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We study time evolution of entanglement between two qubits, which are part of a larger system, after
starting from a random initial product state. We show that, due to randomness in the initial product state,
entanglement is present only between directly coupled qubits and only for short times. Time dependence of the
entanglement appears essentially independent of the specific Hamiltonian used for time evolution and is well
reproduced by a parameter-free two-body random matrix model.
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I. INTRODUCTION

In the last few years quantum entanglement is one of the
most active research fields in quantum physics, for a review
see Ref. �1�. On microscopic level of coherent quantum sys-
tems entanglement can be used in various quantum protocols
to perform nonclassical operations. On the other hand, in the
world of macroscopic objects with many degrees of freedom
at high temperatures there is apparently no observable mani-
festation of entanglement. There have been many attempts to
explain this classicality of macroscopic systems. Most nota-
bly, decoherence due to external degrees of freedom is usu-
ally credited as being responsible for the disappearance of
entanglement from macroscopic superpositions. The argu-
ment goes as follows: Even if the system is in an entangled
state at the beginning, e.g., in a coherent superposition of
two macroscopic states, time evolution will in general trans-
form this coherent superposition into an incoherent �i.e.,
classical� mixture. The reason for such decoherence is an
always present residual coupling of our central system to
many uncontrollable external degrees of freedom—the envi-
ronment. For a review of decoherence see Ref. �2�. However,
one must be aware that the evolution of the central system
plus environment is still unitary and therefore, even though
the final state of the central system and environment will
presumably be very complex, in principle, it will be a pure
state possessing some bipartite entanglement.

The resolution of this apparent paradox is similar to the
one with the second law of thermodynamics �3�. Increasing
of the thermodynamic entropy with time is seemingly in con-
tradiction with the reversibility of the underlying equations
of motion. For explanation one can use two observations: �i�
practicality—performing time reversal by, e.g., reversing ve-
locities of all particles might be close to impossible from a
practical point of view; �ii� probability—initial conditions
are prevalently of such form that in almost all cases the en-
tropy will subsequently increase. Similar arguments can be
used to explain the apparent lack of entanglement in quan-
tum systems with many degrees of freedom. First, even
though the joint pure state representing the central system
and environment is bipartite entangled, the detection of en-
tanglement might be close to impossible because it would
require very complex measurements involving very many
degrees of freedom. Indeed, using entanglement witnesses it
has been shown that the detection of entanglement in a suf-
ficiently complex state gets exponentially hard with increas-
ing number of particles �4�. For all practical purposes the

detection of entanglement in such states is impossible. The
second argument, that is the role played by initial conditions
in the course of losing entanglement by time evolution is the
subject of the present work.

We are going to study how the entanglement between two
qubits changes during Hamiltonian time evolution. Hamil-
tonian evolution will act on a system of totally n qubits, two
of which will be chosen as our central system of interest
while the remaining n−2 will act as the “environment.” The
idea is to study how a general Hamiltonian evolution
changes entanglement of a smaller subsystem, whose de-
grees of freedom we presumably are able to control and
therefore also measure its entanglement. Time evolution with
a general Hamiltonian, say quantum chaotic one, will in gen-
eral produce states whose statistical properties are well de-
scribed by those of random quantum states. For random
quantum states on n qubits, one knows �5� that tracing out
n−2 qubits will, for large n, with high probability result in a
separable two-qubit reduced density matrix. Therefore, suf-
ficiently “complex” time evolution will eventually wipe out
entanglement between two qubits. How are things then, for
instance, in integrable systems, which in general do not gen-
erate completely random states? One point we have not
touched so far is the role played by initial conditions. For
integrable systems there can exist simple initial states for
which entanglement will persist also for long times, never-
theless, as we will see, the majority of initial conditions is
such that entanglement between two qubits will rapidly de-
cay with time irrespective of the Hamiltonian. This univer-
sality will be a consequence of the generic form of initial
states—their randomness.

The initial pure state will be chosen to be a product state
on the central system �two qubits� and either random or ran-
dom product state on the rest. Therefore, initially there will
be no entanglement between the two chosen qubits. We are
then going to study how much entanglement can be produced
by various Hamiltonian evolutions and how long will it take
until it disappears. Entanglement will change with time due
to two competing effects. One is entanglement production
due to time evolution with nonseparable Hamiltonian, while
the other is entanglement loss due to the spreading of initial-
state randomness throughout the system and the approach of
the system’s state to a random state. The net result will be the
increase of entanglement at short times and a complete lack
thereof after some critical time. In addition, time dependence
of entanglement will turn out to be universal, that is indepen-
dent of the specifics of the Hamiltonian used in time
evolution.
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There have been many studies of entanglement evolu-
tions, let us here mention only those that are closer to the
present work and deal with two-qubit entanglement. Evolu-
tion of concurrence for initial product states has been studied
for the XY model in magnetic field in Ref. �6�, see also Ref.
�7�. For sufficiently strong coupling between qubits concur-
rence initially increased with time after which it rapidly de-
creased to zero, similarly as in the present work. Evolution
of entanglement for initially entangled states of two qubits
�Bell states� which are weakly coupled to a generic environ-
ment has been studied in �8�. In such cases entanglement
monotonically decreases with time from its maximal value at
time zero. Evolution of entanglement for the initial Bell state
in an integrable XY model has been studied in �9�. Our
Hamiltonian will be homogeneous in space and therefore the
two qubits of the central system will be coupled. This must
be contrasted to studies of the so-called environment induced
entanglement generation �10�, where two qubits are un-
coupled. Disappearance of entanglement �on average� after
finite critical time found in the present work is reminiscent of
the so-called sudden death of entanglement, where initially
entangled state of two uncoupled qubits becomes separable
after a finite time of open system dynamics �11�. A system
consisting of two spins coupled to electrons has been studied
for initial separable states in Ref. �12�, while time evolution
of entanglement for initial thermal states in a XY model has
been considered in Refs. �13,14�. For concurrence in a
kicked Ising model see �15�. In �16� it has been found that
starting from an initial nondisordered product state in a spin-
glass model entanglement can persist for long times. von
Neumann entropy of a block of spins in the Ising model and
for product initial state has been studied in �17�.

II. QUANTIFYING ENTANGLEMENT

We are going to study entanglement between two qubits
which are in turn part of a larger n-qubit system. For two
qubits, positivity of partially transposed density matrix with
respect to one qubit, �TA, is a necessary and sufficient condi-
tion for its separability �18�. Negative eigenvalues �for two-
qubit states there can be at most one� therefore signal the
presence of entanglement. A quantity measuring this is nega-
tivity �19� N��� which is equal to the sum of absolute values
of negative eigenvalues of �TA and can be defined as

N��� =
��TA�1 − 1

2
, �1�

with the trace norm �A�1=tr�A†A. For two-qubit density ma-
trices it is simply N���= ��min

TA � if the minimal eigenvalue �min
TA

is negative and 0 otherwise.
Entanglement of formation �20�, which quantifies quan-

tum resources needed to create a given state, has nicer math-
ematical properties as negativity �or logarithmic negativity�.
For two-qubit systems entanglement of formation EF��� can
be calculated in terms of a simpler quantity called concur-
rence C���, defined as

C��� = max�0,�1 − �2 − �3 − �4	 , �2�

where �i are square roots of decreasingly ordered eigenval-
ues of ���y � �y�*�y � �y�, calculated in a standard compu-
tation basis. EF��� is then given by �21�

EF��� = H
1 + �1 − C2���
2

� , �3�

with H�x�=−x log2 x− �1−x�log2�1−x� being a binary en-
tropy. For pure states the entanglement of formation is given
by the von Neumann entropy of the reduced density matrix,
while it is defined by a convex roof extension �minimization
over all convex realizations of �� for mixed states. A state is
separable if and only if its concurrence or if and only if its
negativity is zero.

The third and last quantity used in measuring entangle-
ment will be the so-called fully entangled fraction �20�
defined as

f��� = max������
 , �4�

where maximization runs over all maximally entangled states
obtained by local unitary transformations from the maxi-
mally entangled state, i.e., ��
=U1 � U2��00
+ �11
� /�2. One
can distill maximally entangled singlets from an ensemble of
� using BBPSSW �22� protocol if and only if f �1 /2. Fully
entangled fraction f can be used as a lower bound for the
entanglement of formation �20�,

EF � h�f� , �5�

where h�f� is expressed in terms of binary entropy H�x�,

h�f� = �H�1

2
+ �f�1 − f�� , f �

1

2
,

0, f �
1

2
.�

In the above inequality an equal sign holds if � is pure state.
Note that f �1 /2 does not necessarily mean that the en-
tanglement of formation is zero. Fully entangled fraction also
determines maximal teleportation fidelity �23�. Fully en-
tangled fraction f��� is equal to the largest eigenvalue of the
real part of the density matrix � written in the Bell basis, in
which all maximally entangled states have real expansion
coefficients. If f �1 /2 this is in turn equal to �24�

f��� =
1

4
�1 + 	����, 	��� = �T�1 = tr�T†T , �6�

where T is a real �3
3�-dimensional correlation matrix
given by Tij =tr���i � � j�, with �i being Pauli matrices, i.e.,
i , j� �x ,y ,z	. Because of its simple analytical form we are
going to study 	��� �6� rather than f��� �4�. They essentially
give the same information in the interesting regime of f
�1 /2. If 	����1 then the state � can be used in entangle-
ment distillation. Norm of the correlation matrix T can be
used as a simple entanglement criterion also for many-qubit
systems �25�.

In the following we are therefore going to study negativ-
ity N��� �sometimes just minimal eigenvalue of the partially

MARKO ŽNIDARIČ PHYSICAL REVIEW A 78, 022105 �2008�

022105-2



transposed matrix �min
TA �, concurrence C��� and 	��� which is

connected to the fully entangled fraction. As we will see,
qualitatively all behave in the same way. From the analytical
viewpoint though 	��� is the simplest quantity and is there-
fore the best candidate for an analytical treatment.

III. SYSTEMS STUDIED

We are going to study entanglement evolution for various
one-dimensional spin Hamiltonians consisting of n spin-1 /2
particles. To verify that the results do not depend on the
underlying dynamics we will use both chaotic and integrable
systems.

Heisenberg spin-1 /2 model is an integrable model with
Hamiltonian

H = �
i

�i
x�i+1

x + �i
y�i+1

y + �i
z�i+1

z . �7�

We have checked that the results are similar for anisotropic
Heisenberg model as well as for isotropic Heisenberg model
in a tilted magnetic field.

We can break integrability of the Heisenberg model by
applying magnetic field, for instance, a staggered field in the
z direction,

H = �
i

�i
x�i+1

x + �i
y�i+1

y + �i
z�i+1

z + �
i

hi�i
z, �8�

where the strength of the magnetic field is h2i=0 and h2i+1

=− 1
2 on odd sites.
As we can see in Fig. 1, spacing of neighboring energy

levels agrees with the Wigner-Dyson distribution, p�s�
=s� /2 exp�−s2� /4�, which approximates distribution of
spacings for Gaussian orthogonal random matrix ensemble
and is typical for quantum chaotic systems �26�.

The last model will be the Ising chain in tilted magnetic
field,

H = �
i

�i
x�i+1

x + �i
x + �i

z. �9�

Ising model in tilted magnetic field also displays typical sig-
natures of quantum chaos �27�, similarly as its time-

dependent kicked version �28�. We have checked that the
results are essentially the same also for the integrable trans-
verse Ising model.

As we will see, all three models will display similar evo-
lution of entanglement being in turn equal to the one for a
two-body random matrix model. Therefore, our main focus
will actually be on a two-body random matrix model, for
which we have only nearest-neighbor coupling terms,

H = �
i

hi,i+1, �10�

with hi,i+1 acting nontrivially only on two qubits, for which it
is a 4
4 random Hermitian matrix, the same for all coupled
pairs and normalized as tr�hi,i+1

2 �=1. A random Hermitian
matrix is a matrix whose matrix elements are independent
random complex Gaussian numbers �26�. We always aver-
aged over an ensemble of random matrices hi,i+1.

For all Hamiltonians the geometry is that of a one-
dimensional chain with open boundary conditions. The state
at time t is obtained as ���t�
=exp�−iHt����0�
 from which
we get the reduced density matrix for the two qubits between
which we study entanglement,

��t� = trn−2���t�
���t�� , �11�

where a subscript n−2 means tracing over n−2 qubits. The
above ��t� will then be used in calculating various entangle-
ment measures. Two qubits in question will be either nearest
neighbors, that is qubits directly coupled by the Hamiltonian,
or two qubits which are not directly coupled, e.g., next-
nearest neighbors. Typically they will be chosen in the
middle of the chain with the results being largely indepen-
dent of their precise location. The initial pure state will be of
two forms. Most of the time we are going to consider ran-
dom product initial state,

���0�
 = ��
1 � ¯ � ��
n, �12�

where ��
i is a random state of ith qubit, given by

��
i = cos 
ie
i�i�0
i + sin 
ie

i�i�1
i, �13�

with �i, �i, 
i independent random numbers given as �i

=2��, �i=2��, and 
i=arcsin �� where all three �’s are
independent �for each qubit� uniform random numbers on
interval �0, 1�.

IV. ENTANGLEMENT EVOLUTION

A. Perturbative expansion

Initially, at time t=0, our initial state is always of product
form between two qubits in question and therefore there will
not be any entanglement, i.e., C�t=0�=0, �min

TA �t=0�=0, and
	�t=0�=1. Subsequent evolution will entangle two qubits,
therefore one expects that the entanglement will gradually
build up. For sufficiently short times, one can use perturba-
tion theory to calculate the reduced density matrix ��t� �11�.
Taking for H nearest-neighbor Hamiltonian with an arbitrary
two-qubit coupling term h�2� we obtain after expanding
propagator exp�−iHt� to the lowest order in time,
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FIG. 1. Level spacing distribution for the Heisenberg model in a
staggered field �8� for n=16. Dashed line is Wigner-Dyson distri-
bution holding for quantum chaotic systems.
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�min
TA = − ���t + O�t2�, � = ��A

��B
��h�2���A�B
 . �14�

In the derivation of the above formula we assumed the initial
product state on the two qubits in question while an arbitrary
state is allowed on the remaining n−2 qubits, ���0�
= ��A

� ��B
 � ��
n−2. States ��A,B

� 
 are single-qubit states orthogo-
nal to ��A,B
 and because only absolute value of � enters their
phases do not matter. Similar calculation for concurrence �2�
and 	 �6� gives

C = 2���t + O�t2� ,

	 = 1 + 4���t + O�t2� . �15�

We can see that the initial speed at which entanglement is
produced depends only on a single matrix element of h�2�

between the initial product state ��A
 � ��B
 and the corre-
sponding orthogonal product state. Because for all quantities
the initial time scale depends trivially on the value of ��� we
will measure time in rescaled dimensionless units

� = t��� , �16�

with ��� being the average absolute value of a matrix ele-
ment, where averaging is done over random initial single-
qubit states ��A,B
 �13�. For the isotropic Heisenberg model
�7� we obtain ���=1, for the Heisenberg model in a staggered
field �8� one obtains ����0.8882, and for the Ising model in
a tilted magnetic field �9� we have ����0.6168. For two-
body random matrix model �10� we can, instead of averaging
over initial product states, average over ensemble of random
matrices h�2�, resulting in ���=�� /4�0.4431. In all of the
figures showing time dependence of entanglement we are
going to use dimensionless time �.

B. Numerical results

First, we performed numerical simulations of time evolu-
tion, calculating average C���, �min

TA ���, and 	��� for different
Hamiltonians. Averaging has been done over random initial
product states �12�. As one can see in Fig. 2 the behavior is
overall similar for all studied Hamiltonians. For instance,
from Fig. 2�b� we can see that for times larger than some
critical �* the average 	 is below 1 which means that the
two qubits cannot be used for distillation anymore. Critical
�* is for all models between 0.5 and 0.75. Similar depen-
dence �not shown� is also obtained for the average minimal
eigenvalues of partially transposed density matrix �min

TA ,
which also becomes positive at roughly the same �*. Con-
currence, seen in Fig. 2�a�, has a similar time dependence.
The only difference is that for ���* concurrence is not
strictly zero but instead decays exponentially with time. This
is a consequence of the fact that even though for ���* the
two qubits are on average not entangled anymore there are
still exponentially rare instances �product initial states� for
which there is still some entanglement present. With time the
probability of such entangled states decreases exponentially.
In all cases, dependence for small times agrees with the ana-
lytical perturbative result for concurrence in Eq. �15� and
Fig. 2�a�, for 	 in Eq. �15� and Fig. 2�b�, and for �min

TA in Eq.
�14� and Fig. 4.

Note that �* is a time when the average quantity �like 	
or �min

TA � reaches a certain value �1 or 0�. It should not be
confused with the average time �̄* when 	 �or �min

TA or C�
reaches 1. For each individual initial condition time when a
state gets separable, i.e., critical �, it is of course the same as
that of C or �min

TA . However, because distributions change
with time, time �* is not exactly the same as the average time
�̄*. The average times �̄* are for �min

TA �as well as for C or
negativity� equal to �̄*=0.72 for the two-body random matrix
model and tilted Ising model and �̄*=0.59 for both Heisen-
berg models. The average times �̄* for 	��� are, on the other
hand, slightly different, �̄*=0.64 for the two-body random
matrix model, �̄*=0.61 for the tilted Ising model, and �̄*

=0.47 for both Heisenberg models. Compare these �̄* with
�* listed in Figs. 2�b�, 3, and 4. One can observe that �̄* for
	 and �min

TA are slightly different, for instance in the case of a
two-body random matrix model 0.64 vs 0.72. The fact that �̄*

is for 	 smaller than for �min
TA is not a contradiction as f

�1 /2 does not necessarily mean that the entanglement of
formation is zero �24�.

We can see that due to randomness in the initial state the
evolution of entanglement between two nearest-neighbor qu-
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FIG. 2. Average concurrence C��� �2� in �a� and average 	���
�6� in �b� for various Hamiltonians. Thick full curves are for two-
body random matrix model �10�, thin dotted curves for the Ising
model in a tilted magnetic field �9�, short dashed curves are for the
isotropic Heisenberg model �7� while long dashed curves are for the
Heisenberg model in a staggered field �8�. Averaging is performed
over random product initial states �12� for n=16. Times �* when
	=1 are 0.66 for two-body random matrix model, 0.73 for tilted
Ising, and 0.53 for both Heisenberg models.
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bits shows universal-like behavior, that is time dependence
which is to a large extent independent of the precise form of
the underlying nearest-neighbor Hamiltonian which gener-
ates evolution. Universality is not exact, there are still “sig-
natures” of specific Hamiltonian at intermediate times �for
instance, compare curves for the Heisenberg and Ising model
in Fig. 2�, overall though the dependence is similar. Bell-like
shape of entanglement is a consequence of two competing
processes. On the one hand, nonseparable evolution naturally
tends to produce entanglement from an initially separable
state while on the other hand, it will tend to destroy it be-
cause ���t�
 will approach a random state as time grows and
the reduced density matrix will approach an identity matrix
having zero entanglement �5�. The later process of destroy-
ing entanglement has two sources: First, randomness of the
initial state is spread out throughout the system and second,
dynamics itself will tend to produce random state. Universal-
ity is a consequence of randomness in the initial state, i.e., of
its generic separable form. For each Hamiltonian there are
rare specific separable initial states for which deviations from
the above average behavior will be large.

As we have seen in Fig. 2, the two-body random matrix
model, which is a parameter-free model, describes evolution
of entanglement sufficiently well also for other systems.
Therefore, from now on we are going to focus on a two-body
random matrix model, studying more precisely how the en-
tanglement between two qubits evolves with time.

C. Two-body random matrix model

In Fig. 3 we again show dependence of 	 �6� on time for
a two-body random matrix model. In addition to entangle-
ment between nearest-neighbor qubits �denoted by distance
r=1� we also show entanglement for next-nearest neighbors
�r=2� and qubits separated by two other qubits �r=3�. As

one can see, for qubits which are not directly coupled by the
Hamiltonian, i.e., r=2 and r=3 cases, 	 is always less than
1. This happens because the production of entanglement de-
pends on higher order terms, e.g., for r=2 terms of form
hi,i+1hi+1,i+2 are needed, whereas for nearest neighbors a
single term hi,i+1 is already sufficient to entangle two qubits.
As a consequence, entanglement production is slower the
larger is the distance between qubits while entanglement de-
struction due to randomness is approximately independent of
the distance. In all cases we show data for n=16 for which
finite size effects are already small. For instance, the differ-
ence between �* for n=16 and n=18 is 0.01 in the case of
r=1. In the figure we also plot rational function 	���
= 1+4�

1+6�2 which almost perfectly overlaps with the numerics for
r=1. Note that for short times this of course agrees with our
perturbative result �15�, seen as the initial line with slope 4 in
Figs. 2 and 3. One would be tempted to think that the depen-
dence beyond this short time, therefore also the above ratio-
nal function, could be explained by higher-order perturbation
theory. Unfortunately it is not so. This rational dependence
cannot be explained by higher-order perturbative calculation.
In fact, we do not have any theoretical explanation for this
almost perfect fit. Although going to perturbations of second
order in time will result in a rational function with the de-
nominator and numerator being polynomials of order 2 in �,
the coefficients of polynomials are wrong. We have numeri-
cally checked that next perturbative orders also do not im-
prove the situation. It therefore seems that the functional
dependence of 	 �as well as of C and �min

TA � for the two-body
random matrix model is essentially nonperturbative. This is
in contrast with, for instance, purity or fidelity decay of ini-
tial pure states in the presence of weak coupling where per-
turbative approaches have been very successful �8,29�.

In Fig. 4 we show numerical results for the average �min
TA .

Overall, the dependence is very similar as for 	���, the only
difference being that the time when �min

TA becomes positive
and the state gets separable is �*�0.75. In Fig. 5 similar
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FIG. 3. Average 	��� �6� for nearest-neighbor qubits �r=1�,
next nearest �r=2�, and qubits separated by two qubits �r=3�. For
directly coupled qubits, r=1, states on average cannot be used for
distillation for times larger than �*�2 /3. Chain curve �almost over-
lapping with the full curve for r=1� is 	= 1+4�

1+6�2 . All is for the
two-body random matrix model with n=16 qubits and initial prod-
uct states �12�. In the inset we show results for r=1 and smaller
systems.
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results are shown for concurrence and negativity. We can see
that negativity and concurrence are almost the same for
nearest-neighbor qubits. For next-nearest-neighbor qubits
�r=2� concurrence is this time nonzero but small as opposed
to �min

TA which is always positive. For qubits further apart, for
instance, r=3, concurrence is below the level of statistical
fluctuations.

We have checked that similar results are obtained also for
other topologies of the coupling between qubits, i.e., other
than nearest neighbor. In all situations entanglement is
present for two-qubit reduced density matrices between qu-
bits directly coupled by the Hamiltonian, whereas entangle-
ment is small or zero for qubits which are not directly
coupled. In all cases entanglement on average disappears af-
ter finite time. Difference from sudden death of entanglement
phenomenon �11� is that our two qubits are coupled and start
from an initially separable state. In addition, our system is
conservative, that is we have a finite “environment.”

So far we have always used product initial states, where
states ��i
 on individual qubits were independent. As a final
numerical calculation let us check how the results depend on
the choice of an initial state. Because results are similar for
all quantities studied we are going to show only 	���. Be-
sides product initial state �12� we used product initial state
with states ��i
 on all qubits being the same. Because the
two-body random matrix model is invariant for single-qubit
rotations this is equivalent to choosing state �0¯0
 for the
initial state and averaging over an ensemble of two-body
random matrices. The second choice is an initial state which
is of product form on the two qubits used for entanglement
calculation and random on the remaining n−2 qubits,

���0�
 = ��
n−2 � ��A
 � ��B
 , �17�

where ��A,B
 are random single-qubit states and ��
n−2 is a
random state of n−2 qubits. Numerical results are shown in

Fig. 6. We can see that, expectedly, entanglement decays
slower for the homogeneous initial state, �0¯0
, while it
decays faster for the initial state having a full �nonseparable�
random state on n−2 qubits �17�. Figuratively speaking one
can say that the decay of entanglement is faster the more
randomness there is in the initial state.

V. CONCLUSION

We have studied how the entanglement between two qu-
bits evolves with time when two qubits are part of a larger
spin chain. Starting from an initial separable random product
state entanglement first increases, reaching a maximal value,
after which it decays to zero resulting in a separable state
after finite time. Therefore, starting from a generic initial
state possessing some randomness, the two-qubit reduced
density matrix is on average entangled only for finite time
and only for qubit pairs which are directly coupled by the
Hamiltonian. Time dependence of entanglement is almost in-
dependent of the specifics of the Hamiltonian used for time
evolution, being integrable or chaotic, and is well described
by a two-body random matrix model. Results can be inter-
preted also in another way: It is hard to generate entangle-
ment regardless of the dynamics if there is some randomness
present in the initial state. This can be used to explain the
lack of entanglement in small subsystems for generic initial
conditions.

ACKNOWLEDGMENTS

The author would like to thank T. Prosen for reading the
paper and anonymous referee for valuable suggestions and
for bringing to our attention Refs. �16,17�.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3 3.5

C

τ

r=1

r=2

-2N

-0.002
-0.001

0
0.001
0.002
0.003

0 1 2 3

C
-C

n=
16

τ

n=8

10

12

FIG. 5. Average concurrence �2� for nearest-neighbor qubits
�r=1� and next-nearest neighbors �r=2�. With dotted line we also
show negativity, −2N��� �1�, displaying essentially the same behav-
ior as concurrence, for the two-body random matrix model with n
=16 qubits and initial product states.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5

Θ

τ

|0...0>

|χ>n-2|χA>|χB>

|χi>
⊗n

FIG. 6. Average 	��� for various choices of initial states. Full
line is for initial product states �12� �same data as in Fig. 3�, chain
curve is for initial state which is of product form just on the two
qubits involved �17�, while dotted curve is for homogeneous initial
state �0¯0
. All is for two-body random matrix model with n=16
qubits. Times when average 	����1 are 0.42, 0.66, and 0.86.

MARKO ŽNIDARIČ PHYSICAL REVIEW A 78, 022105 �2008�

022105-6



�1� M. B. Plenio and S. Virmani, Quantum Inf. Comput. 7, 1
�2007�; R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, e-print arXiv:quant-ph/0702225.

�2� W. H. Zurek, Rev. Mod. Phys. 75, 715 �2003�.
�3� J. L. Lebowitz, Physica A 263, 516 �1999�.
�4� M. Žnidarič, T. Prosen, G. Benenti, and G. Casati, J. Phys. A

40, 13787 �2007�.
�5� V. M. Kendon, K. Nemoto, and W. J. Munro, J. Mod. Opt. 49,

1709 �2002�; V. M. Kendon, K. Życzkowski, and W. J. Munro,
Phys. Rev. A 66, 062310 �2002�.

�6� S. Montangero, G. Benenti, and R. Fazio, Phys. Rev. Lett. 91,
187901 �2003�.

�7� R. Rossignoli and C. T. Schmiegelow, Phys. Rev. A 75,
012320 �2007�.

�8� C. Pineda and T. H. Seligman, Phys. Rev. A 73, 012305
�2006�; C. Pineda, T. Gorin, and T. H. Seligman, New J. Phys.
9, 106 �2007�.

�9� L. Amico, A. Osterloh, F. Plastina, R. Fazio, and G. M. Palma,
Phys. Rev. A 69, 022304 �2004�.

�10� D. Braun, Phys. Rev. Lett. 89, 277901 �2002�; F. Benatti, R.
Floreanini, and M. Piani, ibid. 91, 070402 �2003�.

�11� L. Diosi, Lect. Notes Phys. 622, 157 �2003�; P. J. Dodd and J.
J. Halliwell, Phys. Rev. A 69, 052105 �2004�; T. Yu and J. H.
Eberly, Phys. Rev. Lett. 93, 140404 �2004�.

�12� Y. Gao and S.-J. Xiong, Phys. Rev. A 71, 034102 �2005�.
�13� A. Sen�Di�, U. Sen, and M. Lewenstein, Phys. Rev. A 72,

052319 �2005�.
�14� Z. Huang and S. Kais, Phys. Rev. A 73, 022339 �2006�.
�15� A. Lakshminarayan and V. Subrahmanyam, Phys. Rev. A 71,

062334 �2005�.
�16� A. Sen�De�, U. Sen, V. Ahufinger, H.-J. Briegel, A. Sanpera,

and M. Lewenstein, Phys. Rev. A 74, 062309 �2006�.
�17� W. Dür, L. Hartmann, M. Hein, M. Lewenstein, and H.-J. Br-

iegel, Phys. Rev. Lett. 94, 097203 �2005�.
�18� A. Peres, Phys. Rev. Lett. 77, 1413 �1996�; P. Horodecki,

Phys. Lett. A 232, 333 �1997�; M. Horodecki, P. Horodecki,
and R. Horodecki, ibid. 223, 1 �1996�.

�19� K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein,
Phys. Rev. A 58, 883 �1998�; J. Eisert and M. B. Plenio, J.
Mod. Opt. 46, 145 �1999�.

�20� C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A 54, 3824 �1996�.

�21� W. K. Wootters, Phys. Rev. Lett. 80, 2245 �1998�.
�22� C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.

Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 �1996�.
�23� R. Horodecki, M. Horodecki, and P. Horodecki, Phys. Lett. A

222, 21 �1996�; M. Horodecki, P. Horodecki, and R. Horo-
decki, Phys. Rev. A 60, 1888 �1999�.

�24� M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev.
Lett. 78, 574 �1997�.

�25� P. Badziąg, Č. Brukner, W. Laskowski, T. Paterek, and M.
Żukowski, Phys. Rev. Lett. 100, 140403 �2008�.

�26� M. L. Mehta, Random Matrices, 2nd. ed. �Academic, New
York, 1991�.

�27� C. Mejia-Monasterio, G. Benenti, G. G. Carlo, and G. Casati,
Phys. Rev. A 71, 062324 �2005�; T. Prosen and M. Žnidarič,
Phys. Rev. E 75, 015202�R� �2007�; J. Karthik, A. Sharma,
and A. Lakshminarayan, Phys. Rev. A 75, 022304 �2007�.

�28� T. Prosen, Phys. Rev. E 65, 036208 �2002�.
�29� T. Gorin, T. Prosen, T. H. Seligman, and M. Žnidarič, Phys.

Rep. 435, 33 �2006�; I. Pižorn, T. Prosen, and T. H. Seligman,
Phys. Rev. B 76, 035122 �2007�.

INITIAL-STATE RANDOMNESS AS A UNIVERSAL… PHYSICAL REVIEW A 78, 022105 �2008�

022105-7


