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Using an approach based on the time-dependent density-matrix renormalization-group method, we study the
thermalization in spin chains locally coupled to an external bath. Our results provide evidence that quantum
chaotic systems do thermalize, that is, they exhibit relaxation to an invariant ergodic state which, in the bulk,
is well approximated by the grand canonical state. Moreover, the resulting ergodic state in the bulk does not
depend on the details of the baths. On the other hand, for integrable systems we found that the invariant state
in general depends on the bath and is different from the grand canonical state.
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The emergence of canonical ensembles in quantum statis-
tical mechanics from first principles is one of the key re-
maining old questions of theoretical physics. Even the defi-
nition of the temperature at the nanoscale poses a challenge
�1�. Namely, the main question is how to “derive” the ca-
nonical distribution? It has been realized that the canonical
distribution is in a way “typical:” provided the overall sys-
tem describing the environment plus a central system is in a
generic pure state, the reduced state of the central system is
with high probability canonical �2�. However, how precisely
the canonical distribution arises from dynamical laws, with-
out a priori statistical assumptions, is still unclear. The mo-
tivation in the study of this fundamental aspect of nonequi-
librium physics also comes from some recent experiments
with ultracold bosonic gases, where absence of thermaliza-
tion in closed integrable strongly correlated quantum systems
has been observed �3�.

For closed many-body systems, integrability is believed to
play a crucial role in the relaxation to the steady state �SS�:
the nonequilibrium dynamics of a chaotic system is expected
to thermalize at the level of individual eigenstates �4� as
numerically observed in several physical models �5�. By con-
trast, for systems with non trivial integrals of motion, SSs
usually carry memory of the initial conditions and are not
canonical: maximizing the entropy while keeping the values
of constants of motion fixed results in a generalized Gibbs
ensemble �6�. Much less is known about the relaxation to the
SS for open quantum systems �7�; this is what we are going
to address in this paper. We provide numerical evidence that,
analogously to closed systems, the occurrence of thermaliza-
tion is strictly related to system’s integrability, irrespective of
the fine details of the baths. In particular we show that lo-
cally coupling a quantum chaotic many-body system to an
environment is enough for a SS of the central system to be
very close, in the bulk, to the canonical or grand canonical

state �GCS�. On the contrary, if the system is integrable, the
constants of motion in general prevent thermalization and the
form of the SS sensitively depends on the bath coupling
operators.

We will treat open systems within the Lindblad master
equation approach, in the rotating wave approximation. The
reason for choosing such a Lindblad formulation is twofold.
On one hand, we are explicitly interested in understanding if
a completely positive map that acts locally at each small time
step can induce thermalization. This would result in a mini-
mal modification of closed system’s dynamics, for which a
number of significant and widely applicable findings has
been established, such as a general nonthermal behavior for
integrable systems. On the other hand, this approach pro-
vides us a practical way to devise and test an efficient nu-
merical method for simulating strongly interacting quantum
systems in equilibrium at finite temperatures, as well as in
nonequilibrium settings. We are going to show that the nu-
merical description of an open quantum system in terms of a
Lindblad equation with local coupling to the reservoirs is in
some sense a computationally efficient minimal model of
thermalization. Such result paves the way for future simula-
tions of quantum transport in large many-body quantum sys-
tems.

It is worth pointing out that the master-equation formula-
tion for the treatment of open systems is not unique: in prin-
ciple one could also use a Redfield approach. In this way an
asymptotic “thermal” state would be achieved in an arbitrary
system �8�, so to speak, by construction. Unfortunately, the
Redfield formulation is very difficult to treat both theoreti-
cally and numerically. Namely, numerical simulations of the
Redfield equation in strongly interacting system are very de-
manding since the relaxation tensor scales with the fourth
power of the Hilbert-space dimension �9�.

The time evolution for a generic state � of an open quan-
tum system can be described, under certain approximations,
by a Lindblad master equation �8�, being the most general
form of a completely positive trace preserving dynamical
semigroup,
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d

dt
� =

i

�
��,H� + L̂B� , �1�

where H is the Hamiltonian of the autonomous system,

while the dissipation L̂B=��k��Lk� ,Lk
†�+ �Lk ,�Lk

†�� is param-
etrized by Lindblad operators Lk �hereafter we set �=kB=1
and, unless noted otherwise, �=1�. The derivation of Eq. �1�
from first principles, i.e., from the Hamiltonian evolution of
a system plus environment is rather tricky �8�. For instance,
for weakly coupled system one can end up with a Lindblad
equation that fails to correctly account for a nonequilibrium
current �10�. Our approach though will be top-down, taking
the Lindblad equation for granted, we ask ourselves if,
within this approximation, a finite many-body system can
thermalize when coupled via some Lindblad operators Lk
acting only locally just on few degrees of freedom.

To elucidate the role covered by chaoticity in the thermal-
ization process, we consider prototype one-dimensional spin-
1/2 chain models with nearest-neighbor interactions:

H = �
l=0

n−2

hl,l+1, �2�

where hl,l+1 denotes the local energy density and n denotes
the chain length. As we shall see, the chosen models exhibit
a crossover from integrable to chaotic regime when a suit-
able parameter in their Hamiltonians is varied. With the term
“chaotic” we refer, as usual, to a system whose bulk energy
spectrum of highly excited levels obeys a random matrix
statistics �11�; in particular, the level spacing statistics �LSS�
p�s� is well approximated by the Wigner-Dyson distribution
pWD�s� �11�, whereas in an integrable system LSS typically
turns out to be Poissonian, pP�s�.

We assume local coupling to the reservoirs, i.e., the dis-

sipator L̂B acts only on the m ��n� leftmost �l� and rightmost

�r� spins: L̂B= L̂B
l

� 1̂bulk � L̂B
r . We construct L̂B by general-

izing the method discussed in Ref. �12�. For this purpose, we
first consider the GCS for the spin chain,

�G�T,�� = Z−1 exp�− �H − ��z�/T� , �3�

where �z=�l=0
n−1�l

z is the total magnetization �� j
	�	=x,y ,z�

being the Pauli operators for the jth spin�, T is the
temperature, � is the “chemical potential,” and
Z=tr�exp�−�H−��z� /T�� is the partition function. Given a
target temperature Ttarg and a chemical potential �targ, the
reduced m-spin target density matrix �targ


 , 
� �l ,r�, is ob-
tained after tracing �G�Ttarg ,�targ� over all but the m leftmost/
rightmost spins. We finally require that �targ


 is the unique

eigenvector of L̂B

 with eigenvalue 0, while all other eigen-

values are equal to −1. Such a choice produces, in absence of

H and for a given spectral norm of L̂B

 , the fastest conver-

gence to �targ

 �13�. In the presence of H we obtain, for up to

n�100 spins, the SS solution of Eq. �1� numerically by us-
ing a time-dependent density-matrix renormalization-group
�tDMRG� method with a matrix product operator �MPO� an-
satz �14�.

In the following we are interested in the asymptotic state
that is reached after a long time, independently of the initial

conditions: �SS	 limt→� ��t�. In all the simulations we care-
fully checked that the simulation time was long enough to
reach convergence, which is exponential. Since Lindblad op-
erators act only locally and �G�T ,�� is invariant for the uni-
tary part of Eq. �1�, �SS cannot be equal to the GCS, unless it

is also an eigenstate of the dissipator L̂B. In other words, one
can have �SS=�G�T ,�� only if �G�T ,��=�targ

l
� �bulk � �targ

r ,
i.e., if the GCS is separable with respect to the border m
spins which are used in the coupling. Nevertheless for cha-
otic systems, as we shall see, sufficiently far from the bound-
aries the state is arbitrarily close to �G�T ,��, regardless of
the entanglement with the coupled parts.

Let us start our numerical investigations by considering a
spin-1/2 Ising chain in a tilted magnetic field, described by
the energy density

hl,l+1 = Jl�l
z�l+1

z +
bx

2
��l

x + �l+1
x � +

bz

2
��l

z + �l+1
z � . �4�

Its only conserved quantity is the total energy, therefore the
expected invariant state is the canonical one �G�T ,0�. To
check thermalization, we solved the master equation for two
different sets of parameters: �i� a transverse field bx=1 ,
bz=0, for which the model is integrable and exhibits a Pois-
sonian LSS; �ii� a tilted field bx=1 , bz=1, for which it is
chaotic with a Wigner-Dyson LSS �15� �if not specified, we
take Jl=1 and couple two border spins, m=2�. With the ob-
tained �SS, we evaluated expectation values of several one-
and two-spin observables in the bulk of the chain and com-
pared them to the theoretical ones as given by the canonical
state �G�T ,0�.

In the main plot of Fig. 1 we show one-spin expectation
values 
�n/2

	 �=tr��SS�n/2
	 � for the chaotic case: all numerical

points fall on the curve given by theoretical expectation val-
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FIG. 1. �Color online� One-spin observables for the SS �sym-
bols� agree with the theoretical canonical ones �full curve� to less
than 0.5% for the chaotic Ising model �main plot�. For the inte-
grable model �inset� a comparable agreement is observed by look-
ing at energy density vs 
�n/2

x � �note that, in this specific case, one
has 
�n/2

z �	0�. Squares are for n=16 and uniform couplings; circles
�triangles� for n=16 �n=40� and couplings Jl switched on over a
layer of thickness �=4, with �=0.2. Marks on theoretical curves
show the temperature.
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ues for a canonical state. The same happens in the integrable
Ising model. Such irrelevance of integrability is a peculiarity
of certain few-body observables, similarly to what observed
in a different context of out-of-equilibrium dynamics in
closed systems �16�. Quite remarkably, we could not reach
temperatures in the bulk below �1.7 �see squares in Fig. 1�,
even by using very small Ttarg�0. The reason resides in the
already mentioned boundary effects due to entanglement be-
tween the boundary two spins and the bulk chain, which
makes the cooling difficult. This must be contrasted with a
zero attainable temperature in the case of separable states
�17�. For entangled states though, our results show that
to lower the minimal attainable temperature one has to
reduce the effect of interaction at the boundaries which
is responsible for entanglement. A possible way to do this
is by switching on the interaction gently over a boundary
layer of certain thickness �, Jl=sin� l

�


2 � �Jn−2−l=sin� l

�


2 ��, for

l=0, . . . ,�−1, at the left �right� end and using a weaker cou-
pling � �circles and triangles in Fig. 1�. One could reason-
ably ask whether such method would be the most efficient
way to achieve the lowest temperatures; the answer to such
question is at present not clear and would demand a separate
study that goes beyond our purposes. Here we surmise that
chaoticity plays a major role in the thermalization process of
open systems; on this basis, one could perhaps expect to be
able to reach lower temperatures for larger systems because
chaos would set in at lower temperatures �5�.

To make comparison between �SS and �G�T ,0� quantita-
tive, we determined the “measured” temperature Tmeas to
which �SS corresponds, which is in general different from
Ttarg, due to boundary effects. Assuming that the SS is ca-
nonical in the bulk, one can extract Tmeas by comparing ob-
servables that uniquely set the temperature. For the Ising
model �Eq. �4��, the energy density is sufficient, therefore we
used the condition tr�hn/2−1,n/2�SS�	 tr�hn/2−1,n/2�G�Tmeas ,0��
to compute Tmeas. We then calculated theoretical expectation
values of other observables, through �G�Tmeas ,0�; a compari-
son with the corresponding values for the reached SS may

serve as an indicator of the quality of thermalization. In Fig.
2 we show differences between expectation values of �l

x�l+1
x ,

computed with �SS and �G�Tmeas ,0�, for both chaotic and
integrable Ising chains. A marked distinction between the
two cases appears. First, in the chaotic model errors are
much smaller than in the integrable one; second, switching
Jl gradually, which should decrease errors due to smaller
boundary effects, in the integrable case even worsens the
situation. The integrable Ising model therefore does not relax
to a canonical state in the bulk. Similar results are obtained
for other few-spin observables, as well as for the lowest mo-
ments of the energy distribution: we evaluated 
��H6
− 
H6�� /5�p� �p=2, . . . ,5 and H6 is the Hamiltonian of the
six central spins� on the states �SS and �G�Tmeas ,0�. In a chain
of n=40 spins relative errors are never greater than 1% in the
chaotic case, and are typically an order of magnitude larger
in the integrable case.

To corroborate the importance of system’s integrability on
the convergence to invariant statistical ensembles, we con-
sider another prototype model of interacting spins: the
Heisenberg XXZ chain in a magnetic field, described by the
energy density

hl,l+1 = Jl��l
x�l+1

x + �l
y�l+1

y + ��l
z�l+1

z � +
bl

2
�l

z +
bl+1

2
�l+1

z .

�5�

If the field is homogeneous the model is integrable and
possesses, besides energy and magnetization, an infinite
sequence of conserved quantities �18�. On the other
hand, integrability can be broken, e.g., simply by means
of a period-3 staggered magnetic field, b3k=−B , b3k+1
=−B /2, b3k+2=0. In order to highlight the lack of thermal-
ization in the integrable regime B=0, we target a non-
Gibbsian state different from the GCS; namely, we use
�non−G�T ,q��exp�−H /T+qQ4�, with Q4=−h0,1−hn−2,n−1
+�l=0

n−4ql
�4�, ql

�4�=�l
x�l+1

z �l+2
z �l+3

x +�l
y�l+1

z �l+2
z �l+3

y , being a con-
served charge for an open chain with �=0 and bl=0 �18�.
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FIG. 2. �Color online� Absolute differences in the expectation
value of a two-spin observable �n/2

x �n/2+1
x between the SS and the

theoretical canonical state, in the case of chaotic �full symbols� and
integrable Ising model �empty symbols�. Dashed lines denote con-
stant relative error.
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The idea is that, using a qtarg�0, in the integrable regime the
SS exhibits strong deviations from the GCS, corresponding
to q=0, while we expect chaotic dynamics to drive the bulk
toward the GCS. Such expectation is confirmed by our nu-
merical data. In Fig. 3 we show the spatial dependence of
various observables for integrable, as well as for chaotic
cases. In the integrable cases deviations from the GCS ex-
pectations are large, while they become very small for a
chaotic system. Analogously to the Ising model, we checked
this statement also for other few-spin observables �we found
that, in presence of chaos, the largest discrepancy among all
the one- and two-spin observables amounts to 2�10−4�; lay-
ered interactions in the integrable model do not help in ther-
malizing the system.

A further confirmation of the role of integrability comes
from a direct analysis of the quality of thermalization after
gradually switching on the perturbation that drives the
crossover from integrability to chaos: the longitudinal field
bz in Eq. �4� or the staggering intensity B in Eq. �5�.
As shown in Fig. 4 for the Heisenberg model, such cross-
over is conveniently detected by the parameter �	
�p�s�
− pWD�s��ds /
�pP�s�− pWD�s��ds; �=1 and �=0 correspond
to Poissonian and Wigner-Dyson distributions, respectively.
In the same figure we also plot deviations in 
q�4�� evaluated
on the SS and on the corresponding GCS: �q�4�=tr�ql

�4���SS
−�G�Tmeas ,�meas��� as the strength B of the staggered mag-
netic field is increased. The progressive onset of chaos

gradually improves the quality of thermalization, being �q�4�

a monotonic decreasing function of B. Moreover, the
strength of the staggered field required to converge to the GC
expectation value drops with the system size.

In conclusion, we have shown that, within the Lindblad
equation formalism, coupling a one-dimensional quantum
chaotic system locally to a bath results in a SS being equal
to the invariant �grand� canonical state, far away from
the coupled sites. In contrast, integrable systems do not ther-
malize and their SSs exhibit strong deviations from the
�grand�canonical state, depending on the details of the cou-
pling. The fact that for chaotic systems the SS does not de-
pend on the details of the coupling, shows that very likely
the same result would be obtained even for a harder-to-treat
Hamiltonian evolution of a system plus environment or for
higher dimensional systems. Our method should be appli-
cable also to nonequilibrium situations. Indeed, by locally
coupling a system to two or several baths at different values
of temperature and chemical potentials, one should be able to
efficiently control local thermalization. Thus, our results
might open significant new perspectives in the simulation of
quantum transport in many-body quantum systems in contact
with thermal and chemical baths.
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