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Generic examples of PT -symmetric qubit (spin-1/2) Liouvillian dynamics
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We outline two general classes of examples of PT -symmetric quantum Liouvillian dynamics of open many-
qubit systems, namely, interacting hard-core bosons (or more general XYZ-type spin-1/2 systems) having
either (i) pure dephasing noise or (ii) solely single-particle (spin) injection (absorption) incoherent processes.
The concept of PT symmetry is defined following Prosen [Phys. Rev. Lett. 109, 090404 (2012)] as a formal
quantum Liouville-space analog of the parity-time PT symmetry used in nonconservative classical systems with
symmetrically distributed gain and loss.
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The concept of PT symmetry has been introduced [1]
as a mathematical framework for studying non-Hermitian
operators with spectra having a certain symmetry, for example,
lying on the real line. In recent years, PT symmetry has
been studied extensively, both theoretically [2–6] and exper-
imentally in the context of optics [7,8] and electric circuits
[9]. Very recently, a formally analogous concept has been
proposed [10] on the level of master symmetries of quantum
master equations [11–13] (Liouville equations) describing
open quantum systems. It has been shown that the existence
of quantum PT symmetry generically implies the existence
of a spontaneous symmetry-breaking transition, such that for
sufficiently weak coupling to the environment all coherences
(off-diagonal matrix elements of the system’s density matrix in
the energy eigenbasis) decay with the same (uniform) damping
rate.

The aim of this Brief Report is to provide two general
classes of practically interesting examples for a recent con-
struction of quantum Liouvillian PT symmetry [10]. We
use notation exactly as introduced in Ref. [10] and refer to
definitions stated there.

We start by proving a simple observation which seems
to be crucial for a construction of general examples of
PT -symmetric Liouvillian systems:

Lemma. The Liouvillian flow is PT symmetric, if the
following conditions are fulfilled:

(i) The parity superoperator can be represented as

P̂ρ = UρW,

where U,W ∈ B(H) are two unitary operators satisfying

U 2 = W 2 = 1

and

[H,U ] = [H,W ] = 0.

(ii) There exists an M × M real orthogonal reflection matrix
Z ∈ O(M,R), satisfying Z2 = 1M , such that

ULm = −
M∑

m′=1

Zm,m′L
†
m′U,

WLm =
M∑

m′=1

Zm,m′L
†
m′W.

(iii) {Lm,L
†
m} = cm1, for some cm ∈ R.

Proof. Using (iii), D̂′ can be written as

D̂′ρ =
∑
m

(
2LmρL†

m − 1

2
{[L†

m,Lm],ρ}
)

, (1)

while in the Hilbert-Schmidt metric

(D̂′)†ρ =
∑
m

(
2L†

mρLm − 1

2
{[L†

m,Lm],ρ}
)

. (2)

Then, using (ii),

D̂′P̂ρ = D̂′(UρW )

= −U
∑
m

(
2L†

mρLm − 1

2
{[L†

m,Lm],ρ}
)

W

= −P̂(D̂′)†ρ. (3)

Finally, using (i), we have also (writing (ad H )ρ = [H,ρ])

(i ad H )P̂ = P̂(i ad H ) = −P̂(i ad H )†, (4)

and therefore

L̂′P̂ = −P̂(L̂′)†, (5)

i.e., we have the definition of PT symmetry [Eq. (8) of
[10]]. �

One quite restricted example of the application of PT -
symmetric quantum Liouvillian dynamics has been provided
in Ref. [10]. Here we show that applications are in fact
quite abundant and should not be difficult to realize in
experimentally accessible situations.

Example 1. Consider n spins 1/2, or qubits, described by
Pauli matrices σ

x,y,z,±
j , j = 1, . . . ,n. Take an arbitrary two-

spin Hamliltonian with a longitudinal external field

H =
∑
j<k

(
J x

j,kσ
x
j σ x

k + J
y

j,kσ
y

j σ
y

k + J z
j,kσ

z
j σ z

k

) +
∑

j

hjσ
x
j ,

(6)

and up to M = n local Hermitian “dephasing” Lindblad
operators

Lj = γjσ
z
j , j = 1, . . . ,n. (7)

The interaction strengths J
x,y,z

j,k , magnetic field strengths hj ,
and local dephasing rates γj can be completely arbitrary. The
Liouvillian dynamics defined with respect to the Hamiltonian
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H and Lindblad operators {Lj } is PT symmetric, according
to the Lemma above, if we take

U =
n∏

j=1

σx
j , W = 1. (8)

When J x
j,k ≡ J

y

j,k , hj ≡ 0, the model represents a general
interacting system of hard-core bosons with zero (or constant)
chemical potential. Then, the Lindblad channels (7) indeed
model the pure dephasing noise.

Example 2. Consider now a slightly more restriced Hamil-
tonain, again for n spins 1/2,

H =
∑
j<k

(
J x

j,kσ
x
j σ x

k + J
y

j,kσ
y

j σ
y

k + J z
j,kσ

z
j σ z

k

)
, (9)

and up to M = 2n Lindblad operators which represent inco-
herent local spin (particle) absorption (injection)

L2j−1 = ajσ
+
j , L2j = bjσ

−
j , j = 1, . . . ,n. (10)

Again, the interaction matrices J
x,y,z

j,k and the spin-flipping
rates aj ,bj can be arbitrary. The Lemma can now be imple-
mented with

U =
n∏

j=1

σ
y

j , W =
n∏

j=1

σx
j . (11)

In the XXZ-like case J x
j,k ≡ J

y

j,k the model represents an
open interacting hard-core boson model. For nearest-neighbor
interaction corresponding to one dimension (i.e., a chain), and
if incoherent processes are only at the ends, aj = bj = 0,
2 � j � n − 1, the model also describes an open version of
the so-called t-V model of spinless fermions.

In both examples above, the conditions (i)–(iii) of the
Lemma are straightforward to check with the reflection
matrix being trivial, Z = 1M . Besides the necessary conditions
[H,U ] = 0, [H,W ] = 0, implied by (i), we may or may not

have [U,V ] = 0; hence the number of spins n in our examples
need not be even.

Provided the parameters in the Hamiltonian can be chosen
such that both the energy spectrum and the energy-difference
(frequency) spectrum are nondegenerate, one should observe
aspontaneous PT -symmetry-breaking transition of Liouvil-
lian decay rates while increasing the noise or dissipation
strength [10], and below the transition point all the coherences
should decay with a uniform rate. It is reasonable to expect that
both classes of examples should be relevant for experiments
with ultracold atom systems.

We close this Brief Report by pointing out the fact that
our explicit construction (the Lemma above) improves the
statement on the symmetry of the dissipator-perturbation
matrix V made in Eq. (14) of Ref. [10], which in general
seems to be inconclusive. The symmetry of V is in fact
needed in order to establish a nontrivial sponaneous PT -
symmetry-breaking transition (i.e., nonvanishing of γPT). In
order to prove that Vj,k = Vk,j , we only need to show that∑

m |〈ψj |Lm|ψk〉|2 = ∑
m |〈ψk|Lm|ψj 〉|2. Indeed, due to the

condition (i) of the Lemma the eigenvectors |ψj 〉 of H

can be chosen to be simultaneously eigenvectors of W , say
W |ψj 〉 = ωj |ψj 〉, with ωj ∈ {±1}, so we have

∑
m

|〈ψj |Lm|ψk〉|2

=
∑
m

|〈ψj |WLm|ψk〉|2

=
∑

m,m′,m′′
Zm,m′Zm,m′′ 〈ψj |L†

m′W |ψk〉〈ψj |L†
m′′W |ψk〉

=
∑
m′

|〈ψj |L†
m′ |ψk〉|2 =

∑
m

|〈ψk|Lm|ψj 〉|2,

since Z is orthogonal, ZT Z = 1M . �
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