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The Burnett coefficient B is investigated for transport in one-dimensional quantum many-body systems.
Extensive numerical computations in spin-1/2 chains suggest a linear growth with time, B(t) ~ ¢, for
nonintegrable chains exhibiting diffusive transport. For integrable spin chains in the metallic regime, on the
other hand, we find a cubic growth with time, B(¢) ~ — D23, with the proportionality constant being simply a
square of the Drude weight D,,. The results are corroborated with additional studies in noninteracting quantum

chains and in the classical limit of large-spin chains.
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Introduction. Understanding classical and quantum diffu-
sion in deterministic Hamiltonian systems is one of the most
ubiquitous problems of statistical physics [1]. In Fourier space
of momentum ¢, diffusion is described by the well-known
equation

Pg(t) = —q*D(1) py (1),

and manifests as the simple exponential relaxation of a har-
monic density profile at a characteristic time scale T = 1/¢°D.
The strict derivation of diffusion from truly microscopic
principles remains a challenge to theorists [2], and the problem
is often simplified to a mere calculation of the diffusion
coefficient D(¢) in the limit ¢ = 0 via the famous Green-Kubo
formula [3]. It has become clear that D(¢) can diverge in inte-
grable systems [4], D(¢) o t [5], due to the lack of sufficient
scattering, which is a key issue for understanding large thermal
spin transport in quantum magnets [6] or thermalization in
cold atomic gases [7]. On the other hand, D(¢) is believed
to be constant, D(¢) = D, in generic nonintegrable systems
as a consequence of microscopic Hamiltonian chaos [1]. This
raises the important question of whether diffusion is the rule
rather than the exception.

The existence of diffusion can only be clarified by taking
into account finite momentum g # 0 [8,9]. The first higher
order correction can be systematically described by the so-
called Burnett coefficient B(¢) [1,10,11],

0g(1) = [=q>D(0) + ¢*B(t) + - - -1 py (2), 2)

which may diverge even for dynamical processes with a
constant D(¢) [10]. Even though Burnett coefficients have
been extensively studied in the literature for various classical
models, in particular for Lorentz-type gases [11,12], essen-
tially nothing is known about Burnett coefficients in quantum
systems.

In this Rapid Communication we do the first steps by
calculating B(#) numerically for various one-dimensional,
integrable and nonintegrable models, including spin-1/2 X X Z
chains, large-spin chains, and more abstract models of quan-
tum transport. We generally observe the moderate divergence
B(t) ~ B’t, for cases with a constant D(t) ~ D. At the

D(t) = D, (1)
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characteristic time scale 7, this observation implies
pet =1)=[-¢"D+q*B'/D+---1p,t =7), (3

i.e., Burnett coefficients are a relevant correction at any
finite momentum g # 0, which speed up or slow down the
still diffusive relaxation (if |B’| < D?). For ballistic cases
with D(t) ~ Dpt, on the other hand, we find the stronger
divergence B(t) ~ —D2t* with the Drude weight Dy, as the
constant of proportionality.

Diffusion and Burnett coefficient. Following Refs. [10,12,
13] the quantum Burnett coefficient B(¢) may be introduced
by formally expanding the decay rate of density-density
correlation functions in g. This expansion leads to the time-
dependent diffusion coefficient

1 t
D(1) = ;/(; iy f(n), [f@)=JO)J@),  4)

given as a time integral over the two-point correlation function
of the current operator J(¢) in the Heisenberg picture, where
(o) = tr(e)/dim denotes an equilibrium expectation at high
temperatures, as considered in this Rapid Communication. The
further occurring prefactor x is a constant and denotes the
“static susceptibility” [14].

The time-dependent Burnett coefficient is the difference
between two contributions,

B(t) = 14(1) — (1), (&)

where the first term I4(¢) is given by

2 t n %)
I4(1) = —/ dtlf dtz/ drz (J(O)J(1)J (22)J (13))  (6)
X Jo 0 0

as a triple-time integral over the time-ordered four-point
current autocorrelation function. The second term

2 t h %)
L) = —/ dl‘l/ dtz/ dey [f(t) f(t2 — 13)
X Jo 0 0
+f)ft —)+ f(B)fE —0)] (7N

is a similar time-ordered integral but over products of two-
point correlations [15]. Conveniently, this contribution can
be rewritten as I, »(t) = 2x D(¢) fot dt; D(t)), particularly

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.87.050103

R. STEINIGEWEG AND T. PROSEN

unveiling the linear increase I, ,(f) ¢t in the case of a
existent diffusion constant. However, despite the apparent
divergence of I,_,(¢) in that case, the Burnett coefficient can
still remain finite, as discussed in the following. To this end,
assume for the moment that (i) the two-point correlation f(z)
is a & function 6(¢) and that (ii) the four-point correlation
(J(0)J(t1)J(t2)J(t3)) can be factorized as f(#3)f(t; — ).
Then the contributions I,_»(¢) and I4(¢) are identical and,
as a consequence, the Burnett coefficient vanishes exactly.
Giving up the assumption (i) by broadening the 6 function still
allows for a finite Burnett coefficient. While the assumption
(ii) appears to be crucial, it may be fulfilled for a nonintegrable
model with J, in the energy eigenbasis, being a random Hermi-
tian matrix and, consequently, J2 being close to proportional
to an identity matrix.

Anisotropic spin-1/2 Heisenberg chain. We are going to
investigate the transport of magnetization in the spin-1/2
XXZ model as a paradigmatic example of an interacting
many-particle quantum system in one dimension. The XX Z
Hamiltonian is given by

L
H= Z (SKSK,  +SYS)  +ASIS). (®)
r=I1

where S; 7" are the components of spin-1/2 operators at site
r, L is the number of sites arranged periodically, L + 1 = 1,
and A is the anisotropy. The magnetization current

L
J= (S8 = SS) ©)

r=1

commutes with H in the noninteracting case A = 0. In that
case (due to (J?) =L/8, (J*) =3(L>—L)/64, and x =
L/4), one obtains directly D(t) =t/2 and B(t) = —t3/16,
which for A > 0 remains only an approximation at short
times, in agreement with Eq. (4) of Ref. [9]. Remarkably, at
A = 0 a series expansion of density autocorrelations (Bessel
functions [16]) leads also to g> D(t) and —g* B(t) as the leading
terms, a convincing consistency check of the present approach.

In the metallic regime, 0 < |A| < 1, the magnetization
current is still partially conserved such that the two-point
correlation f(¢) does not decay to zero but remains at
a finite Drude weight Dy, = lim;— f(¢), 0 < Dy, < 1/8,
recently proven by establishing positive lower bounds in the
thermodynamic limit [4]. This finite Drude weight implies
the linear increase of the diffusion coefficient at long times,
D(t) «x 4Dyt, just as in the case of A = 0. By factoring
the four-point correlation at long times [17], one derives the
asymptotics of the Burnett coefficient as

B(r) ~ —4D2>. (10)

In Fig. 1 we demonstrate this result by numerically simulating
B(t) for finite length L = 10,...,18 using all invariant
subspaces (translation, magnetization) and also using fourth-
order Runge-Kutta integration for generating time order [15]
(step size 6t = 0.02). While Fig. 1 clearly shows for A = 0.5
a stronger than quadratic increase of B(¢) with time, it also is
consistent with B(t) ~ —(0.63)?#3/16 at long times, e.g., 63%
of the Drude weight in the case of A = 0. Remarkably, the
exact Drude weight at A = 0.5 for finite L = 18 (20) is 63%
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FIG. 1. (Color online) Burnett coefficient B(t), divided by #2, for
the spin-1/2 XX Z chain at A = 0.5 for L = 8,10, ...,18 and all
magnetization sectors. At short times or at A = 0 (free fermions),
B(t)/t* is given by the function —t/16 (dashed curve). In addition, a
function —(0.63)?¢/16is indicated (dotted curve); see prediction (10).

(62%) of the Drude weight at A = 0, while the lower bound
in the thermodynamic limit is 56% [4].

Eventually, we discuss the regime A > 1, where Drude
weights are expected to vanish in the thermodynamic limit
and strong evidence of magnetization diffusion has been
found in nonequilibrium bath scenarios on the basis of the
Lindblad equation [19,20]. The diffusion coefficient has been
shown to behave as D(z > 3.0/A) ~ 0.88/A at vanishing
[5] and finite momentum [9]. We focus on the Burnett
coefficient B(¢) in this Rapid Communication. Figure 2(a)
shows numerical results summarizing an order of a CPU-year
of simulations and plotting, for convenience, |dB(t)/dt| in
a log-log scale. Several comments are in order: First, after
the already discussed t3 behavior at short times, the Burnett
coefficient changes its sign, visible as the zero drop in Fig. 2(a),
and indicates a correction towards an insulator. Second, curves
for L > 12 have converged for times after the zero drop
and show at least the tendency to form a plateau at r ~ 4
for L — oo, then indicating a linearly increasing Burnett
coefficient B(t) o t. Third, even though a possible plateau
is not pronounced yet, the contributions I4(¢) and I,_(¢)
increase linearly with time at ¢ ~ 4; see the inset of Fig. 2(a).
Notably, the Burnett coefficient turns out to be the small
difference between both contributions, which by themselves
diverge with L. This divergence does not appear in the modular
quantum system, discussed later. Finally, we show in Fig. 2(b)
numerical results for the modified nonintegrable X X Z model
HA+ A, St Sf+2 with A, = 0.5. While the overall structure
of |dB(t)/dt| is similar, an emerging plateau is more clearly
visible for the accessible lengths, hence pointing towards a
linearly increasing Burnett coefficient again. Summarizing, a
linear asymptotic scaling B(¢) o ¢ is clearly suggested in either
integrable or nonintegrable regimes with a finite diffusion
constant.

Heisenberg chains in the large-spin limit. In addition we
present results on the classical limit of the considered spin
chains, where we focus on the case A = 1.5 and A, =0.5
only. In that limit the magnetization current is a function
of classical unit (angular momentum) vectors. We obtain
their dynamics by numerically integrating the corresponding
Hamiltonian equations of motion. Formally, the diffusion
coefficient in Eq. (4) and the Burnett coefficient in Eq. (5)
remain defined the same way, but the equilibrium average at
high temperatures is now performed by sampling over a set
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FIG. 2. (Color online) Absolute value of the derivated Burnett
coefficient, |d B(t)/dt|, for the spin-1/2 XX Z chain at A = 1.5 (a),
and for its nonintegrable modification with A, = 0.5 (b). Numerical
results (solid curves) for L = 10,12, ...,18 are shown in a log-log
plot. In addition to the short-time behavior (dashed curves), the
long-time behavior is extrapolated in panel (b) using the observed
exponential scaling with L (dotted curve). Inset: The contribution
14(?) by itself increases with L.

of completely random initial configurations; see Ref. [18], for
instance. While the required number of initial states decreases
with the chain length L for the evaluation of the diffusion
coefficient [21], the situation turns out to be different for
the evaluation of the Burnett coefficient. As in the quantum
case, the Burnett coefficient is the small difference between
two contributions, which by themselves diverge with L.
Thus, errors due to insufficient averaging increase with L
and can only be compensated by taking into account more
initial configurations. Approximately N & 108 initial states
are already required for a chain of length L = 90, taking about
a CPU-year of computation time. In Fig. 3 we summarize these
results for three different sizes L = 18, 36, 90. Apparently,
D(t 2 10) becomes independent of time for all considered
lengths L > 18. Remarkably, the quantitative value D ~ 0.65
is close to the expectation for the diffusion constant in the
quantum case [21]. Furthermore, B(¢ = 10) is observed to
increase linearly in time, at least for the largest two sizes
L > 36. The latter observation indicates the linear divergence
of the Burnett coefficient in diffusive classical spin chains. This
is in clear agreement with the finite-size results in the quantum
case (see Fig. 2), indicating that the underlying mechanism
“survives” the transition to the classical limit.

Modular quantum system. Due to a delicate counterbalance
of the terms I, and I,_,, the calculation of Burnett coefficients
for many-body systems is extremely demanding. Thus, in
order to corroborate our prediction that B(¢) ot for one-
dimensional lattice systems with finite diffusion constants,
we make another numerical experiment in a single-particle
diffusive quantum system—the so-called modular quantum
system [5,22]. Each of the L local modules features an identical
spectrum, consisting of n equidistant levels in a band with the
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FIG. 3. (Color online) Classical (a) diffusion coefficient D(t),
(b) the contribution 14(¢), and (c) Burnett coefficient B(¢) forthe X X Z
model at A = 1.5 with A, = 0.5. Numerical results (solid curves) on
finite length L = 18, 36, 90 are obtained by numerically integrating
the Hamiltonian equations of motion (fixed step size §r = 0.05) and
by averaging over N ~ 10® completely random initial states. The
average over only N = 10”7 « 10? is also indicated (symbols). In
panel (c) results for a 2.5x smaller time step are shown (dotted
curves). Straight lines (dashed curves) serve as guides to the eye.

width §e. Therefore, the local Hamiltonian at the position r is
given by h, = Zu wée/n |r,u)(r,u| in the one-particle basis
|r,u). The nearest-neighbor interaction between two local
modules at the positions r and r + 1 is v, = Am, + H.c.,

my =Y culru)(r + 1Lyl (11)

v

with the overall coupling strength A. The r-independent
coefficients ¢, , are a single realization of complex, random,
and uncorrelated numbers: Their real and imaginary part are
both chosen corresponding to a Gaussian distribution with the
mean 0 and the variance 1/2. Of particular interest is the pro-
bability for finding the particle somewhere within the rth local
module. The associated local current is j, =1 Am, + H.c.
with a form very similar to v,, e.g., almost completely random
(apart from the translation invariance and the necessary
Hermitian property).

The modular quantum system is one of the few quantum
models which have been reliably shown to exhibit diffusion
with a finite diffusion constant, reading Dy (t > 7 /8€) =
27 A?n /e for weak coupling [22] and Dy, = (> 1/A/2n) =
A/ /2 for strong coupling [5]. One might expect a finite
Burnett coefficient due to both the presence of diffusion and
the random elements of the current. For instance, because J2
is close to an identity matrix, one may be tempted to factorize
as (J(0)J(t))J () J(t3)) = f(t3) f(t; — 12), then allowing for
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FIG. 4. (Color online) Diffusion coefficient D(¢) and Burnett
coefficient B(¢) for the modular quantum system at coupling (a), (c)
A =0.0005 and (b), (d) A = 1.0. (Other parameters: n = 500, e =
0.5.) Numerical results (solid curves) on arbitrary length L are shown
for a representative translation subspace (momentum k = m/5).
Results agree well with the theoretical predictions (dotted curves).

a finite Burnett coefficient. However, the latter factorization
already fails when all time arguments are equal. In fact,
(J*) = 2£(0)> = 81*n?, resulting from an additional coherent
sum over the off-diagonal elements of J2. Instead, fulfilling the
static property, we may choose the unbiased factorization of
(J(0)J (1) J (12)J (83)) into 2/3[ f (1)) f(t2 — t3) + f(t2) f(t1 —
t3) + f(t3) f(t; — t2)], yielding the relation I4(t) = 2/31,_»(¢)
between the two contributions to B(¢). Therefore, noting that
x = 1, this choice leads to the linearly increasing Burnett
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coefficient
B(t > 1)~ —3Dj}r. (12)

For verification, we present in Fig. 4 numerical results on
D(t) and B(t). Because the linear growth of the Hilbert
space with L is compensated by translation invariance, the
dimension of a momentum k subspace is only set by the level
number n, chosen as n = 500 to ensure a sufficient number
of states. Since we do not find a significant dependence on k,
Fig. 4 depicts numerical results for a single k subspace. The
quantitative agreement with the theoretical predictions on D(¢)
and B(t) clearly demonstrates a linearly increasing Burnett
coefficient despite the existence of a diffusion constant, which
is in agreement with the previous results on spin chains, but
much clearer due to computational simplicity of the model.

Conclusion. In this Rapid Communication we presented
extensive numerical and theoretical investigations of Burnett
coefficients in quantum chains. We conjectured and supported
the general statement that in the thermodynamic limit Burnett
coefficients diverge linearly, B(¢) o ¢, in diffusive regimes
with finite diffusion constants. Recall that this linear diver-
gence is still consistent with diffusion but causes Burnett
coefficients to be a relevant correction at arbitrary small
momentum. In ballistic regimes with positive Drude weights,
on the other hand, we demonstrated the cubic divergence
B(t) o< t3. This behavior is remarkably different than for
Lorentz billiard-type classical systems and and calls for a
deeper theoretical analysis.
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