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The efficiency of time-dependent density matrix renormalization group methods is intrinsically connected to
the rate of entanglement growth. We introduce a measure of entanglement in the space of operators and show,
for a transverse Ising spin-1 /2 chain, that the simulation of observables, contrary to the simulation of typical
pure quantum states, is efficient for initial local operators. For initial operators with a finite index in Majorana
representation, the operator space entanglement entropy saturates with time to a level which is calculated
analytically, while for initial operators with infinite index the growth of operator space entanglement entropy is
shown to be logarithmic.
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I. INTRODUCTION

The entanglement is an intrinsic property of composite
quantum systems and represents a cornerstone in quantum
information theory �1�. It is important to understand the role
of quantum entanglement in the classical manipulation of
quantum objects and to quantify the degree of entanglement.
Although the question of quantification is not clearly re-
solved, quantum-information theory offers several measures
�2,3� of entanglement. Quantum-information theory has also
given a new birth or fresh interpretation of a class of meth-
ods for numerical simulations of many-body quantum sys-
tems which, due to the exponential growth of Hilbert space,
cannot be manipulated using exact diagonalization. The
methods originally known as density matrix renormalization
group �DMRG� �4� deploy the fact that many degrees of
freedom are redundant in a quantum-state description; the
system is therefore adequately described by taking into ac-
count maximally entangled components only. Thus, suffi-
ciently slow growth of the entanglement is of crucial impor-
tance. DMRG enjoyed remarkable success in determining
the ground-state properties of large one-dimensional quan-
tum models, for which the degree of entanglement scales at
most logarithmically with size �5–10�; however, its time-
dependent version �tDMRG� �11,12� is often plagued by an
abundance of entanglement with time evolution �13�. For
efficient classical simulations of many-body quantum dy-
namics using tDMRG it is required that the computational
costs grow polynomially in time, meaning that the degree of
entanglement of any quantum object which can be repre-
sented as an element of a scalable tensor product Hilbert
space �either a pure state or a mixed state or operator, etc.�
must grow no faster than logarithmically. It was recently
shown that this is generically not the case for a quantum
chaotic Ising spin chain in a tilted magnetic field where the
entanglement entropies grow linearly and hence the compu-
tation costs increase exponentially in time �13�.

In this paper we shall consider the model of a quantum
Ising chain in transverse magnetic field which is integrable
and an explicit analytical solution exists. Calabrese and
Cardy �14� have shown numerically that the growth of en-
tanglement entropy is linear for evolution of pure initial
states which are ground states of quenched Hamiltonians; see

also Ref. �15�. However, from the efficiency of tDMRG for
the time evolution of local operators �13� one may conclude
that entanglement entropy computed in the space of opera-
tors grows only logarithmically. Here we address this prob-
lem theoretically using the idea �16� of reformulating the
Heisenberg evolution in an algebra of operators in terms of a
Schrödinger evolution generated by a different, adjoint
Hamiltonian acting on the Hilbert space of operator algebra.
We show that operator space entanglement entropy saturates
in time for initial local operators of a finite index �precise
definitions follow� and explicitly compute the saturation val-
ues in the critical case. Further, for initial local operators of
infinite index we give accurate numerical evidence and a
theoretical hint that the growth is logarithmic �in thermody-
namic limit� with prefactor 1 /6 in the critical, or 1 /3 in the
noncritical, case.

We note that, to the best of our knowledge, entanglement
in operator space is a concept which has not yet been con-
sidered theoretically, and it is clearly not equivalent to the
conventional concept of entanglement of density operators as
discussed in Sec. IV. Yet it is the one which we expect to be
more closely related to the computational complexity of time
evolution in infinite interacting quantum systems.

II. FERMION REPRESENTATION OF DYNAMICS
IN OPERATOR SPACE

The dynamics of a transverse Ising chain of length 2L is
described in terms of canonical Pauli matrices � j

� for sites
j�Z2L��−L+1, . . . ,0 ,1 , . . . ,L� and the Hamiltonian

H = �
j=−L+1

L−1

� j
x� j+1

x + h �
j=−L+1

L

� j
z, �1�

with open-boundary conditions, which can be diagonalized
by means of Jordan-Wigner transformation and introduction
of Majorana fermion operators �16,17�, Xn= �	 j�n� j

z��n
x and

Yn= �	 j�n� j
z��n

y, fulfilling the anticommutation relations
�Xi ,Xj�= �Yi ,Y j�=2�ij and �Xi ,Y j�=0. Heisenberg equations
of motion dA /dt= i�H ,A� for Majorana operators can be
written
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Ẋn = 2�Yn−1 − hYn�, Ẏn = − 2�Xn+1 − hXn� . �2�

An operator corresponding to an arbitrary physical observ-
able can be written as a superposition of products of Majo-

rana operators Xj, Y j: namely, Pn,n�=X−L+1
n−L+1Y−L+1

n−L+1�
¯XL

nLYL
nL�

with powers nj ,nj�� �0,1�. A set of 42L operators �
Pn,n����
spans an orthonormal basis of a Hilbert space: namely, the
matrix alebra A=C22L�22L

, with an inner product ��A 
B��

=2−2LtrA†B. A can be conveniently interpreted as a Fock
space of 2L adjoint fermions �we shall call them a-fermions�
with pseudospin �distinguishing between Majorana Xj and Y j
operators�. An arbitrary operator A is then an a-fermion state

A��=�n,n�an,n�
Pn,n���. a-fermion operators over A, ĉj↑, and
ĉj↓ can be introduced by

ĉj↑
Pn,n��� = nj
XjPn,n���, �3�

ĉj↓
Pn,n��� = nj�
Y jPn,n���, �4�

satisfying canonical anticommutation relations.
The index of an operator Pn,n� is defined as In,n�=� j�nj

+nj�� and for index-1 operators Eq. �2� is rewritten:

d

dt

Xn�� = 2�ĉn−1↓

† − hĉn↓
† �ĉn↑
Xn��, �5�

d

dt

Yn�� = − 2�ĉn+1↑

† − hĉn↑
† �ĉn↓
Yn��, �6�

which can be interpreted as a Schrödinger equation

�d /dt�
A��=−iĤ
A�� for the adjoint Hamiltonian

Ĥ = 2i �
n�Z2L

��ĉn−1↓
† ĉn↑ − ĉn+1↑

† ĉn↓� + h�ĉn↑
† ĉn↓ − ĉn↓

† cn↑�� .

�7�

Since the adjoint time evolution is a homomorphism, the
Schrödinger equation extends to an arbitrary element of the
operator algebra 
A���A. Note that the number of

a-fermions, N̂=�n,sĉn,s
† ĉn,s, is conserved, unlike the number

of ordinary Majorana fermions.

III. OPERATOR SPACE ENTANGLEMENT ENTROPY

It is clear that classical simulability of quantum states is
quantified by the entanglement entropy of half-half �or worst
case� bipartition of the lattice. However, for simulability of
quantum observables �or density operators of mixed states�,
the decisive quantity is an analog of entanglement entropy
defined for an arbitrary element of operator algebra A

� 
A��=�n,n�an,n�
Pn,n���, with the adjoint reduced density
matrix

R�n−L+1,n−L+1� ,. . .,n0,n0��,�m−L+1,m−L+1� ,. . .,m0,m0��

= �
n1,n1�,. . .,nL,nL�

a�n−L+1,. . .,n0,n1,. . .,nL�,�n−L+1� ,. . .,n0�,n1�,. . .,nL��

� a�m−L+1,. . .,m0,n1,. . .,nL�,�m−L+1� ,. . .,m0�,n1�,. . .,nL��
*

, �8�

namely,

S = − trR ln R . �9�

For a spin-1 /2 chain it is perhaps more natural to use a set of
42L Pauli operators Qs−L+1,. . .,sL

=�−L+1
s−L+1

¯�L
sL, where sj

� �0,x ,y ,z�, �0�1, as a physical basis of operator algebra
A, and define bipartition and entanglement entropy with re-
spect to Qs. However, it is easy to show that the result is
identical to Eq. �9� since the transformation between the
bases �Pn,n�� and �Qs� is a simple permutation of multiindi-
ces �n ,n��↔s �with multiplications by ±1�, and even though
it is nonlocal it maps first L a-fermions to only first L spins
and vice versa.

Let us now try to compute time dependence of operator
space entanglement entropy S�t� for some simple initial op-
erators A. For convenience, we introduce staggered
a-fermion operators ŵj, j�Z4L= �−2L+1, . . . ,0 ,1 , . . . ,2L�,
such that ŵ2n−1� ĉn↑ and ŵ2n� ĉn↓. Any operator acting
solely in a space of first L a fermions �or first L spins� can be
expressed in terms of 2L anticommuting operators ŵj with
j�Z2L

− ��−2L+1, . . . ,−1 ,0�. We follow Ref. �10� and ex-
press 22L eigenvalues of adjoint reduced density matrix R, as
�n=	 j�nj� j + �1−nj��1−� j��, nj � �0,1�, where � j are eigen-
values of time-dependent 2L�2L correlation matrix

	mn�t� = ��A
ŵm
† �t�ŵn�t�
A��, m,n � Z2L

− . �10�

Then, the entanglement entropy �9� simply reads

S�t� = �
j

e�� j�, e�x� � − x ln x − �1 − x�ln�1 − x� .

�11�

This procedure �see �14� for details� results in an efficient
numerical method which essentially only requires diagonal-
ization of the 2L-dimensional matrix 	 for the solution of a
quantum problem on 24L-dimensional Hilbert space.

The time-dependent a-fermion operators ŵm�t� are
obtained from linear Heisenberg-type equations

ẇ̂m=−i�ŵm ,Ĥ�: namely, ẇ̂2j =2�ŵ2j+1−hŵ2j−1� and ẇ̂2j−1

=2�−ŵ2j−2+hŵ2j�. The solution of such Heisenberg equa-

tions, written as ẇ̂m=−i�nGmnŵn, is obtained by diagonaliz-
ing a 2L�2L matrix G=V
V† which yields

ŵm�t� = �
n
�

k

Vmke
−it
kVnk

* �ŵn. �12�

However, in the “critical case” h=1, the time evolution of
ŵm�t� can be solved exactly and some analytical solutions
can be given. Namely, in such a case the sets of Heisenberg
equations are identical and are solved via a discrete sine

transform with Vmk= im� 2
4L+1sin� �m+2L�k�

4L+1
�,

ŵm�t� = �
n
��

k=0

4L

Vmke
i4 cos�k�/�4L+1��tVnk

* �ŵn. �13�

In the following we shall be interested in the results in the
thermodynamic limit �TL� L→�. The infinite sum over k in
Eq. �13� is transformed onto an integral which yields
ŵm�t�=�n�Znm�4t�ŵn in terms of Bessel functions
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ab�x��Ja−b�x�. The correlation matrix elements are there-
fore �using n̂b= ŵb

†ŵb�

	mn�t� = �
b�Z

bm�4t�bn�4t���A
n̂b
A�� m,n = 0,− 1,− 2 . . . .

�14�

We also assume that the initial operator A is local—i.e., a
product of finite number of Pauli matrices � j

�. This implies
that �i� either A has a finite index—i.e., �n̂b�����A
n̂b
A��

=0, for 
b
�b0 for some b0�Z+—or �ii� A has an infinite
index and �n̂b��=1 for b�−b0 and �n̂b��=0 for b�b0 �such
as, e.g., A=�1

x�. Then, as L→�, an arbitrary large fixed finite
piece of correlation matrix can be asymptotically written as

	mn�t� = �
b�Z

Jb−m�4t�Jb−n�4t��n̂b��. �15�

Note that 	mn has effectively finite rank �x=4t: namely,
	m,n��mn, for −m ,−n�x. For brevity we shall be omitting
the argument of Bessel functions always equal to x=4t.

A. Initial operators of finite index

First, we focus on the case �i� of finite index initial opera-
tors A. It was conjectured in �13� that in such cases the en-
tanglement entropy in thermodynamic limit saturates in time.
Using the a-fermion algebra we are now able to calculate the
exact saturation value since the right-hand side in �15� is a
finite sum. Consider 	mn as a real matrix over R� with ca-
nonical basis �
m� ,m�Z−� and write a set of nonorthogonal
vectors �
����: namely, �m 
���= �−1��J�−m�4t�= ��� 
m�. Let
us write initial operator of finite index �K� as A=Oj1

¯OjK
where O2j−1�Xj and O2j �Y j. Then we have 	mn
=Jj1−mJj1−n+ ¯ +JjK−mJjK−n, or

	mn�t� = �m
� j1
��� j1


n� + ¯ + �m
� jK
��� jK


n� . �16�

This means that the rank of 	mn is bounded by K; in fact, it
is K and its nontrivial eigenspaces are spanned by �
� jk

� ,
1�k�K�. Let �
�k� ,1�k�K� be an orthonormalized set
obtained from �
� jk

� ,1�k�K� by a standard Gramm-
Schmidt procedure, for which the only input is the set of
scalar products ��� 
���=�k�Z−Jk−�Jk−� which can be in TL
evaluated analytically for any t in terms of finite sums and
approach the long-time asymptotics 
��� 
���
t=�= �1/2����

−sin����−�� /2� / ����−���. The nonvanishing part of the
spectrum �� j� of the correlation matrix �16� entering Eq. �11�
is thus given by the eigenvalues of the K�K matrix

	̃kl = ��k
� j1
��� j1


�l� + ¯ + ��k
� jK
��� jK


�l� . �17�

Thus, Eq. �17� is our main result for the case of finite-index
initial operators. For illustration, let us calculate the
asymptotic value S�t→�� for the simplest two cases: �a� A
=Oj, e.g., A= ¯�−2

z �−1
z �0

x, and �b� A=OjOj+1, e.g., A=�1
z . In

case �a�, K=1, the result is �1= �� j 
� j� with 
�1
t=�= 1
2

which gives the entanglement entropy of S���=ln 2. In
case �b�, K=2, we have �1,2= 1

2 ��� j 
� j�+ �� j+1 
� j+1�
±���� j 
� j�+ �� j+1 
� j+1��2+4�� j
� j+1�2� with 
�1,2
t=�

= 1
2 ± 1

� and S���=2 ln��1
−�1�2

−�2�. Both results agree excel-
lently with numerical solutions of Heisenberg equations for
ŵj�t� shown in Fig. 1, for the case h=1, whereas saturation is
observed for any h.

B. Initial operators of infinite index

Second, we consider the case �ii� of infinite index initial
operator A. In the thermodynamic limit, local spin operators
such as �1

x are products of infinite number of Majorana op-
erators Xn, Yn, in particular 
�1

x��= 
¯X−1Y−1X0Y0X1��, and
the previous discussion does not apply. As conjectured in
�13� time complexity for such initial operators only grows
polynomially in time which corresponds to logarithmic
growth of the entanglement entropy. Let us define an infinite
index operator F= ¯X−1Y−1X0Y0 which corresponds to a
half-filled Fermi sea 
F�� of a fermions. Any operator of
interest here can be written as A=FB where B is a finite-
index operator; again, 
A�� can be intepreted as an a-Fermi
sea with a finite number of particle and hole excitations.
Figure 2 shows results for S�t�, Eq. �11�, based on numerical
solution of Heisenberg equations for ŵj�t� for 2L up to 800
such that no finite-size effects are noticeable in the figure.
For any initial operator of the form A=FB, we observe a
clean asymptotic logarithmic growth

S�t��c ln t + c�,

where c = �1/6 if 
h
 = 1,

1/3 if 
h
 � 1,
� �18�

and c� is a constant which, for given h, only depends on the
choice of finite-index operator B. Note an intriguing similar-
ity with the size scaling of entanglement entropy of the
ground state of Eq. �1� �5,18�. An analytical explanation of
this interesting phenomenon may be nontrivial, so in the fol-
lowing we limit ourselves to the case of critical field h=1
and consider only the simplest initial operator of infinite in-
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FIG. 1. Entanglement entropy for finite-index operators 
X1��

�black� and 
X1Y1��= i
�1
z�� �gray� compared to theoretic saturation

value for t→� and h=1 �thick lines�. Three different values of
magnetic field are considered: h=1 �solid curve�, h=0.5 �dotted
curve�, h=2 �dashed curve�, and h=3 �dash-dotted curve�. We set
2L=200, such that no finite-size effects were noticable.
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dex: namely, A=F where the problem can be connected to
the theory of block Toeplitz determinants. In order to avoid
negative indices, we redefine the correlation matrix as 	mn�
�	−m,−n, so from Eq. �15� follows

	mn� = �− 1�m+n�
b=0

�

Jb−mJb−n, m,n = 0,1, . . . . �19�

It should be noted that the correlation matrix can be
factorized 	mn� =�l=0

� �ml�ln as a square of a matrix �mn
= �−1�nJm−n. Note that �mn is a real symmetric infinite block
Toeplitz matrix

� = � �0 �1 �

�−1 �0 �

� � �

�, �l �  J2l J2l+1

− J2l−1 − J2l
� . �20�

Following Ref. �10� we express the time-dependent entangle-
ment entropy �11� in terms of a formula involving Block
Toeplitz determinant:

S =
1

2�i
�

�

e��2�� d

d�
ln det��1 − ���d� , �21�

where � is a closed curve in complex plane enclosing unit
disk, avoiding point 1 and interval �−1,0�. Note that eigen-
values of infinite dimensional matrix � come in pairs � ,
−� with accumulation points ±1. For any ��0 there is only
a finite number N��t�� t of eigenvalues of � which are not
in � vicinity of ±1. However, we find numerically that most
of these eigenvalues cluster around 0 and only �ln t of them

lie outside � vicinity of 0 which are the only eigenvalues
contributing to entanglement entropy result �18�.

At the present state of the theory of block Toeplitz
determinants—in connection to the theory of integrable
Fredholm operators and the Riemann-Hilbert problem �19�—
formula �21� can be explicitly evaluated �see, e.g., Ref. �20��
provided the matrix symbol �z�=�1−�k�Z�kz

k admits ex-
plicit Wiener-Hopf factorizatons �z�=U+�z�U−�z�
=V−�z�V+�z� where the matrix functions U±�z� and V±�z� are
analytic inside ��� or outside ��� the unit circle. Even
though the matrix symbol has an appealing explicit form

�z� = � − f f̄ + gḡ fḡ/z − gf̄

zgf̄ − f ḡ � + f f̄ − gḡ
� , �22�

where f = f�z�, f̄ = f�z−1�, g=g�z�, ḡ=g�z−1�, and f�z�
�cosh�2t�z� and g�z��sinh�2t�z� /�z are entire analytic
functions, its Wiener-Hopf factorizaton is at present un-
known and poses a challenging problem.

IV. CONCLUSIONS

We have studied complexity of the time evolution of ini-
tial local operators under dynamics given by the transverse
Ising chain. Such complexity can be characterized in terms
of the entanglement entropy of operators treated as elements
of a product Hilbert space corresponding to a bipartition of a
chain and is directly related to the time efficiency of simula-
tion methods such as tDMRG. Note that operator space en-
tanglement entropy, of, say, a density operator, is not simply
related to a traditional notion of entanglement of the corre-
sponding mixed state. For example, consider a macroscopic
convex combination of 2L product states. This corresponds to
a nonentangled mixed state but has a macroscopic operator
space entanglement entropy �L and hence it is difficult to
simulate classically. Thus it seems that the traditional con-
cept of state entanglement is not sufficient to characterize the
classical complexity of quantum operators. In this paper we
have shown, in parts analytically and numerically, that the
operator space entanglement entropy of the transverse Ising
model grows at most logarithmically for initial operators
which are local products of Pauli matrices. This result has to
be contrasted with a linear growth of entanglement entropy
for time evolution of pure states �14�. An explanation of the
deeper physical reasons for this dramatic effect is needed.

ACKNOWLEDGMENTS

Stimulating discussions with J. Eisert and M. Žnidarič and
support by Grants Nos. P1-0044 and J1-7347 of the Slov-
enian Research Agency are gratefully acknowledged.

10
1

10
2

time

1.0

1.5

2.0

2.5

3.0

en
ta

n
g
le

m
en

t
en

tr
o
p
y 1

3
ln t + c

′

1

6
ln t + c

′′

|F ·Y1〉, h=2

|F 〉, h=3

|F 〉, h=0.5

|F ·Y1〉, h=1

|F 〉, h=1

FIG. 2. Entanglement entropy for infinite-index operators 
F��

�black� and 
FY1��= 
�1
y�� �gray� and different magnetic fields �same

styling as in Fig. 1� as they appear in the legend from top to bottom.
Thick dashed lines correspond to �1/3�ln t and �1/6�ln t.

TOMAŽ PROSEN AND IZTOK PIŽORN PHYSICAL REVIEW A 76, 032316 �2007�

032316-4



�1� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, England, 2000�.

�2� M. B. Plenio and S. Virmani, Quantum Inf. Comput. 7, 1
�2007�.

�3� J. Eisert and M. B. Plenio, J. Mod. Opt. 46, 3496 �1999�.
�4� S. R. White, Phys. Rev. Lett. 69, 2863 �1992�.
�5� G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.

90, 227902 �2003�; J. I. Latorre, E. Rico, and G. Vidal, Quan-
tum Inf. Comput. 4, 48 �2004�.

�6� A. Osterloh et al., Nature �London� 416, 608 �2002�.
�7� T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110

�2002�.
�8� J. P. Keating and F. Mezzadri, Commun. Math. Phys. 252, 543

�2004�.
�9� C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B B424,

44 �1994�.
�10� B.-Q. Jin and V. E. Korepin, J. Stat. Phys. 116, 79 �2004�.

�11� G. Vidal, Phys. Rev. Lett. 91, 147902 �2003�.
�12� S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401

�2004�.
�13� T. Prosen and M. Žnidarič, Phys. Rev. E 75, 015202�R�

�2007�.
�14� P. Calabrese and J. Cardy, J. Stat. Mech.: Theory Exp. 2005,

P04010.
�15� G. De Chiara et al., J. Stat. Mech.: Theory Exp. 2006, P03001.
�16� T. Prosen, Phys. Rev. E 60, 1658 �1999�; Prog. Theor. Phys.

Suppl. 139, 191 �2000�.
�17� U. Brandt and K. Jacoby, Z. Phys. B 25 181 �1976�; 26, 245

�1977�.
�18� P. Calabrese and J. Cardy, J. Stat. Mech.: Theory Exp. 2004,

P06002.
�19� P. Deift, Am. Math. Soc. Transl. 189, 69 �1999�.
�20� A. R. Its, B.-Q. Jin, and V. E. Korepin, J. Phys. A 38, 2975

�2005�.

OPERATOR SPACE ENTANGLEMENT ENTROPY IN A … PHYSICAL REVIEW A 76, 032316 �2007�

032316-5


