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We numerically study protocols consisting of repeated applications of two qubit gates used for generating
random pure states. A necessary number of steps needed in order to generate states displaying bipartite
entanglement typical of random states is considered. Numerics indicates that for a generic two qubit entangling
gate the decay of purity is exponential with the decay time scaling as �n, implying that of order �n2 steps are
needed to reach random bipartite entanglement. We also numerically identify the optimal two qubit gate for
which the convergence is the fastest. Perhaps surprisingly, applying the same good two qubit gate in addition
to a random single qubit rotations at each step leads to a faster generation of entanglement than applying a
random two qubit transformation at each step.
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I. INTRODUCTION

Entanglement is one of the resources which can be used to
perform tasks not possible by classical means. Considerable
effort has been put into understanding entanglement proper-
ties of various states. While entanglement of certain classes
of states, for instance of random states, is well understood,
quantifying entanglement of a general quantum state is a
rather difficult task, for a review see, e.g., Ref. �1�. In the
present paper we are going to study optimal protocols for
producing random states from initial product states. By ran-
dom states we mean pure quantum states which are eigen-
vectors of random unitary matrices distributed according to
the unitarily invariant Haar measure. Random states have
been the subject of considerable interest in the past. Entropy
and purity of a subsystem have been studied in Refs. �2–8�.
Distribution of the inverse of purity has been considered in
Ref. �9�, the distribution of G concurrence �geometric mean
of Schmidt coefficients� has been derived in Ref. �10�, the
distribution of purity in Ref. �11� and the average values of
Schmidt coefficients in Ref. �12�. It has been shown that
random states reproduce certain statistical properties of
eigenstates of quantum systems whose classical counterparts
are chaotic very well. Even though a particular chaotic sys-
tem has a well defined Hamiltonian a statistical description
with random Hamiltonian, the so-called random matrix
theory �13�, has been very successful.

One can ask if random states are also relevant for quan-
tum information theory? Note that if description in terms of
random states is applicable this usually simplifies the analy-
sis �14�. Random states are a directly needed resource in
certain procedures like quantum dense coding �15� or remote
state preparation �16,17�. One area at which quantum physics
can do better than classical is at computation, for instance,
simulating quantum systems. If a state during quantum com-
putation is not sufficiently entangled, efficient classical simu-
lation is possible �18,19�. Because random states are almost
maximally entangled it is reasonable to expect that such ran-
dom states will naturally occur during sufficiently complex
quantum computation. In fact, we know that the evolution
with chaotic systems will produce states whose statistical
properties are well reproduced by random states. Therefore,

quantum simulation of chaotic system is a likely candidate
for problems which can be efficiently solved by quantum
computer but not by classical. For examples of such algo-
rithms see, e.g., Refs. �20,21�. Note that sufficient entangle-
ment is necessary but not sufficient for a quantum speed-up.
An example are for instance quantum integrable systems
which can also efficiently produce a lot of entanglement
�22,23� however, efficient classical simulation seems to be
possible �24�.

An important practical question is how to produce random
states efficiently? By efficiently we mean in a number of
steps that grows only polynomially with the number of qu-
bits n. A way to achieve this is already suggested by chaotic
dynamics. Evolution with chaotic dynamics will produce
states which are generic, i.e., random, from almost any initial
state. It is well established that bipartite entanglement as
measured by purity or von Neumann entropy increases lin-
early with time for chaotic systems and that the asymptotic
saturation is reached after time which grows linearly with the
logarithm of the Hilbert space dimension �25�. Typically,
such chaotic Hamiltonian can be written as a sum of n two
qubit terms, and because entanglement saturates after time
�n, this means that of order �n2 two qubit gates are needed
to generate a random state—at least as far as bipartite en-
tanglement is concerned. Our results will confirm these ex-
pectations. One should be aware that to produce an arbitrary
unitary transformation, and therefore a truly random state, an
exponential number of two qubit gates is needed in general.
However, if our criteria is just to reproduce bipartite en-
tanglement of a typical random state, which is the case in the
present paper, only polynomial number of gates is needed.
The procedure to generate random states is therefore the fol-
lowing: generate some pseudorandom sequence of gates,
thereby producing the so-called pseudo unitary operator, ap-
plying it to an arbitrary separable initial state. After sufficient
number of steps, i.e., applications of random gates, we will
end up in a random state. Such random protocol has been
numerically studied in Refs. �26,27� while a convergence to
uniform Haar measure has been discussed in Ref. �28�. The
amount of interference produced by such protocols has been
considered in Ref. �29�. Recently the question of how many
gates do we need to obtain convergence has been attacked by
analytical tools of Markovian chains �30� and a lower bound
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on the number of steps needed has been proved. In the
present paper we are going to numerically calculate the exact
convergence times for small chains as well as find a two
qubit gate which will result in the fastest generation of bi-
partite entanglement.

II. PROTOCOL

Let us denote a state at time t by ���t��. The protocol for
generation of random entanglement consists of application of
two qubit transformation at each time step

���t + 1�� = Uij�t����t�� , �1�

with Uij�t� being a two qubit gate acting on ith and jth qubits
out of total n qubits. At each time step the pair of qubits i and
j on which a gate acts will be drawn independently. We will
consider three cases �couplings�. �i� i and j are chosen ran-
domly, that is gate can act on an arbitrarily separated qubits.
�ii� i and j are neighboring qubits, that is a par �i , i+1� or
�i+1, i�, and we take periodic boundary conditions, meaning
that the first and the last qubits can also be coupled. Such
coupling will be abbreviated nnPBC. �iii� Similarly as in
case �ii� we allow only nearest neighbor gates but with open
boundary conditions, that is we do not allow a gate between
the first and the last qubit. This will be abbreviated nnOBC.
For the unitary matrix Uij we choose it to be a product of two
independent single qubit unitaries Vi and Vj and two qubit
gate Wij,

Uij�t� = Vi�t�Vj�t�Wij . �2�

Two qubit gate will be the same for all steps whereas single
qubit unitaries Vi and Vj will be chosen according to the U�2�
invariant Haar measure at each time step and for each qubit
independently, that is they are from CUE�2� ensemble. Mo-
tivation for such a protocol is that from the experimental
perspective two qubit gates are difficult to make and there-
fore we always apply the same two qubit gate, whereas
single qubit transformations are relatively simpler and can be
changed at each step. Without sacrificing generality we will
always choose the initial state to be a separable ���0��
= �00¯0�. All the statements about the convergence times in
the paper thus pertain only to separable initial states. Choos-
ing an entangled initial state can presumably lead to a faster
convergence.

The goal of entanglement generating protocol is to pro-
duce states whose entanglement is as close as possible to that
of random pure states, i.e., states drawn according to the
invariant Haar measure on n qubits. Bipartite entanglement
of a pure state is completely determined by its Schmidt co-
efficients �i,

��� = �
i

�i��i�A � ��i�B, �3�

where ��i�A and ��i�B are orthogonal and we assume �i are
listed in nonincreasing order. Stating all Schmidt coefficients
completely characterizes bipartite entanglement �31�. As a
measure of closeness of our state ���t�� to a random state, we
could for instance compare average values of Schmidt coef-

ficients. For random pure states the average value of ith larg-
est Schmidt coefficient �i has been calculated in Ref. �12�. In
the case of a symmetric bipartite cut to first n /2 and last n /2
qubits it is given in an implicit form by

�i =
2 cos��i�

	N
,


i +
1

2
��

2N
= �i −

1

2
sin�2�i� , �4�

where N=2n/2 is the dimension of subspaces. For analytical
treatment though, Schmidt coefficients of ���t�� are not the
simplest quantity to calculate. Therefore, in most of the pa-
per we will rather use purity as a measure of entanglement.
Purity I�t� is simply a sum of �i

4, or in terms of reduced
density matrix

I�t� = trA��A
2�t��, �A�t� = trB����t�����t��� . �5�

Here subscript A and B denote subspaces of first and the last
n /2 qubits, respectively. For random states purity has been
calculated �2,7� and is I����2/N. In the last part of the paper
we will also briefly mention results for the von Neumann
entropy

S�t� = − trA��A�t�log2�A�t�� . �6�

Value of S for random states is known �3,4� and is
S����n /2−1/ loge 4. Whenever we speak about purity or
von Neumann entropy we will have in mind their approach
to asymptotic values, i.e., I�t�− I��� and S���−S�t�.

The goal of the paper is to analyze how fast the purity
decays to its asymptotic random state value, in particular,
how the decay time scales with n. In addition we are going to
find a two qubit gate W �2� for which the �average� purity I�t�
will decay the fastest. As we will see, this also means that the
convergence of �i or S�t� is the fastest. In principle, to find
the optimal gate, we would have to check the whole 15 pa-
rameter space of two qubit gates. However, each two qubit
gate W can be decomposed as �32,33�

Wij = Ai � Bjw�ax,ay,az�Ai� � Bj�, �7�

w�ax,ay,az� = exp
i
�

4
�ax	i

x	 j
x + ay	i

y	 j
y + az	i

z	 j
z�� ,

where A, A�, B, and B� are single qubit unitaries and 	x,y,z

are standard Pauli matrices. Two qubit transformation
w�ax ,ay ,az� which is parameterized by three parameters is
called a canonical form of W. In our protocol �2� single qubit
gates V are random unitaries therefore, as far as entangle-
ment is concerned, we only have to consider two qubit gates
in its canonical form. Instead of a 15 parameter space we
only have to find the optimal gate among a 3 parameter set
w. Furthermore, w�ax ,ay ,az� has certain symmetries. For in-
stance, we have a relation −i	i

x	 j
xw�ax ,ay ,az�=w�ax

+2,ay ,az�, and similarly for other a’s. Rotating w by � /2
around the y axis, Ry =exp�−i	y� /4�, we get Ry

� Ryw�ax ,ay ,az�Ry
†

� Ry
†=w�az ,ay ,ax�. There is also a sym-
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metry between 1+ax and 1−ax, i	i
xw*�1+ax ,ay ,az�	 j

x=w�1
−ax ,ay ,az�, as well as between positive and negative param-
eters, for instance, 	i

zw�ax ,ay ,az�	i
z=w†�ax ,ay ,−az�. Because

entanglement produced by w† and w* is the same as by w, all
these symmetries mean that it is enough to consider a’s in the
following range:

1 
 ax 
 ay 
 az 
 0. �8�

When doing numerics we will pay special attention to three
choices of two qubit matrices. For gate W we are going to
consider a controlled-NOT �CNOT� and an XY gate with the
corresponding unitary matrices in standard computational
basis equal to

WCNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
�, WXY =


1 0 0 0

0 0 − i 0

0 − i 0 0

0 0 0 1
� .

�9�

The canonical form of CNOT has parameters wCNOT�1,0 ,0�,
whereas XY has canonical form wXY�1,1 ,0�. Note that the
number of nonzero a’s directly gives the number of CNOT

gates needed to make such a gate out of single qubit gates
and CNOTs �34�. In fact, XY gate is equivalent �has the same
canonical form� as the product of two CNOTs, Wij

CNOTWji
CNOT,

also called a DCNOT gate. Third case will be a two qubit
unitary Uij�t� chosen from U�4� invariant Haar measure �37�,
shortly U�4� gate. Note that only in this case we choose an
independent two qubit gate at each step, in all other cases
two qubit gate is the same for all steps. This last choice of
U�4� gate will serve for comparison. Naively, one might
think that such random two qubit transformation at each step
will produce entanglement in the fastest way. This is not so
though. The optimal gate will turn out to be the XY gate.
Analytical calculation of purity for general gate w�ax ,ay ,az�
and our protocol �9� is rather difficult. Things simplify
though for gates W which preserve the Pauli group.

III. SPECIAL CASE: MARKOV CHAIN

Let us expand a pure state density matrix over products of
Pauli matrices

� = ���t�����t�� = �
�

c�	1
�1
¯ 	n

�n, �10�

where 	i
�i denotes Pauli matrix �i� �0,x ,y ,z� acting on ith

qubit, with the convention 	0=1. We use a short notation �
= ��1 , . . . ,�n�. With the expansion �10� purity �5� is now sim-
ply given by

I�t� =
1

N2 �
�=��A0B�

c�
2�t� , �11�

where the summation runs over all � which have identity on
the subspace B, i.e., � j =0, j=n /2+1, . . . ,n. To obtain the
decay of purity we therefore have to calculate the time de-
pendence of c�

2�t�. Averaging over U�2� invariant Haar mea-

sure of single qubit matrices Vi, Vj �2� we get the transfor-
mation law

c�
2�t + 1� = �

�,
,�
v�,�v
,�R�i,�i

R�j,�j
c��t�c
�t� , �12�

where v�,� is defined by Wij	
�Wij

† =��v�,�	� and R is a 4
�4 matrix obtained from averaging over random single qu-
bit gates and is equal to

R =

1 0 0 0

0
1

3

1

3

1

3

0
1

3

1

3

1

3

0
1

3

1

3

1

3

� . �13�

If Wij preserves the Pauli group, i.e., if it transforms products
of Pauli matrices into a product of some other Pauli matrices,
that is if v�i�j,
i
j

is nonzero and equal to ±1 or ±i only if

i=�i� and 
 j =� j�, the transformation �12� can be simplified
to

c�
2�t + 1� = �

�

�Mij
�2���,�c�

2�t� , �14�

�Mij
�2���,� = R�i,�i�

R�j,�j�
.

Markov matrix Mij
�2� of dimension 16�16 involves only ith

and jth qubits. To get the transformation on all n qubits we
have to average over all couplings, resulting in �30�

c2�t + 1� = Mc2�t�, M =
1

L
�
ij

Mij
�2�, �15�

if L is the number of all couplings, i.e., number of allowed
pairs of qubits i and j. As mentioned, we will consider three
different couplings, random i and j, nnPBC and nnOBC. Let
us illustrate how �� are determined from � �for instance, in
Eq. �15�� on the example of a CNOT gate. All 16 different
products of Pauli matrices 	i

�i	 j
�j can be numbered by x

=� j +4·�i. Transformation of all 16 products can now be
stated by giving the transformations of x’s. For instance,
the transformation UCNOT	x	yUCNOT

† =	y	z can be simply
stated by x=6 going to x�=� j�+4·�i�=11. All 16 x�
for CNOT can be written in a vector x�
= �0,1 ,14,15,5 ,4 ,11,10,9 ,8 ,7 ,6 ,12,13,2 ,3�, denoting
the transformation x= �0,1 ,2 , . . . ,14,15�→x�. It turns out
that XY gate also preserves the Pauli group. Transformed
x’s for XY gate can be written in a vector
�0,11,7,12,14,5,9,2,13,6,10,1,3,8,4,15�. Markovian descrip-
tion �15� greatly simplifies the analysis and this formulation
�30� will be used to calculate the decay of purity. Purity is
given by a sum of certain c�

2 �11� and therefore its asymptotic
decay will be determined by the second largest eigenvalue of
the matrix M. It can be shown that M �15� has two eigenval-
ues equal to 1. One corresponds to the identity operator on
all qubits, and the other to the ergodic density uniform on the
rest of the space. A third eigenvalue, �3=1−�, then deter-
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mines the asymptotic decay of purity as I�t�− I���� �1−��t.
In addition to two qubit gates that preserve the Pauli

group, Markov dynamics of the form c2�t+1�=Mc2�t� can
also be written for the case when at each step we choose an
independent U�4� gate. Averaging over U�4� group gives
M�2� which preserves identity, 	i

0	 j
0→	i

0	 j
0, while it uni-

formly mixes all other 15 possible products 	i
�i	 j

�j. Matrix
elements are therefore �M�2��U4��0,0=1 and �M�2��U4��x,x�
=1/15 if x ,x�� �1, . . . ,15�.

Most of two qubit gates w�ax ,ay ,az� though do not pre-
serve the Pauli group and therefore transformation of c2�t�’s
cannot be written as a Markov process �15�. In such cases we
will have to use a direct numerical simulation of our proto-
col, averaging over many different realizations to obtain the
decay of I�t�.

In the next section we are going to present numerical
results on the convergence rates. Most of the time we are
going to focus on purity. At the end of the section we will see
that other quantities like the von Neumann entropy or the
Schmidt coefficients give essentially the same information.
Convergence rate will be obtained by several different meth-
ods. When looking for the optimal gate, a direct simulation
of the protocol is used to calculate I�t� at some fixed time for
different gates, thereby identifying the optimal one. Central
quantity of interest is the scaling of the convergence rate
with n. In this respect we numerically calculate the gap of
the corresponding Markov chain for different numbers of
qubits n. We find that the gap in all cases scales as ��1/n.
Finally, we use the obtained gaps � to predict the asymptotic
decay of purity.

IV. NUMERICAL RESULTS

A. Optimal gate

First we want to find an optimal two qubit gate W �2�
which will result in the fastest possible decay of purity �5�.
We have already discussed that due to U�2� invariance of
single qubit gates Vi we can limit the study to two qubit gates
in the canonical form �8� with the parameters ax,y,z in the
range 1
ax
ay 
az
0 �8�. Because Markov description
for the transformation of c2 is not possible for general pa-
rameters we have to resort to direct numerical calculation of
purity. For each set of parameters we calculated the average
purity I�T� at some fixed time T, from which we then de-
duced the expected decay rate � of purity, assuming the de-
pendence

I�t� − I��� = exp�− �t/n� . �16�

Optimal gate is then the one with the largest �. We always
took n=8 qubits and averaged over 1000 protocol realiza-
tions. Time T at which we calculated � was 30 for random i-j
coupling and 50 for nnPBC and nnOBC couplings. Note that
because in each case n and T were fixed we could instead of
� simply use I as a criterion to determine the optimal gate.
The reason to use � is, as we will see later, that such theo-
retical form of purity is predicted in most cases of Markov-
ian dynamics.

In Fig. 1 we show the results in the case of coupling

between random pairs of qubits. It seems that the fastest
decay of purity is achieved for a continuous family of two
qubit gates of the form w�1,ay ,0� �and all variants obtained
by symmetries�. This includes XY gate with w�1,1 ,0� as
well as CNOT with w�1,0 ,0�. Gate w�1,1 ,1�, which is
equivalent to a SWAP gate, does not produce any entangle-
ment.

In Fig. 2 we show similar plots for nnPBC and nnOBC
coupling. Apart from the numerical values of � the overall
dependence on a’s looks similar to the one for random i-j
coupling. There is one notable difference though. Now the
XY and CNOT gate do not generate entanglement equally fast.
For nnPBC for instance, ��0.7 for XY and 0.5 for CNOT. XY
is clearly better for generation of random entanglement.
Similar conclusion is reached for nnOBC coupling. Interest-
ingly, comparing nnPBC and nnOBC cases we can see that
�’s for the later are by a factor �2 smaller than for nnPBC.
Remember that the only difference between nnPBC and
nnOBC is in the coupling between the first and the last qubit,
i.e., in the term U0,n−1, which is absent in nnOBC. This sole
difference results in nnOBC being by a factor of �2 slower
in producing random entanglement. One can intuitively un-
derstand this factor in the following way. The average dis-
tance between qubits in subspaces A and B is in the case of
nnPBC �qubits on a circle� about two times smaller than for
nnOBC �qubits on a line�. Therefore, because the decay rate
for purity �16� scales inversely with n one can expect a factor
of 2 between the two cases.

B. Markov chain

In previous section we have identified two interesting
gates, XY and CNOT, which are optimal for certain couplings.
As we have seen in Sec. III random protocol can be de-

-1.2
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-0.4
-0.2
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0.8

0.6
0.4

0.2
0

az=0
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az=0.25

az=0.5

az=0.75

az=1

FIG. 1. �Color online� The dependence of the decay rate of
purity −� �16� on three parameters ax,y,z for a protocol with random
i-j coupling. Cross sections for four different az are shown. Fastest
decay ���1.2� is obtained for gates of the form w�1,ay ,0�. This
includes XY gate at w�1,1 ,0� as well as CNOT gate at w�1,0 ,0�.
Dashed triangle shows the set of parameters fulfilling Eq. �8�.

MARKO ŽNIDARIČ PHYSICAL REVIEW A 76, 012318 �2007�

012318-4



scribed by Markov chain for both of these gates. This has
several advantages. In comparison to numerical calculation
of purity averaging over protocol is in Markovian formula-
tion exact. Provided the second largest eigenvalue �i.e., the
largest smaller than 1� of Markov matrix M is nondegener-
ate, 1−�, the decay of purity will be for small gaps � given
by

I�t� − I��� = exp�− t/��, � =
1

�
. �17�

Therefore, knowing the gap we will know the decay rate.
Using analytical techniques one can actually bound the gap.
This has been done in �30� where they proved that the gap is
��

4
9n�n−1� for CNOT gate and random i-j coupling. As the

exact analytical calculation of the gap seems too difficult,
even for a relatively simple Markov chain with U�4� gate, we
are going to numerically calculate the values of the gap for
different n and different couplings. In all cases we are going
to consider XY, CNOT, and U�4� gate. Disadvantage of Mar-
kovian description is that the matrix M is of rather large size
4n, i.e., their dimension equals to the square of the Hilbert
space dimension of pure states.

Results of numerical calculation of the gap for a chain
with random i-j coupling are in Fig. 3. We use the Lanczos

method �35� to calculate few largest eigenvalues of the Mar-
kovian matrix. For n�13 we use the original Markov chain
M of dimension 4n while for larger n a reduced chain is used
whose size is only 2n, see Ref. �30� for details. Because the
size of the matrix grows exponentially with n we are limited
to relatively small number of qubits. In accordance with Fig.
1 the gap is the same for XY and CNOT gates �same within
numerical precision�. Fitting 1/n dependence to the values of
the gap we get ��XY , rand i-j�=1.47/ �n+2.15� for XY and
CNOT gate and ��U4,rand i-j�=1.33/ �n+2.50� for U�4� gate
�38�. Perhaps surprisingly, the U�4� is about 10% slower than
XY gate. Doing random two qubit gates at each step is there-
fore not as efficient in producing random entanglement as
doing random single qubit gates and a fixed good two qubit
gate �XY or CNOT�. Numerical result for the gap in the case
of a CNOT gate improves the analytical lower bound �
�4/9n�n−1� proved in Ref. �30�.

For nnPBC results are shown in Fig. 4. Here full symbols
correspond to numerical calculation of the gap on a
4n-dimensional Markov chain while empty symbols are
gaps indirectly determined from the purity decay �17�.
The gap now scales as ��XY ,nnPBC�=0.45/ �n−2.50�,
��U4,nnPBC�=0.36/ �n−2.67�, and ��CNOT,nnPBC�
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FIG. 2. �Color online� The dependence of the decay rate of
purity −� �16� on three parameters ax,y,z, similarly as in Fig. 1. �a�
is for nnPBC coupling and �b� for nnOBC.
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FIG. 3. Dependence of the inverse gap, 1 /�, on n for Markov-
ian chain with random i-j coupling and XY �triangles�, CNOT

�circles�, and U�4� �squares� gate. Full lines are best fitting linear
function, see text for details.
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FIG. 4. Dependence of the inverse gap 1/� on n for nnPBC
coupling and XY �triangles�, CNOT �circles�, and U�4� �squares�
gates. Full lines are best fitting linear functions, see text for details.
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=0.28/ �n−3.01� �39�. Here we see that XY is the optimal
gate, while U�4� is better than CNOT gate, being the worst of
the three. For nnOBC very similar results are obtained as for
nnPBC and we will only list the fitted dependence of the gap,
��XY ,nnOBC�=0.23/ �n−3.01�, ��U4,nnOBC�=0.19/ �n
−3.12�, ��CNOT,nnOBC�=0.15/ �n−2.98�.

C. Purity decay

While the asymptotic decay of purity is guaranteed to be
I�t�− I���� exp�−t�� if the eigenvalue 1−� of Markovian
matrix is nondegenerate, the decay can be more complicated
in the case of degeneracies. It is found that for many Markov
chains one has the so-called cutoff phenomenon �36�. Briefly,
we say there is a cutoff in a Markov chain if the distance
between the asymptotic ergodic distribution and the distribu-
tion after t steps suddenly drops from 1 to 0 at some cutoff
time. The sharpness of this transition increases in the limit of
large state space size �in our case for n→��, for an exact
definition see Ref. �36�. Although precise mathematical con-
ditions leading to the cutoff are not known �36�, it generally
occurs due to multiplicity of the largest nontrivial eigenvalue
with the degeneracy increasing with increasing n. Let us il-
lustrate by an example: suppose we have n times degenerate
largest �non 1� eigenvalue equal to 1–1/n. Purity will then
decay as I�n exp�−t /n�. From this we see that I will be
equal to exp�−c�, where c is some fixed number, at time t
=n�ln n+c�. However large c we choose, in the limit n→�
purity will be small I�exp�−c� at time n ln n. In other
words, for times slightly smaller than n ln n purity will be
very large while it will be very small for times slightly larger.
There is a sudden cutoff at time n ln n. On the other hand, if
the eigenvalue is nondegenerate, purity is going to decay as
I�exp�−t /n�. It will reach small value exp�−c� at time nc.
This time now increases with increasing c. There is no cut-
off. If we want I to be smaller we have to increase t. One can
also look at time derivative of purity. In the case of a cutoff
the absolute value of the derivative �steepness of the curve
I�t�� diverges at some fixed value of I, while it goes to zero if
there is no cutoff.

To identify a possible cutoff one therefore has to look at
multiplicity of the largest eigenvalue. In all cases we studied
in Sec. IV B the largest eigenvalue 1−� is nondegenerate.
However, large degeneracy of an eigenvalue that is very
close to 1−� could also possibly cause a cutoff. We have
therefore numerically checked for degeneracies of the first
three largest eigenvalues �here we mean first three nontrivial;
we do not count a doubly degenerate eigenvalue 1� for gates
XY, CNOT, and U�4�. In all three cases we found degenera-
cies only for random i-j coupling, while there were no de-
generate eigenvalues for nnPBC and nnOBC couplings. For
XY and U�4� gate and random i-j coupling a third eigenvalue
is n−1 times degenerate, while for CNOT gate a second ei-
genvalues is n−1 times degenerate. This leads us to specu-
late that there is a cutoff for all three gates in the case of a
random i-j coupling �30� while there is probably no cutoff
for nnPBC or nnOBC coupling.

To check the above prediction about the cutoff as well as
to verify the asymptotic decay of purity, we have performed

numerical calculation of purity decay for larger n, where the
cutoff phenomenon should be visible. We simulated our ran-
dom protocol, averaging over many realizations, thereby ob-
taining I�t�. In Fig. 5 we show the decay of purity for n
=16 qubits and random i-j coupling. As we have seen, the
largest eigenvalue is in all cases nondegenerate while the
second or third eigenvalue is n−1 times degenerate for ran-
dom i-j coupling. Therefore, for short times the decay of
purity will be given by the largest as well as by the men-
tioned degenerate eigenvalue. We fitted numerically obtained
curves in Fig. 5 with the following dependence:

I�t� − I��� =
�1 + a exp�− b�t/����

1 + a
exp�− t/�� , �18�

where �=1/� is given by the gap of the largest eigenvalue
�17� and is determined from linear fitting lines in Fig. 3,
while two fitting parameters a and b take care of the degen-
eracy and the gap of the largest degenerate eigenvalue, re-
spectively. For the CNOT gate and n=16 we get a=2.80 and
b=0.75, while for U�4� gate we get a=2.57 and b=0.75.
Decay times � �18� used were the ones predicted from Fig. 3
and are �=12.3 for CNOT and �=13.9 for U�4� gate. Similar
fitting parameters as for CNOT gate are obtained also for XY
gate �data not shown�. Important point is that the parameter
a, connected with the degeneracy, increases with n. For in-
stance, for U�4� gate it is a=0.78 for n=12, a=2.57 for n
=16 and a=6.4 for n=18. This signals the emergence of a
cutoff for random i-j coupling and large n.

On the other hand, things are quite different for nnPBC or
nnOBC coupling. Results of numerical simulation for
nnPBC are in Fig. 6 �for nnOBC data are very similar�. As
one can see, purity is well described by a single exponential
function �17� with the predicted �=29.9 for XY, �=37.0 for
U�4� and �=45.9 for CNOT gate. Therefore, according to nu-
merical results for sizes up to n=20, we can predict that
there is probably no cutoff phenomenon for nnPBC and
nnOBC couplings.
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FIG. 5. Decay of purity for n=16 and random i-j coupling and
U�4� and CNOT gates, dashed curves. Theoretical decay �18� is
shown with the full curve. Asymptotically purity decays as
exp�−t�� �17� with the gap predicted from Fig. 3. For smaller times
though, degeneracies are important, reflected in a steeper decay of
purity �18�. In the limit n→� the cutoff is predicted.
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Numerical results presented show that the decay time of
purity asymptotically scales as ��n. This holds also for
gates that cannot be described by Markovian chain �data not
shown�. Because random state value of purity is �1/N, this
implies that purity will decay to its asymptotic value I�t�
− I����1/2n after number of steps scaling as t�n2.

D. Measures in addition to purity

In the core of the paper, due to its simplicity, we have
used purity I�t� as a measure of entanglement. Here we are
going to show that other quantities, von Neumann entropy
and Schmidt coefficients, for instance, also decay on the
same time scale �=1/� as purity. The only difference is that
the functional dependence of the decay is more complicated
than a simple exponential function. First we show the results
for the von Neumann entropy S�t� �6�. In order to show the
scaling with decay time � we plot in Fig. 7 the dependence of
S on t /�. As we can see, decay of S�t� is indeed described by

a universal form S���−S�t�= f�t /��, with the function f vis-
ible in figure. It slightly depends on the type of the coupling,
i.e., whether we have a random i-j, nnPBC or nnOBC, but is
independent of the gate.

To fully specify bipartite entanglement a single quantity,
like purity or von Neumann entropy, is not enough. One has
to specify all Schmidt coefficients �i. As a final test we
checked how individual Schmidt coefficients converge to
those of random pure states. Theoretical prediction for ran-
dom pure states has been calculated in Ref. �12� and is given
in an implicit form by Eq. �4�. Again, Fig. 8 shows the con-
vergence on the same time scale as that of purity. Functional
dependence looks Gaussian for nnPBC coupling while it is
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FIG. 6. Same as Fig. 5 but for nnPBC coupling. Purity is well
described by theoretical I�t�− I���=exp�−t /�� �17�, with � predicted
in Fig. 4 �i.e., no fitting�, in the whole range of times. No cutoff is
expected.
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FIG. 7. Similarly as I�t�, von Neumann entropy �6� also decays
on the same time scale as purity. All is for nnPBC, gates XY, CNOT,
U�4�, and n=16.
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FIG. 8. Schmidt coefficients also converge on the same time
scale � as purity. We show how �i��i

2�t�−�i
2���� depends on t /�. �a�

is for random i-j, �b� for nnPBC coupling �full line is a Gaussian
fit�. In both plots three curves almost overlapping are for CNOT, XY,
and U�4� gates, n=16.
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more complicated for random i-j coupling, possibly due to
degeneracies. In Fig. 9 we show the convergence of indi-
vidual �i

2.

V. DISCUSSION

We have numerically studied protocols for generation of
generic entanglement as represented by random pure quan-
tum states. At each step of the protocol a fixed two qubit gate
and two independent random single qubit unitaries are ap-
plied. We have calculated the decay rate of purity which in
all cases studied grows linearly with the number of qubits n.
For certain two-qubit gates Markovian description is pos-
sible. Convergence rate is in such cases determined by the
size of the gap which is numerically found to scale as 1/n,
improving the analytical bound in Ref. �30�. An optimal two
qubit gate is identified which produces random entanglement

in the smallest number of steps. This optimal gate is for all
different couplings considered XY gate, also called DCNOT

gate, generated by the Heisenberg XX interaction. Depending
on the coupling XY gate can be as much as 60% faster than
CNOT gate. Interestingly, applying a random two qubit gate at
each time step is slower than applying a fixed good two qubit
gate in addition to random single qubit unitaries. For cou-
pling between random qubits we predict the cutoff phenom-
enon, while there is probably no cutoff for the protocol
where we apply two qubit gates only to nearest neighbors.
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