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Nonequilibrium properties of the one-dimensional hard-point gas system
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We discuss the stability properties of a one-dimensional hard-point gas. We study the decay of the Loschmidt
echo which describes the stability of the motion under system perturbations. We show a universal behavior in
the echo decay which is intimately connected to the linear dynamical instability of the motion. In particular, in
spite of such a weak instability, the asymptotic decay follows a simple exponential law.
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The understanding of the statistical behavior of classical
systems of finitely many particles from the underlying mi-
croscopic motion is one of the outstanding problems in sta-
tistical mechanics. The existing ergodic theory and the more
recent achievements in nonlinear dynamical systems provide
a sufficiently satisfactory frame for such understanding. In
particular we have now a fairly good classification of differ-
ent statistical properties: at the one end of the so-called er-
godic hierarchy we have integrable systems—a prototype of
which is the system of harmonic oscillators. At the opposite
end we have the exponentially unstable systems like the gas
of hard spheres with strong chaotic properties. However, in
between these two extreme categories there is a rich variety
of behavior which is the realm of most physical systems
about which much less is known, our knowledge being
mainly based on numerical experiments. In particular it
would be highly interesting to have a physical model, in
between the two above cases, for which clear statistical prop-
erties can be established so that it may serve as a firm ground
for further investigations [1].

This is the purpose of the present paper and, to this end,
the one-dimensional hard-point gas of alternating particles
m; and m, appears to be a good candidate since it is known
to exhibit linear instability and numerical evidence has been
provided [2] for mixing behavior when the mass ratio r
=m,/m; is an irrational number. The Hamiltonian of this
system can be written as

N 2
p4

H=2 >+ V(g -q)), (1)
j=1 2m;

where g; and p; are canonical coordinates and V(g>0)=0
and V(g<0)=co. In our computations we take my;_;=1 and
my;=r with r=(y5+1)/2. Periodic boundary conditions are
used; namely, we consider particles on a ring of circumfer-
ence 1, so that the mean spacing between each pair of par-
ticles is a=q;,1—¢q;=1/N. We fix the total (kinetic) energy
E=N, and we measure time in terms of the integer number n
of all collisions up to a given instant.

Our interest is to answer some important questions such
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as how a small imperfection will influence the later fate of a
system, how static errors or random fluctuations will change
the motion and to what extent orbit instability can influence
the decay rate of physical quantities. In this connection an
important quantity is the sensitivity of the system’s behavior
to small perturbations in the Hamiltonian. It can be described
by the so-called fidelity, or Loschmidt echo, which is defined
as the overlap of two time evolving states (phase-space dis-
tributions) which, starting from the same initial condition,
evolve under two slightly different Hamiltonians.

In the following, we formulate the problem in the lan-
guage of many-particle Loschmidt echoes [3]; namely, we
chose a specific (macroscopic) set M in a many-particle
phase space. Then we prepare an ensemble of systems dis-
tributed uniformly in M, propagated forward with unper-
turbed evolution, and propagated backward with the per-
turbed evolution for time ¢. The probability to return to the
original set M, or statistically, the relative fraction of the
orbits arriving there, gives the fidelity F(z). If T,(z) denotes
the many-body map propagating the system for time n start-
ing from a phase space point z and p(z) denotes a character-
istic function on the set M, then the fidelity can be written as

Fa(n)=‘l/ f dNzp[ T(2) o[ T (2)], (2)

where V is the phase-space volume of the set M. For the
perturbed evolution we take the same Hamiltonian (1) in
which the mass of every other particle is slightly changed—
ie., my_ =1 and my=r+4.

The behavior of classical fidelity has been recently dis-
cussed [3-8], largely motivated by previous results in the
quantum domain [4,9-14] and by the possible use in quanti-
fying stability of quantum computation [15]. In particular it
has been shown [7] that for classically chaotic, exponentially
unstable systems, the decay rate of fidelity is perturbation
independent and, asymptotically, fidelity decays as correla-
tion functions. However, very recently, a different universal
behavior of classical Loschmidt echoes has been suggested
for systems—the example being an abstract triangle map
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FIG. 1. (Color online) Correlation c(n) versus time n. The solid
line is n~!. Inset: integrated correlation function o [Eq. (7)] versus
particle number N. The data follow the N law very well.

[16]—which lacks exponential instability but at the same
time displays a mixing property [17]. Such dynamical behav-
ior is sometimes called pseudochaos [1].

In this paper we present analytical and numerical evi-
dence that the one-dimensional (1D) hard-point gas exhibits
a universal scaling law for the fidelity decay characterized by
a universal scaled time variable |8|*°n. This nicely confirms
and generalizes to a many-body physical system, the results
previously obtained for an abstract triangle map [16], and
shows that the scaling behavior is a universal feature of the
linear mixing property. Since our model is in fact a many-
body system where the thermodynamic limit N— % can be
studied, we also derive, using some mild statistical assump-
tions, the scaling of relevant physical quantities with the size
N.

Let us first provide additional, convincing evidence for
the mixing property of the 1D hard-point gas by demonstrat-
ing the decay of autocorrelation functions. To this end we
plot in Fig. 1 the autocorrelation

c(n') = (k(mk(n +n")), - k(n));, (3)
where
K= 3 tmpdn) @
j=1,3,5,.4.2 ’

is the total kinetic energy k(n) of all particles at odd positions
at time 7. It is seen that, for finite N, the asymptotic decay of
c(n) is at least as fast as n~'. Note that this may be different
from the hydrodynamic behavior of 1D hard-point gas in the
thermodynamic limit N— o where a power law decay of
correlations ¢, with « between 0.65 and (.75, has been
typically observed [18,19].

We turn now to the echo decay and discuss first orbit
instability. We will make reference to the triangle map when-
ever needed. Indeed the triangle map contains the essential
ingredients of the evolution of the hard-point gas, which may
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FIG. 2. (Color online) (a) Average distance in coordinate space
d(n) versus time n for two nearby initial orbits of the unperturbed
system. The orbits are initially separated in velocity space by the
distance d,,(0)=10"'2, and the average is taken over 2 X 107 differ-
ent initial conditions. The dotted line has slope 1. (b) Average dis-
tance versus time for two orbits starting from the same initial con-
dition and evolving under the unperturbed and perturbed
Hamiltonian respectively, with 6= 107'2. The data are averaged over
2 X 107 different initial conditions. The dotted line has slope 1.5.
Note that large vertical jumps in d,(n) observed in all data are due
to occurnences of triple collisions for sufficiently long times—
namely, the fact that the two observed initially nearby orbits may
experience a different sequence of collisions and hence become
macroscopically different.

be considered as a high-dimensional billiard inside an
N-dimensional polytope—namely, the free evolution and the
discontinuous phase-space displacements which correspond
to collisions of pairs of adjacent particles.

Let x;=g;,1—q;=0 denote the interparticle distance and
let us consider the distance ij(n):xj’- (n)=xj(n) of two
orbits—say, x;(n) and xjf(n)—of two nearby Hamiltonians
(separated by 8). Assuming that collisions happen in a statis-
tically uncorrelated and random way, we can write the diffu-
sion law in momentum space as [Ap;(n)]*o C&*|n/N|, with
the constant C independent of perturbation &, size N, and
time n. The time is scaled by N in order to account for the
fact that a fraction of 1/N collisions happen for the specified
pair of particles j. Further, knowing that the linearized evo-
lution is parabolic, we immediately have [ij(n)]2
o Ca®&|n/N|? (see Ref. [16] for a very similar argument). It
follows that the coordinate space—Euclidean distance—
between the above pair of orbits scales as
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FIG. 3. (Color online) Short-time fidelity decay 1—F s(n) versus
& n. The solid line has slope 2.5. In order to compute fidelity we
divide the phase space into eight cells (boxes) as described in foot-
note 1. We then take 2 X 107 initial points in the phase space and
evolve these points with the perturbed Hamiltonian up to time n.
Then we perform the reverse evolution with the unperturbed Hamil-
tonian for time n and compute the fraction of points which fall
again in the initial cell, after the total time 2n.

N 32
a(m =2 [P = Nagm| =Ccla’s. ©)
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In Fig. 2 we present a numerical confirmation of this result
together with the expected linear distance growth between
two neighboring orbits of the same Hamiltonian.

Let us now derive the fidelity decay for short times and
sufficiently small perturbation strength 6. In this perturbative
approximation, which is accurate as long as 1 —F 5(n) <1, the
fidelity can be written simply as the probability [16] that the
orbits of the two evolutions (perturbed and unperturbed) fol-
low the same history of collisions; i.e., they do not get sepa-
rated by a triple-collision manifold. Thus to leading order in
¢ fidelity decays only due to a pair of collisions happening at
different places (at the same time) for the two orbits. In other
words, we write fidelity as one minus the total probability
P(n) that up to time n at least one collision happens at a
different place. We assume that due to the strong ergodic
properties of the system [18], collisions happen pseudoran-
domly and uniformly. Then for a specific but arbitrary pair of
particles—say, j,j+1—we have P(n)=2",_|Ax/(n')|/a and
write the fidelity as

n5/2

3
F,S(n)=1—P(n)=1—5C|61w. (6)

The numerical results of Fig. 3 nicely confirm the scaling (6)
and reproduce with high accuracy the theoretical time depen-
dence.
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FIG. 4. (Color online) Long-time fidelity decay [Fgs(n)—u]/
(1-u) versus &°n. Here u=V/Vy=1/2, 1/4, 1/8 (for
N=4,8,12, respectively) is the relative volume of the initial set M
on the energy surface, giving the asymptotic value of fidelity. The
straight lines give the expected asymptotic exponential decay with
slopes which scale as «N*3, Here we take 4 X 10° intial conditions
for N=4 and 8. For N=12 we take 6 10'? initial conditions in
order to compute the fidelity for longer times. The scaling has been
checked with different values of &.

For long times, we follow the general renormalization ar-
guments of Ref. [16]. Namely, in the nonperturbative regime,
fidelity should be a universal function of a single parameter
Fyn)=¢(|8*°c'"n). Here o is the integrated correlation
function of the perturbation of the Hamiltonian

o

0'2% > ). (7)

n=—o0

The numerical reults in Fig. 1 show that o is indeed finite
and grows with N as o« N2, This is a simple consequence of
the fact that the kinetic energy is an extensive quantity
k(n) <N implying c(0)ocN. If in addition we assume that
c(n) decays faster than 1/n, within a time scale of N colli-
sions (or a collision per particle), then the quantity o appear-
ing in the scaling parameter is o=DN?, where D is some
constant independent of &, n, and N.

The numerical results in Fig. 4 show a very good agree-
ment with the theoretically predicted scaling (on n, N, and 6)
and give the long-time asymptotic ¢(n)=exp(-n). Hence we
have a prediction for the scaling of long-time fidelity decay
of the hard-point gas:

Fsn) = exp(= C'|&*°N*"n), (8)

where C’ is a numerical constant independent of &, n, and N.
In order to numerically compute the Loschmidt echo, the
energy surface, or the momentum space, is divided into
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either two, four, or eight cells of equal size,1 and one of them
is chosen as our set M with known volume V. Initially, N
particles (we take N=4, 8, and 12) are randomly placed on a
ring of unit length. The velocities of the particles are also
randomly chosen while the total kinetic energy is fixed to
unity. Then the particles move freely unless elastic collisions
happen. We evolve each initial state up to n collisions, then
reverse all the velocities and evolve the system again
but with the perturbed mass distribution: m,;_ ;=1 and my;
=r+ 9, again up to n collisions. Then we compute fidelity as

'In order to keep numerical experiments as simple as possible, we
divide the energy surface, or momentum space, into n cells of equal
volume u=V/Vgp=1/n. The case n=2 is trivial: the two cells are
defined by v;>0 and v;<0, for any particle i where v;=p;/m,.
However, since the total momentum and the total kinetic energy are
conserved and because we measure time as the total number of
collisions, it is not trivial to uniformly divide into a larger number
of cells. There is, however, a simple solution for the division into
n=2,4,8 cells provided the number of particles is a multiple of 4.
Indeed let us take four vectors

e I vr 1 \r
e, 1 0 -1 0
S = ©)
e3 o 1 0 -1
ey Vr =1 \r -1
and the additional vector
§= (vy \“';Uz U3 \““‘;04 )T~ (10)

Notice that ¢;-5 is the total momentum which is always conserved
and may be trivially set to zero. Now take \;=¢;-5, i=2,3,4. Then
the conditions \;>0, \;<0, i=2,3,4, and their combinations di-
vide the momentum space to 2, 4, and 8 cells equally.
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the fraction of states which fall again in the initial cell M.

We would like to stress that the results presented in this
paper remain qualitatively the same for random (noisy) per-
turbation of masses (after each collision we choose a differ-
ent uncorrelated random value of ). This is consistent with
our analytical arguments which only require decay of tempo-
ral correlations and thus work even better in the case of noisy
perturbation.

In conclusion, we have discussed the stability properties
of an important example of classical many-body systems
with intermediate, neither integrable nor chaotic dynamics—
namely, the 1D hard-point gas. By means of analytic calcu-
lations and numerical simulations we have derived two uni-
versal regimes of fidelity decay, for short and long times,
both being characterized by a universal scaled time variable
|8%5n.

In particular our results provide clear empirical evidence
that in the presence of small imperfections, the accuracy of
observable quantities can decrease exponentially with time
even though errors of trajectories propagate in time only lin-
early or according to a power law. In our opinion this is a
remarkable property which calls for the attention of the
mathematical community. In some sense this behavior re-
sembles the situation in quantum mechanics, where, apart
from the Ehrenfest time, logarithmically short in 7, there is
no exponential instability [20].
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