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Complexity and nonseparability of classical Liouvillian dynamics
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We propose a simple complexity indicator of classical Liouvillian dynamics, namely the separability entropy,
which determines the logarithm of an effective number of terms in a Schmidt decomposition of phase space
density with respect to an arbitrary fixed product basis. We show that linear growth of separability entropy
provides a stricter criterion of complexity than Kolmogorov-Sinai entropy, namely it requires that the dynamics
be exponentially unstable, nonlinear, and non-Markovian.
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I. INTRODUCTION

How can one characterize the algorithmic complexity of
Liouville evolution dρt/dt = {ρt ,H }Poisson bracket of conserva-
tive classical dynamics with Hamiltonian H? Is Kolmogorov-
Chaitin complexity of individual orbits related to the com-
plexity of field solutions ρt (z) (z denoting a collection of
2d phase space coordinates) of the Liouville equation? The
answer is “no,” as shown by a paradigmatic example of
chaotic dynamics, the stretching and folding baker’s map,
which is equivalent to the Bernoulli shift on an infinite binary
symbol sequence (coin tossing), so its orbit dynamics is
algorithmically complex but its Liouville evolution is exactly
solvable [1]. More generally, one can identify two extreme
cases of exact solvability in conservative (closed and noiseless)
classical dynamics, namely (i) orbitwise exact solvability,
which is associated with a Liouville integrability and the
existence of a complete set of constants of motion, and
(ii) fieldwise exact solvability, which is associated with the
existence of a finite Markov partition and symbolic dynamics
[2,3].

The fundamental question that we address in this paper
is whether the notion of complexity qualitatively changes
when we focus our attention from individual orbits to time-
dependent statistical ensembles. The latter is more com-
mon and meaningful in statistical mechanics. We propose
to apply a concept of a Schmidt rank and entanglement
entropy—common in quantum-information theory [4]—to a
joint probability distribution of several classical (dynamical)
variables in order to describe the growth rate of complexity
of the description of classical field solutions of the Liouville
equation. In this way, a new and conceptually very simple
measure of complexity is defined, the separability complexity,
which exactly vanishes in both cases (i,ii) of exact solvability
and thus hopefully detects genuinely hard cases of classical
deterministic dynamics, even in the statistical sense. The utility
of the new measure is demonstrated and compared to the char-
acteristics of the transport and diffusion in Fourier space (being
common measures of Hamiltonian turbulence) for several
nontrivial examples of chaotic and regular two-dimensional
(2D) and four-dimensional (4D) classical dynamical maps.
One should note that introducing either classical noise or
quantum effects introduces a natural cutoff scale to a phase
space resolution and thus qualitatively reduces such a notion
of complexity. Quantum or noisy classical dynamics can

become genuinely complex only in the (thermodynamic) limit
of increasingly many degrees of freedom.

II. SEPARABILITY ENTROPY AND COMPLEXITY
INDICATORS

To make our discussion simple but general, we shall
consider discrete dynamical systems, say stroboscopic or
Poincaré maps of Hamiltonian dynamics, given in terms of
a Lebesgue-measure preserving invertible map zt+1 = φ(zt )
over a compact phase space M ⊂ R2d . The map induces
a unitary Perron-Frobenius operator over the Hilbert space
L2(M) of phase space densities, (Ûρ)(z) ≡ ρ[φ−1(z)]. For
simplicity, we shall identify the phase space with a 2d-
dimensional torus M = T 2d (while more general cases can be
treated with obvious modifications) and consider an arbitrary
phase space decomposition M = T d ⊕ T d � z ≡ (x, y) into
two sets of d coordinates, which could, for example, describe
two disjoint subsets of degrees of freedom, or x could be
positions and y momenta, etc. The phase space decomposi-
tion induces factorization of the Hilbert space of densities
L2(M) = L2(T d ) ⊗ L2(T d ). Let us write the time-evolved
Liouville density as ρt (x, y) = (Û tρ0)(x, y) and normalize
it in an L2 sense as

∫
d2d z|ρt (z)|2 = 1. Then we write the

Schmidt (or singular value) decomposition of the density,

ρt (x, y) =
∑

n

vt
n(x)μt

nw
t
n( y), (1)

in terms of two sets of orthonormalized functions {vt
n}, {wt

n},
n = 1,2 . . . and a set of Schmidt coefficients {μt

1 � μt
2 �

· · · � 0} satisfying
∑

n |μt
n|2 = 1. In practice, we can treat

ρt (x, y) as a matrix of row x and column y and consider
sufficiently fine discretization of continuous variables x, y ∈
T d so that the results do not depend on it. Let us define a
separability entropy (s-entropy) as a logarithm of an effective
number of terms in decomposition (1),

h[ρt ] = −
∑

n

∣∣μt
n

∣∣2
ln

∣∣μt
n

∣∣2
, (2)

which gives a quantitative measure of separability of phase
space density with respect to a given phase space decomposi-
tion [5]. Alternatively, h[ρt ] can be computed as von Neuman
entropy h[ρt ] = −tr[Rt ln Rt ], where Rt are trace-class, pos-
itive, self-adjoint operators on L2(T d ) with integral kernels
Rt (x,x′) = ∫

dd yρt (x, y)ρt (x′, y). Note that s-entropy h[ρt ]
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does not depend on the coordinate system we use for each
phase space factor space, since decomposition (1) is invariant
under invertible measure-preserving transformations of the
form (x, y) → (χ(x),η( y)), namely it only depends on phase
space decomposition and dynamics φ. A nontrivial phase space
decomposition can be generated from a canonical one in terms
of some phase space diffeomorphism π : M → M, namely
z = π (x, y), and the corresponding s-entropy is computed as
h[ρt ◦ π]. Now, let us assume that for sufficiently complex
dynamics, s-entropy can grow proportionally with time, and
define its asymptotic growth rate as s-complexity,

Cs[φ] = inf
π

sup
ρ0

lim
t→∞

1

t
h[ρ0 ◦ φ−t ◦ π ], (3)

taking first a supremum over initial densities ρ0 and later an
infimum over the phase space decompositions π [6]. Clearly,
any complete and accurate (numerical) representation of phase
space density ρt needs at least O(exp(h[ρt ])) terms of the
form (1), so O(exp(Cst)) estimates [7] the necessary amount
of classical computing resources needed to simulate Liouville
dynamics up to time t , but is it sufficient?

As an alternative measure of algorithmic complexity of
Liouville dynamics, we define the Fourier entropy (f-entropy)
as the logarithm of an effective number of Fourier harmonics
ρ̃t (k) ≡ (2π )−2d

∫
d2d zeik·zρt (z), k ∈ Z2d , needed to simulate

the solution for time t , namely

g[ρt ] = −
∑

k∈Z2d

|ρ̃t (k)|2 ln |ρ̃t (k)|2, (4)

and the corresponding f-complexity as

Cf[φ] = sup
ρ0

lim
t→∞

1

t
g[ρ0 ◦ φ−t ]. (5)

O(exp(Cf t)) gives a sufficient amount of classical computing
resources needed for accurate simulation of Liouville dynam-
ics up to time t , but is it necessary? Summarizing, we state the
following two inequalities:

Cs � Cf � 2dλmax, (6)

where λmax is the maximal Lyapunov exponent which deter-
mines the smallest scale ∼ exp(−λmaxt) on which ρt (z) can
vary, in each of 2d phase space directions.

For the first inequality (6) to be saturated, it would mean
that both s-complexity and f-complexity yield a sufficient
and necessary amount of computing resources for Liouvillian
simulation. As indicated later in numerical experiments, this
may not generally be true. For the second inequality (6) to
be saturated, it is required that the one-dimensional unstable
manifold along the maximally unstable Lyapunov direction
densely covers a finite-measure portion of the 2d-dimensional
phase space, and moreover, that the exploration of the modes
of the Fourier space is not sparse, as it is, for example, in
the case of linear automorphisms on the torus (cat maps).
This may typically be the case—as indicated later—at least in
low-dimensional maps.

It is interesting to note that for any map with a finite Markov
partition—and thus admitting exact symbolic dynamics with
a finite grammar—we have Cs = 0 since in the Markov
coordinates the separability [or the number of terms in (1)]

is preserved. For linear toral (cat) maps, we even have
Cf = 0 since the number of Fourier harmonics is preserved
in time even though their magnitude may be growing. Positive
s-compexity, Cs > 0, thus represents a very strong condition
implying practical unsolvability of Liouville dynamics due to
chaotic motion and nonexistence of a finite Markov partition.

III. NUMERICAL EXAMPLES

Let us now illustrate our concepts by discussing a set of
numerical experiments. Firstly, we consider four different
examples of 2D (d = 1) symplectic toral maps, (x ′,y ′) =
φ(x,y): (i) perturbed cat map (PC) (as in [8]) y ′ = y + x −
α sin x,x ′ = x + y ′ with α = 0.5 as an example of a nonlinear,
non-Markovian but uniformly hyperbolic Anosov system;
(ii) nonsymmetric standard map (SM) y ′ = y + α sin x +
β cos(2x),x ′ = x + y ′ with α = 2,β = 2 as an example of
a strongly chaotic but nonuniformly hyperbolic system with
small islands of regular motion of negligible area; (iii)
integrable (Suris) map [9] (IM) x ′ = 2x + 4 arg(1 + αe−ix) −
y,y ′ = x with α = 0.5 as an example of a nontrivially
integrable map with a separatrix; and (iv) triangle map
[10] (TM) y ′ = y + α sgn(x − π ) + β,x ′ = x + y ′ with α =
π (

√
5 − 1)/2,β = πe−1 as an example of a dynamically

mixing system without exponential sensitivity (all assignments
understood mod 2π ). In Fig. 1, we show time-evolving phase
space densities ρ−t for all four maps at t = 3,5,7, all starting
from the same simple initial density ρ0(x,y) = (2 + cos x +
cos y)(2π

√
5). Note that the three maps PC, SM, and TM

exhibit dynamical mixing behavior, although for TM the
mixing mechanism is qualitatively different [11]. Only the
orbits of the first two maps (PC and SM) have positive
Kolmogorov complexity, with estimated Lyapunov exponents
(being equal to Kolmogorov-Sinai entropies) λPC

max = 0.9496,
λSM

max = 0.8206, and only PC exhibits exponential decay of
correlations,

∫
d2 zρ0(z)ρt (z) − 1 ∼ exp(−ξ t), with ξPC =

1.17, while for SM and TM correlations decay as power laws.

t=
3

t=
5

t=
7

Perturbed cat Standard map Suris map Triangle map

FIG. 1. Snapshots at t = 3,5,7 (top-down) of Liouville dynamics
starting from initial density ρt=0(x,y) = (2 + cos x + cos y)(2π

√
5)

for the four 2D toral maps (PC, SM, IM, TM, left-right) introduced
in the text. The gray scale indicates the probability density ρt (x,y)
(zero is white, maximal is black).
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FIG. 2. Snapshots at t = 3,5,7 (top-down) of Liouville density
in Fourier space ρ̃t (kx,ky), starting from ρ̃0(kx,ky) ∝ 4δkx ,0δky ,0 +
δ|kx |,1δky ,0 + δkx ,0δ|ky |,1, for the four different 2D toral dynamics (PC,
SM, IM, TM, left-right) introduced in the text. The gray scale
indicates probability density (zero is white, maximal is black),
while axes labels Kx and Ky indicate the Fourier space range
[−Kx,Kx] × [−Ky,Ky], which is scaled (both in the x and y

directions) with the map’s Lyapunov exponent exp(tλmax) from the
top to bottom panels.

In Fig. 2, we display the corresponding Fourier transformed
densities ρ̃−t to demonstrate the exponential expansion of
the distributions of Fourier harmonics in the chaotic cases
(PC,SM), resulting in a positive f-complexity. Indeed, as
we show in Fig. 3, the f-entropy grows linearly with the
upper bound Lyapunov rate (6), namely Cf = 2λmax, which
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FIG. 3. Separability entropy h(t) = h[ρt ] (a,b) and Fourier en-
tropy g(t) = g[ρt ] (c,d) for two cases of chaotic dynamics, PC (a,c)
and SM (b,d). Discretization (truncation) with N = 2p nodes in real
(Fourier) space along each (x and y) direction is used, and data for
p = 14 (black, full curves and symbols), p = 13 (dark gray, short
dash), and p = 12 (light gray, long dash) are shown. For p = 12,14
we use the same initial density ρ0 as in Figs. 1 and 2, while for p = 13
(only for PC) a different initial state with Fourier harmonics populated
up to |k| = 4 is used to demonstrate the same asymptotic growth
rates, indicated with dash-dotted lines: Cs = 1.00 (a), Cs = 0.952
(b), Cf = 2λPC

max = 1.90 (c), Cf = 2λSM
max = 1.64 (d).
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FIG. 4. Separability entropy h(t) = h[ρt ] (lower curves) and
Fourier entropy g(t) = g[ρt ] (upper curves) for nonchaotic dynamics,
integrable IM (a), and nonintegrable TM (b). Data for discretization
dimension N = 2p with p = 14 (black curves) and p = 12 (gray
curves) are shown, where dash-dotted lines suggest asymptotic
logarithmic growths ∼ ξ ln t , with ξ = 0.333 (s-entropy for IM),
ξ = 0.667 (f-entropy for IM), ξ = 1.0 (s-entropy for TM), and
ξ = 2.5 (f-entropy for TM).

we believe should be a generic behavior for chaotic maps,
whereas for s-complexity we find consistently smaller values
CPC

s = 1.00, CSM
s = 0.952. Note that completely different

behavior is found for linear chaotic maps, or maps with exact
symbolic dynamics like the unperturbed cat map or the baker’s
maps, where we find Cs = 0. In nonchaotic maps (IM,TM) we
find zero s- or f-compexity, where the temporal growth of s- or
f-entropy is likely to be logarithmic (see Fig. 4 and its caption
for details).

The numerical results on s-complexity are supplemented by
showing the temporal snapshots of the full Schmidt spectrum
μt

n in Fig. 5. In the chaotic cases (PC, SM) with positive
s-complexity, the full spectrum asymptotically scales as μt

n ∝
f [n/(Cst)], and the tail of f (x) decays faster than the power
law, while in the regular or nonchaotic cases (IM, TM), μt

n

converges, as t → ∞, to a universal power-law profile μt
n →

const/n.
Secondly, we consider an example of 4D (d = 2) toral

automorphism, a simple extension of a perturbed cat map to
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FIG. 5. Singular value (Schmidt) spectra as a function of time for
t = 3 (full curves), t = 5 (long dashed), and t = 7 (short dashed), for
the dynamics: PC (a), SM (b), IM (c), and TM (d) using discretization
dimension N = 214. Base-10 logarithm log10 u(n) of u(n) = |μt

n|2 is
plotted against log10 n, and in nonchaotic cases (c,d), the dash-dotted
line indicates u(n) ∝ 1/n2 scaling.
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FIG. 6. Separability entropy h(t) = h[ρt ] and Fourier entropy
g(t) = g[ρt ] for 4D perturbed cat maps: doubly hyperbolic (DH)
(a) and loxodromic (Lo) (b). We take discretization and truncation
to N = 2p nodes in each of four phase space directions with p = 7
(black, full curves) and p = 6 (gray, dashed curves), initial state
described in text. The dot-dashed straight lines give the suggested
asymptotic rates, CDH

s = 2.95 (a), CLo
s = 1.12 (b), C

DH,Lo
f = 4λDH,Lo

max

(c,d).

T 4, φ(z) ≡ (z′
1 + β1 sin z′

3,z
′
2 + β2 sin z′

4,z
′
3,z

′
4), and z′ ≡ Cz.

As for the linear part, we take exactly the same two cases as in
Ref. [12], namely the doubly hyperbolic (DH), and loxodromic
(Lo) cases, with 4 × 4 matrices

CDH =

⎛
⎜⎝

2 −2 −1 0
−2 3 1 0
−1 2 2 1

2 −2 0 1

⎞
⎟⎠ ,

CLo =

⎛
⎜⎝

0 1 0 0
0 1 1 0
1 −1 1 1

−1 −1 −2 0

⎞
⎟⎠ ,

and we take nonlinearities β1 = 0.2,β2 = 0.3, resulting
in, respectively, maximal Lyapunov exponents λDH

max = 1.60
and λLo

max = 0.525. Decomposing x = (z1,z2), y = (z3,z4), we
show in Fig. 6 numerical simulation of s- and f-entropy, starting
from the initial state with random lowest Fourier harmonics,
i.e., ρ̃0

k being independent random complex Gaussian variables
for k · k � 1 and ρ̃0

k = 0 otherwise. Again, we obtain, consis-
tently with the 2D case, that the f-entropy grows at a rate that
is close to 4λmax, saturating the second bound in (6), and that
the s-complexity is systematically substantially smaller but
positive, namely CDH

s = 2.95, CLo
s = 1.12.

It should be noted that our numerical experiments provide
only partial support for the meaningfulness of the definitions
and conjectures stated in Sec. II, although the results seem very
suggestive. For example, the supremum over initial density ρ0

has been tested by increasing the Fourier support of ρ0, which
typically did not result in an appreciable difference in the

asymptotic growth rate of h[ρt ]. On the other hand, we have
not yet been able to address systematically the infimum over
the phase space partitions π in the definition (3). However,
several trials of varying π indicated that the numerical result—
the value of Cs—may indeed be insensitive to composing
with (smooth) π , whereas it seems very plausible that for
nonsmooth π the asymptotic growth rate of h[ρ0 ◦ φ−t ◦ π]
cannot lower. Furthermore, it would be a future challenge
to come up with examples of s-complex Liouville dynamics
where the positivity Cs > 0 could be rigorously proven.

IV. CONCLUSION

We have proposed a simple quantitative measure of com-
plexity of classical nondissipative Liouvillian dynamics. The
so-called separability entropy (whose asymptotic growth rate
defines what we call s-complexity) is inspired by the entangle-
ment entropy [4] of quantum states, adapted to classical joint
probability distributions of several, or many, variables. Note
that a similar complexity measure in the quantum Liouville
space (or operator space) has been used as an indicator of
quantum dynamical complexity and quantum chaos [13]. It
has been argued here that the separability entropy measures the
minimal amount of computation resources needed to simulate
the classical Liouvillian evolution. Based on simple numerical
examples of discrete time dynamical systems on 2D and 4D
compact phase space, we have demonstrated that s-complexity
is nontrivial and typically smaller than the exponential growth
rate of the number of Fourier harmonics (f-complexity). For
example, for Hamiltonian dynamics with many degrees of free-
dom, one might encounter interesting situations with strong
Hamiltonian turbulence (large f-complexity), which may be
efficiently simulable by a classical version of time-dependent
density-matrix renormalization group (in the manner of [14]) if
s-complexity is small. Our concept is fundamentally different
from other popular complexity measures in chaos theory,
such as the Kolmogorov-Sinai entropy, that characterize
the complexity of individual trajectories and often fail to
provide any meaningful complexity information about the
time-dependent Liouvillian density.

Our concepts have interesting quantum extensions. We note
that f-complexity has already been used to characterize the
complexity of quantum time evolution in terms of a Wigner
function [15]. We suggest that s-complexity could have a
similar quantum phase space extension, but it would provide
a sharper discriminant between quantum chaotic and quantum
regular motions.
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