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We numerically investigate Heisenberg XXZ spin-1 /2 chain in a spatially random static magnetic field. We
find that time-dependent density-matrix renormalization group simulations of time evolution can be performed
efficiently, namely, the dimension of matrices needed to efficiently represent the time evolution increases
linearly with time and entanglement entropies for typical chain bipartitions increase logarithmically. As a
result, we show that for large enough random fields, infinite temperature spin-spin correlation function displays
exponential localization in space indicating insulating behavior of the model.
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I. INTRODUCTION

Interesting open problems in solid state theory are fre-
quently connected to strongly correlated systems. While the
physics of noninteracting particles is well understood, much
less is known about many-body interacting systems. Analyti-
cal solutions are typically not possible and numerical calcu-
lations are notoriously difficult precisely due to strong corre-
lations. In the theory of quantum information, quantum
correlations, or entanglement, are one of the central objects
of study. Recently, ideas of quantum information inspired a
new numerical method, called time-dependent density-
matrix renormalization group �tDMRG�.1,2 The method,
originally proposed for simulation of time evolution of quan-
tum systems on classical computers, has been shown rigor-
ously to be efficient in the number of particles at a fixed
evolution time.3 However, the more relevant question is what
is its time efficiency, i.e., how the complexity grows with
simulation time. Numerical experiments showed that the
method is efficient only in some rather special cases,4 while
in general, it fails5 due to fast growth of entanglement with
time. An open question is whether tDMRG can nevertheless
be used efficiently for some nontrivial interacting many par-
ticle system and for generic initial conditions. Our aim is to
answer this question in the affirmative. We show that tD-
MRG is time efficient for an interacting one-dimensional
�1D� Heisenberg chain in a disordered �spatially random�
magnetic field. This efficiency allows us to calculate infinite
temperature correlation functions for large chains of the or-
der of a hundred sites and shows that the many-body states in
disordered Heisenberg model are localized, at least at large
enough random fields.

While a single particle Anderson localization is well un-
derstood, for a review, see Ref. 6, the interplay between dis-
order and �strong� interactions in the onset of localization, as
manifested, e.g., in vanishing dc transport coefficients, is a
subject of an ongoing research �see, e.g., Ref. 7 and refer-
ences therein�. The simplest interacting situation is that of
two particles. It has been studied for the first time in Ref. 8
and shown that the localization length can drastically in-
crease in the presence of interaction. This has been con-
firmed by many subsequent studies. The situation for many
interacting particles, e.g., for finite densities, is much less

clear. It has been explored in Ref. 9 by calculating time evo-
lution of wave packets, showing that the center of mass ex-
tension of the wave packet grows logarithmically with time.
Later, the influence of the disorder on the entanglement has
been studied for single particle states10 and for quantum
computer simulating single particle localization.11 Disor-
dered Heisenberg model and entanglement properties of its
eigenstates have been studied in Ref. 12 where a transition in
level spacing distribution from Poissonian for no disorder, to
the Wigner-Dyson distribution of random matrix theory, and
back to Poissonian in the case of localization, has been ob-
served as the disorder amplitude is increased. Spectral statis-
tics for interacting disordered system has also been studied in
Ref. 13, sugesting the existence of localization for suffi-
ciently strong disorder. Characterization of metal-insulator
transition in disordered systems �in the absence of interac-
tion� in terms of spectral statistics has been studied in numer-
ous works �see, e.g., Ref. 14 and references therein�. Similar
transitions in spectral statistics have been observed also in
interacting systems �see, e.g., Ref. 15�. In Ref. 16, a relation
between generalized entanglement and inverse participation
ratio has been obtained for eigenstates of a disordered
Heisenberg model, while in Ref. 17, the Meyer-Wallach en-
tanglement has been calculated for random states localized
on M random or adjacent computational states. Localization
in many-body system can also be obtained by constructing
special on-site disorder.18

II. NUMERICAL METHOD

We will use the tDMRG method to calculate time evolu-
tion of pure states,1 ���t��=U�t����0��, or time evolution
of operators,2 O�t�=U†�t�OU�t�. Matrix product states
�MPSs� are used to represent pure states, ���
=�sj

tr�A1
s1
¯An

sn��s1¯sn�, where �s1¯sn� are computational
basis states with each sj taking two values sj � �0,1�, i.e.,
local dimension d=2. For operators, a matrix product opera-
tor �MPO� is expansion,

O = �
sj

tr�A1
s1
¯ An

sn��1
s1 � ¯ � �n

sn, �1�

where a basis of the Pauli matrices is used for each site, that
is, each sj can now take four different values, sj

PHYSICAL REVIEW B 77, 064426 �2008�

1098-0121/2008/77�6�/064426�5� ©2008 The American Physical Society064426-1

http://dx.doi.org/10.1103/PhysRevB.77.064426


� �0,x ,y ,z� �local dimension d=4�. The advantage of MPS/
MPO representation is that the transformation acting on the
neighboring spins can be done locally, that is, by transform-
ing only two adjacent matrices. Short time propagator U���
=exp�−iH�� generated by nearest neighbor Hamiltonian H is
decomposed using a second order Trotter-Suzuki formula
into a series of one and two qubit �qudit� operations. After
each application of a two qubit gate, the dimension D of the
two matrices involved increases by a factor of d. In order to
prevent the growth of matrix size with time, one truncates
their size using a singular values decomposition, keeping
only the largest singular values. Truncation after application
of a single two qubit gate Uk introduces truncation error
equal to the sum of squares of the discarded singular values,
��Uk�=1−� j=1

D � j
2�Uk�, if � j�Uk� are decreasingly ordered

singular values �i.e., Schmidt coefficients� of the bipartition
with the cut being on the bond affected by the gate Uk. Total
truncation error after application of a series of gates, U�t�
=�kUk, is then the sum of individual errors �tot�t�
=�k��Uk�. Truncation error �tot�t� scales with the time step
� as �tot�t���. By using the Trotter-Suzuki factorization of
U�t�, we also introduce the Trotter error. For our choice
of second order formula, the error in fidelity
1− �	�tDMRG ��exact��2 scales as ��6�t /��2=�4t2 �note that the
“phase” error �	�tDMRG ��exact�−1� scales as ��2t�. If one
starts evolution from a product state and/or operator at t=0,
which is always the case in our simulations, the error is
initially dominated by the Trotter error, but for larger times,
the precision of tDMRG is eventually determined by the
truncation error �tot. In the following, we are going to focus
solely on the truncation error.

Throughout this paper, when calculating evolution of pure
states, we start with a random product state, i.e., ���0��
= ��1� � ¯ � ��n�, where �� j� is a random state of jth qubit
corresponding to a random point on its Bloch sphere. Note
that in numerical simulations, in order to obtain an infinite
temperature behavior, we average over initial random states.
When simulating Heisenberg evolution of operators—which
will be used for computation of spin-spin correlations—the
initial operator will be chosen to be the spin projection at a
quarter of the lattice O�0�=sn/4

z . The initial state is therefore
in both cases, of operator or pure state dynamics, separable.
However, time evolution is expected to produce entangle-
ment. In all numerical computations, we also average over
random realizations of disorder.

The system we study is a 1D spin-1 /2 Heisenberg XXZ
model in a random magnetic field,

H = �
j=1

n−1

�sj
xsj+1

x + sj
ysj+1

y + �sj
zsj+1

z � + �
j=1

n

hjsj
z, �2�

where sj
� are canonical spin-1 /2 variables. The magnetic

field will be chosen randomly and uniformly in the interval

−h ,h�. The case of �=0 is a special case and should be
clearly distinguished from nonzero �. Using the Wigner-
Jordan transformation, Hamiltonian �2� with �=0 can be
transformed to a bilinear fermionic system � j�cj+1

† cj +H.c
+hjnj�, with ni=ci

†ci which represents the model of noninter-

acting spinless fermions with diagonal disorder known to
exhibit Anderson localization in 1D. The case ��0 intro-
duces the interaction or correlations among electrons
�through �njnj+1� which can qualitatively change properties
of the system. The aim of this paper is twofold: �i� to study
localization in an interacting disordered system and �ii� to
show that time evolution with tDMRG, as opposed to non-
integrable and nondisordered situation, is efficient for such a
system.

The computational complexity of simulating quantum
evolution on a classical computer using tDMRG is deter-
mined by the growth of bipartite entanglement. If bipartite
entanglement increases with time, we have to increase di-
mension of matrices D with time in order to prevent trunca-
tion error �tot�t� from growing. Because the number of com-
puter operations in tDMRG scales as �D3, it is crucial to
know how fast we have to increase D. We are going to study
necessary dimension D	�t� in order for the truncation error at
time t to be less than 	. If the necessary D	�t� grows linearly
with time, we say that the simulation is efficient and if it
grows exponentially, simulation is inefficient. For a quantum
chaotic, many-body system D	�t� grows exponentially with
time.5 Before looking at D	�t�, let us have a look at bipartite
entanglement. Note that the z component of the total spin
Sz=� jsj

z is a conserved quantity 
H ,Sz�=0. In the following,
we will consider T→
 limit of the model, so that random
states will, on the average, represent states with zero polar-
ization, Sz=0. In the fermion representation, this corresponds
to the half-filled band with n /2 spinless particles where the
effect of interactions is the strongest. In the other extreme
case Sz=n /2−1, the interaction � term is constant and there-
fore the problem is equivalent to the 1D Anderson model of
localization without interaction.

III. RESULTS

A. Entanglement entropy

The amount of bipartite entanglement can be measured by
the von Neumann entropy S1�t�=tr��A log2 �A�, or in general
by the Renyi entropy, of the reduced density matrix,

S��t� =
log2 tr �A

�

1 − �
, �A = trB���t��	��t�� . �3�

We shall always consider bipartite cut with the first m, or last
n−m, qubits constituing subspace A, or B, respectively. In
the case of operators, expansion coefficients in the basis of
the Pauli matrices 
Eq. �1�� are treated as expansion coeffi-
cients of a superket in a Hilbert space of dimension 4n, for
which the operator-space entanglement entropy is then cal-
culated. For the discussion of approximability of states with
MPS form and its relation to the Renyi entropies, see Ref.
19. We show in Fig. 1 the time dependence of the Renyi
S0.5�t� and von Neumann S1�t� entropies. For simulation of
pure states 
Fig. 1�a��, the entropies can be seen to grow
logarithmically with time in the interacting case �=0.5,
whereas they saturate to a constant for �=0 which seems
consistent with an Anderson quasiparticle localization. En-
tropies in Fig. 1 are shown for the “worst case” bipartition
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only, i.e., for m which maximizes them, whereas results are
qualitatively equivalent for half-half bipartition �m=n /2� or
average bipartition �average over m=1, . . . ,n−1�. For evolu-
tion of operators 
Fig. 1�b��, in the interacting case �=0.5,
S0.5�t� again grows logarithmically with time, whereas the
growth of S1�t� is slower than logarithmic, perhaps saturat-
ing. In fact, saturation of operator-space entropies S��t�, for
large enough ���*, seems a probable interpretation of our
results since it is compatible with localization of correlation
functions reported below �see Fig. 5�. Slower growth of en-
tanglement entropies �or even saturation� for operators as
compared to faster growth for pure states is consistent with a
qualitatively similar finding for a homogeneous transverse
Ising model.5,20 In the insets of Fig. 1, we compare our data
to tDMRG simulation for a nondisordered model �2� in a
staggered field of comparable strength hj = �−1� jh /
3, and
there we find a linear growth of S��t�� t, for pure states and
operators, which is consistent with an exponential increase of
D
�t� found for nonintegrable models.5 Note that there is, in
general, no simple relation between the behavior of pure

state entanglement entropy and operator-space entanglement
entropy. Only in the special case of rank-one projection op-
erators O= ���	��, we find a simple relation, namely, that
operator-space von Neumann entanglement entropy of ���	��
equals two times entanglement entropy of ���. Hence, the
operator-space entanglement entropy is also not equivalent to
an entanglement of a mixed state.

As we have seen, entropies grow at most logarithmically
for a disordered field. This gives us hope that the evolution
with tDMRG is, in fact, efficient, meaning that D	�t� grows
polynomially with time. This is indeed the case as shown in
Fig. 2. The necessary dimension of matrices grows linearly
with time, therefore the simulation of disordered Heisenberg
chain is efficient, both for pure states and for operators. This
must be contrasted to the other known efficient case of tD-
MRG, namely, integrable transverse Ising model,5 where the
simulation is efficient only for operators.

We note that in the numerical results presented above,
there is no significant finite size effects. In order to demon-
strate that, we plot in Fig. 3 the growth of the Renyi entropy
S0.5�t� for different system sizes n and observe significant
finite size effects only for size smaller than 30.

B. Infinite temperature correlation function

After establishing that tDMRG simulation of a disordered
Heisenberg chain is efficient, we want to calculate some
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FIG. 1. Entanglement entropies S0.5�t� and S1�t� for �a� pure
state evolution and �b� operator space evolution �see text for de-
tails�. We compare cases of �=0.5 �growing curves� and �=0
�saturating curves�, for n=50, average over �a� 100, �b� 21 �for �
=0.5�, and �b� 1000 �for �=0� disorder realizations with magnetic
field magnitude h=5. In the insets, we compare logarithmic growth
of S1�t� in disordered case �full curves, same data as in main
frames� to linear growth in the case of staggered magnetic field hj

= �−1� j5 /
3 and �=0.5 �dashed curves�.
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with time. �=0.5, n=50, and a single disorder realization with h
=5 �the same realization for all data points�.
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physically relevant quantity. We choose an infinite tempera-
ture spin-spin correlation function C�r , t�,

C�r,t� = 2−n tr�sn/4
z �t�sn/4+r

z � , �4�

which is computed from MPO representation of the Heisen-
berg dynamics sn/4

z �t�. By calculating C�r , t�, we can directly
assess the many-body localization. In particular, C�r , t→
�
gives direct information on dc transport properties, i.e.,
whether the dc spin diffusion constant is finite or, equiva-
lently for fermions, whether the system is a conductor �nor-
mal resistor� or Anderson insulator �at finite T�. First, we are
going to consider noninteracting system �=0. The reason to
study this case is to verify recently obtained bounds on the
propagation of correlations in disordered systems.20 It has
been proven that the correlations are exponentially sup-
pressed outside an effective logarithmic lightcone. Note that
since this case �=0 is equivalent to noninteracting fermions,
the necessary dimension of matrices D actually saturates5 at
D	�t�=4, meaning that the calculation is very efficient and
chains of thousands of spins are easily accessible. From the
calculated correlation function shown in Fig. 4, we can see
that the correlation function decays exponentially in space
and is frozen in time after a sufficiently long time, �C�r , t��
�K exp�−r /��, for some K ,��0. This means that the rigor-
ous estimate20 is, in fact, overpessimistic and can perhaps be
improved.22 We actually observe three regimes: �i� for small
times, correlations propagate ballistically, seen as a linear
growth of isocurves C�r�t� , t�=const; �ii� after that, we have
a logarithmic propagation of correlations, reflected in a loga-
rithmic shape of isocurves; and �iii� for large time, localiza-
tion sets in and the spatial correlation function gets its
asymptotic exponential shape. The crossover times between
the regimes increase with decreasing value of correlation on
the isocurve.

In Fig. 5, correlation function is shown for the interacting

system, �=0.5. Interestingly, we again observe localization
with qualitatively similar structure of correlation function
C�r , t� as in the case �=0. Note that numerical simulation is,
in this case, much harder. For the case shown, the dimension
of matrices has been D=64 which, as can be inferred from
Fig. 2, means truncation error �tot�t�40��10−3. Because of
truncation errors, for large times t�20 and distances r�10,
one can see sort of a plateau in the correlation function in
Fig. 5 which can be systematically decreased by increasing
D. Our results indicate that the interaction does not destroy
localization, at least for large disorder. This appears to be in
contrast with the predicted metal-insulator transition at a fi-
nite T in the corresponding fermionic system.23

However, in light of observed logarithmic growth of en-
tanglement entropies with time, we cannot exclude another
possibility of very small diffusion constant and, in a strict
sense, absence of localization. Yet, another possibility would
be the existence of localization-delocalization transition at
smaller disorder strength h, but this regime is much harder to
simulate with the present method as entanglement entropies
increase faster for smaller h.

Still, we were able to verify that the entropy grows loga-
rithmically also for smaller fields, e.g., for h=2, as well as
for other interaction strength, e.g., �=1.5. For example, for
�=0.5 and h=2, we find S�t��c log t, with c which is about
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FIG. 4. �Color online� Spin-spin correlation function C�r , t�
�log10 color code� for noninteracting case, �=0, n=500, average
over 1000 disorder realizations with h=1. Solid curves are isolines
at 10−8, 10−6, 10−4, and 10−2 from right to left.
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four times larger than that for h=5 and �=0.5. This indicates
that the system probably displays the same kind of localiza-
tion also for smaller magnetic field strength. If this is the
case, transition in level spacing statistics observed in Refs.
12 and 13 might be just due to finite size effects �localization
length being larger than the system size�.

We have also checked that the results of correlation func-
tions, in the regimes which we show, do not significantly
depend on the system size n. For instance, the correlation
function for n=20 is practically the same as the one for n
=50 in Fig. 5.

IV. CONCLUSIONS

tDMRG is, for general systems, inefficient due to fast
entanglement growth. Nevertheless, we have shown that it

can be efficient for a disordered Heisenberg model and po-
tentially as well for some other disordered interacting models
in one dimension. Spin-spin correlations evaluated in our
study at large temperatures exhibit localization in spite of a
nontrivial interaction term, inferring that all-many-body
states are localized in large enough disorder.

It should be noted that this is a successful application of
tDMRG for simulation of long time evolution at high tem-
perature in a nonsolvable �nonintegrable� system. The effi-
ciency of the method is related to an interesting observed
logarithmic asymptotic growth of entanglement entropy for
time evolution of both pure states and operators.
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