogonal projection operator, such that Pk	�
�Hk,
for any 	�
�H. An elegant solution to the problem of cal-
culating dim Hk is presented here, following �15�.

We first study the condition under which a state 	n
�S is
projected to the null ket �zero vector�. Let J be the smallest
positive integer such that TJ	n
= 	n
; we call J the primitive
period of 	n
. The action of the projection operator Pk on 	n

is

Pk	n
 = � �
j=0

L/J−1

��J,k� j���
j=0

J−1

� j,kT
j�	n
 , �A1�

with �l,k : =e−2�ılk/L. Notice that Pk	n
=0 if and only if �
=� j=0

L/J−1��J,k� j =0. Since � is the sum of a geometric series,
its calculation is straightforward: �=0 if and only if �J,k
�1. As a conclusion we obtain that Pk	n
�0 if and only if
kJ /L�Z.

Define the equivalence relation � in S as 	n
�	m
 if there
exists an integer j such that 	n
=Tj	m
. Furthermore, if 	n

�	m
, then Pk	n
 Pk	m
, but if 	n
�	m
, then ��n	Pk

†�
��Pk	m
�=0. In other words, elements in different equiva-
lence classes are projected to orthogonal states. Thus count-
ing the equivalence classes which are not projected to zero
yields dim Hk.

Let Ñ�J� be the number of equivalence classes whose el-
ements have given primitive period J. If we call N�J� the
number of elements in S that have primitive period J, then

N�J�=JÑ�J�. Notice that

�
�	J	L/J�N�

N�J� = �
�	J	L/J�N�

JÑ�J� = dL �A2�

as the only allowed values for J are the divisors of L. Using
the Möbius inversion formula we obtain

Ñ�J� =
1

J
�

�	m	J/m�N�
�� J

m
�dm. �A3�

Möbius function � is defined over the positive integers as
��1�=1, ��n�=0 if n is divisible by the square of a prime,
and in any other case, ��n�= �−1�p, where p is the number of
prime factors of n. Then, collecting our results,

dim Hk = �
�	J	L/J,kJ/L�N�

Ñ�J� , �A4�

since the only possible primitive periods J are the divisors of
L. However, the value of dim Hk is well approximated by
2L /L for large values of L.

APPENDIX B: OPTIMAL BASIS FOR DIAGONALIZATION
OF KIC

To get the spectra used in this paper, it is crucial to de-
velop an optimal diagonalization scheme. Though the tech-
niques relying on the Lanczos method �16� are fast they are
not completely reliable. They lose precision as soon as some
eigenvalues are close enough. In our experience the Lanczos
method allows us to obtain the full spectra for systems of up
to 21 qubits, but the intrinsic numerical error becomes com-
parable to the mean level spacing. Even for 18 qubits, the
biggest numerical error in one level is already bigger than
the smallest interlevel spacing. As we are performing very
precise tests we require that our levels are highly reliable,
making Lanczos a prohibitively inexact method. We prefer
using direct diagonalization with specialized routines �17�.

Let Us,KI=Ukick�b� /2�UIsing�J�Ukick�b� /2� be the symme-
trized version of UKI, which however has the same spectrum
due to unitary equivalence. Using an appropriate basis is
important both to take advantage of the natural block diago-
nal decomposition of Us,KI �due to symmetry P� and its sym-
metric character �due to symmetry K�. The basis is con-
structed as follows. Let 	n
 be a representative of a class
defined by � �see Appendix A� and such that Pk	n
�0. If
�n	RPk	n
=0, then both Pk	n
±KRPk	n
 are used as members
of the basis. If �n	RPk	n
�0, at least one of Pk	n
±KRPk	n

is not the null ket, and can be incorporated into the base. By
choosing 	n
 from all different classes we build a complete
basis in Hk. Moreover, this basis is invariant under K and is
orthogonal.
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