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Evolution of entanglement under echo dynamics
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Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and
guantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum
mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior
between integrable and chaotic systems on one hand and between random and coherent initial states for
integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale.
Analytic results are illustrated numerically in a Jaynes-Cummings model.
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More than a century ago Loschmidt, in his discussionsZurek’s result holds exclusively for coherent states in the
with Bolzmann illustrating irreversibility in a gas, suggestedcentral system, i.e., that we may not expect faster decoher-
to invert the velocity of each atom individually in order to ence for chaotic central systems than for integrable ones, if
revert to the initial situation. Recently, Loschmidt echoeswe use random states that are more relevant to quantum in-
have been of great interest in the control of quantumformation.
information processin@il]. As entanglement is the essential ~ To implement this idea we have to consider systems with
property of quantum mechanics, in the present paper we anét least two degrees of freedom to allow for entanglement
lyze the Loschmidt echo appearing in the entanglement ofnd a well defined classical limit—0. The (unperturbeg
two quantum systems. As a measure of entanglement we uggmiltonian will contain a parameter permitting a transition
purity [2] and show analytically as well as numerically that from order to chaos, and will typically couple the two de-
for classically integrable systems the purity decays as Brees of freedom. A perturbation is then defined to obtain a
—c,t?, whereas for a classically chaotic system the decagecond similar Hamiltonian. We give general results for en-
after the Zeno time scale is described by d.t. For a co- tanglement under echo dynamics starting from an initial
herent state the constary, is independent of. For chaotic ~ Product(disentanglefistate. To illustrate our results we use
systems(or random initial states in integrable systertisis  the Jaynes-CumminggC) model[8]. The usual corotating
constant on the other hand is proportional t6%)/thus de-  (integrable version of this model has great practical impor-
fining quite different time scales. tance in atomic physics and illustrates theindependent

Zurek [2] proposed to use the rate of decoherence as gvolution of entanglement for coherent states. For the argu-
characteristic of chaos in quantum mechanics and this is odnents involving the chaotic dynamics we include counter-
casionally reinterpreted in terms of entanglem§8} be-  rotating termg3,10] to construct a toy model that allows for
tween different parts of a closed quantum system. Such stu@¢haos. Even this model may not be entirely unrealistic for
ies were limited to forward time evolution. Yet the atomsina Paul trap in a driven field, as standard papers seek
insensitivity of quantum mechanics to small changes in ini-conditions where this term is small1].
tial conditions has been a basic difficulty in the introduction ~ For general considerations and analytic calculations tech-
of the concepts of chaos to this field, and the idea to us&iques of linear response developed originally for the evalu-
sensitivity to perturbations in the time evolutiqd] has  ation of fidelity[ 6] are extended to calculate purity fidelity in
emerged recently as one of the tools of choice to overcomterms of time correlation functions of the perturbation. In the
this difficulty [5,6]. Specifically all these authors ugdelity, case of coherent states we could carry the evaluation of lin-
i.e., the correlation function between a quantum state evolvear response one step further using it in a semiclassical
ing under the action of two Hamiltonians differing by a per- framework that relates the decay rates directly to the stability
turbation, which is equivalent to the autocorrelation functionmatrix of the orbit along which the packet evolves.
under echo dynamics. Since fidelity measures irreversibility We consider the unitary time evolution given by the echo
of a full quantum state under the echo, it is also desirable t@perator M () =U(t)U(t). Here U(t) is generated by
undertand irreversibility of a less restrictive quantity like en-some unperturbed HamiltoniahasU (t)=e ™ "H* and simi-
tanglement. A recent study in spin cha[i@, more related to  larly U 4(t)=e™'("* V% "\whereV is the perturbation with
quantum computing, revealed no qualitative difference bestrengthd. It is useful to rewrite the echo operator as time-
tween fidelity and the evolution of entanglement under ech@rdered producf6] in the interaction picture,
dynamics as measured conveniently by purity there denoted R
aspurity fidelity. This system allows no classical analog, and Ms(t)=TexdiXx(t)o/h], D
by consequence no coherent states. Yet these we shall show
to be essential to recover results analogous to the ones wfere > (t): fOV(T)dT with V(t):=UT(t)VU(t). This op-
Zurek and NemeR2,3]. Based on the idea that a partial trace erator shall act on a composite system with the Hilbert space
simulates decoherence, our results lead to the conjecture that="H,® H,, consisting of two factors with dimensioms;
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andN,, which we may look upon as a “central system” and with coc# [6]. It is worth to stress that in the regime of linear
an “environment.” We are interested only in information responsésmall §), formulas(4) and(5) agree with Eqs(2)
about the Subsystem 1 which is contained irrduced den- and (3) from which the time Sca|e$em,7-ne are obtained.

sity matrix py(t):=trop(t), p(t)=|¢(t))(¥(1)|. We shall As for purity fidelity of chaotic systems, one may argue
study the purity fidelity{ 7] Fp(t) := tr;[ p;(t)]* as a measure  thats,(t) should look like arandom matrixso the termD (t)

of factorizability of a joint statg(t)) =M (t)[(0)). We  should be small compared t€(t) in Eq. (3), namely,
choose this quantity rather than some entropy because of its(t)/C(t)~1/N,+ 1/N, because of the smaller number of
simple analytic dependence pr(t). Here the partial traces terms involved in the sums. Thus, if both dimensidws,
with indices 1 and 2 are taken in the corresponding factogyrow as#—0 one expects in the asymptotic regime' that
spaces and the reduced density matrix is acting on the ﬁr?rfp(t):|F(t)|4:exp(—2UTenQ, and does not significantly
factor space. We always assume that we start with a factotiepend on the initial state. In particular this also holds for
ized state at=0, i.e.,Fp(0)=1. For comparison we shall coherent initial states. Using similar arguments for regular

also use the fidelityF (t)|*=[((0)|M s(t)] :(0))|*. dynamics but a random initial state, one again sees that
Expanding the echo operattl) in 8, we get[6] Fp(t) follows |F(t)|* closely[7].
) S Yet for coherent stateand regular classical dynamics this
[FOI*=1-5%""C(t)+- -, is not the case because the tefx{t) is not negligible. We
) ) show that the differenc€(t) —D(t) cancels in the leading
C(O)=(X%(1)) —(X(1))". (2 order in #, ie., C(t)—D(t)~#%2, meaning thatFp(t)

- _— as compared to|F(t)]? decays on a qualitatively
Here(-) denotes an expectation in the product initial Statelonger, %i-independent  time scaleq-,fe= KIo~h Y27 .

lslg(n(])(?tt:a'c%]’nl} Wensh t.g?dig?revr'it'?%;ﬁ)::|'>1®|V>2' The This will be the main result of the present paper. In order
lques yi punty Tidelity to establish this we consider the evolution of a Gaussian

Fa(t)=1-26%"2C()—D(t)}+-- -, wave packet along a stable or@;zfit,ﬁt) as (x| (1))

=Cexp((i/h)[ (x—X;) - Al(X—X;) + p;- X]), where the block

form of the complexd X d matrix
_(All AlZ)
Ay A

D(t>==;1 |<1,v|2<t>|1,1>|2+i§1 (i, 12 (0)]1,2)]%
3

For both series to converge it is sufficient to uskoainded i o ) )
perturbation operato¥, but we expect the linear-response €orresponds to obvious division od € d; + d)-dimensional
formula to be a good approximation for a much wider classconfiguration space intd; - andd,-dimensional partsh; is a

of perturbations. The somewhat unusual correlation functiofi@tio of two pieces of a classical monodromy maf@ so it
D(t) contains only off-diagonal matrix elements of the op-1S 7 independent. The purity of a reduc_ed wave
erator3 (t) and determines the difference betwdas(t) and  Packet p(xq,xq)=fdXa(Xy,Xa| (1) )((t)[X1,X2) is Fp
|F(t)]*. From expansion2) and (3) we can see that the =Jdxidxi|p(xy,x7)[*=1 if Aj;=A,=0 while in general
decay is determined by time correlation functions of the perwe find#-independent expression

turbation. The stronger the decay of correlation functions

(6)

(Y|V()V(t')|¥) as|t—t’| grows, the slower is the increase Fp=(det ImA)
of C(t) and the slower is the decay Bf(t) andFp(t). i i -1/2
We limit our discussion to systems which have a classical Im Az EA’{Z 0 —5An

limit. For such systems chaos typically implies decay of the .
time correlation functions of the perturbation observable [

i
*
(i.e., mixing, while regular motion implies nonergodic be- §A21 IMAz - EAZl 0
havior. Fidelity decay for both situations is discussed in Ref. X i i ;
[6]. Under rathgr general assumptions one fiaggonential 0 ——A, ImAy A
decay forchaoticdynamics 2 2
_ _ i [
[F(t) ZZEX[X—I/Tem), Tem=(20) h2s72, 4 §A21 0 2 31 Im Az

where adiffusion coefficienio:=lim,_...C(t)/(2t) is inde-  \here|.| denotes a determinant ofiX 2d matrix. For clas-
pendent of the initial staté(0)) (for sufficiently long sical echo dynamics, the covariance mathix A, is given

time_s, typicallyt}ln 1/k). In _classical_ly regular s_ituation _ by a linear stability analysis as=A,+t B for some matrix
the fidelity exhibits a quadratic de_cay in the_leadlng order ing, whereAq 1= Ag »=0. Then purity fidelity is% indepen-
8 even for long times, sinc€(t)—ct?, wherec depends on  dent and can be evaluated in the leading orders g&)
the structure of the initial state. For a coherent initial state we=1 — (t§/K)?+ - - -.
find a Gaussiandecay of fidelity We thus reach the following interesting conclusion: Both
_ fidelity and purity fidelity decay quadratically in integrable
IF(O)|2=exd — (t/7hd?], me=C Y2161 (5 situations, while they decay linearly in chaotic ones, once we

042112-2



EVOLUTION OF ENTANGLEMENT UNDER ECHO DYNAMICS PHYSICAL REVIEW A67, 042112 (2003

are beyond the Zeno time scale. Yet there is a very relevant 1.6 , : - - , —
difference in time scales themselves, if we discuss the purity 14t
of coherent rather than random states. For integrable sys- 1oL
tems, purity fidelity decays on afirindependent scale. This s 41

leads to situations with very stable purity fidelity, while the a

same perturbation generates decay of the fidelity of the co- < 08¢

herent state as well as the decay of the purity fidelity of a 5067

random state on much shorter time scales, dictated by the 04t

value off. Note though that for sufficiently small perturba- 0.2 1

tions at fixedh the quadratic decline of purity fidelity always 0 B . . . ; .
prevails. 0 5 10 15 20 25 30 35

To illustrate these results we use the JC Hamiltonian in-
cluding corotatingand counterrotating terms for the chaotic ~ FIG. 1. Correlation integral€(t)/t and D(t)/t for the regular
case as (top two dotted curvesand chaotic(lower two solid curvesre-

gimes. In both cases the upper curve is@gt)/t and the lower for
% D(t)/t. The horizontal dashed lines indicate-2 0.20 (upped and
H=ﬁwa*a+her+E(GaJ++G'aJ,+H.c.) (7 0.20/4 (lower), whereas the increasing ones have the slopes

=0.046 (upped and (1-0.98/4)c (lowen).

with standard boson operatossa’, [a,a’]=1, and stan- _ . . .
dard SU2) generators). ,J,. We choosei=1/J ensuring We first report a calculation with a strong perturbati®n
that the classical limit is reached fdr-c while the angular =0-1, which rapidly exceeds the realm of validity of linear
momentum#J=1 is fixed. If eitherG=0 or G'=0 the T'€SPONse, in Fig. 2 where the main figure gives the purity
model is integrable with an additional invariant being thefidelity and the inset the fidelity. For the fidelity decaysed
difference or the sum of quanta for the spin and the oscilla¥e find excellent agreement with the exponential dey
tor. In all calculations we used coherent initial states for thé" @ chaotic regime and a faster Gaussian decay in a regular
product system, i.e., direct product of coherent states of thEe9ime(5), where the decay rates are fixed as above. How-
oscillator, | ) :eaaf_a*a|0> and of the spin[SU(2)] ever, for purity fidelity we find already at~20 that the
16, ) :(’1+T27_*)7Jex @ )E]’J) with r=e‘¢tan(0l25 decay starts to be influenced by the saturation value of
[1’2] ! i) Fp(t—»)=~1/(2J+1). Therefore purity fidelity is higher
For our numerics we fii=4 and choose initial position for the integrable case than for the chaotic one not only at

of SU(2) coherent state ai(¢) = (1,1) and for the oscillator short times, as expected, but even at large times. ThIS'IS
_ . S : relevant because we shall next choose a weak perturbation
at «=1.15. The parameters in JC Hamiltonian &&g in

. . e o o 6=0.005 to avoid this problem. We expect and find the
cha_otlc regimewn=€=0.3 andG,—G =1 () in mtegrab_le crossover after a fairly short time. This calculation allows
regime w=¢=0.3 and G=1,G’'=0. The corresponding

classical Poincarsection shows a single practically ergodic comparison with theory as well as an illustration of the evo-
component in the chaotic casa) (at energyE=1.0 deter- lution of the square of the Wigner function, corresponding to

. o o : the reduced density matrix (t) for the angular-momentum
mined from the initial conditio)) whereas integrable cads) . L
(E=0.63) shows a generic family of invariant tori. The per- states on the sphere using the definition of R&E]. Near

turbation is realized by varying the paramet¢gn JC Hamil- the to_p and bott_om of Fig. 3 we see this evolu_tlon for the

X . chaotic and the integrable Hamiltonian, respectively. In the
toman' (7), also k”OV.V“ as dephasing, so twunded per- center of the figure, we plot the purity fidelity on the same
turbation generator i¥="%J,.

We now show numerical results obtained by diagonaliza-
tion in truncated Hilbert spaces. Stability of the calculation
with respect to truncation was checked. Figure 1 presents the
correlation integral€(t)/t andD(t)/t for chaotic and regu-
lar regimes. For chaotic dynamifsase(a)] the correlation
integral converges after~10 to a well defined diffusion 06 r
coefficiento=0.10 with theD term being of order of M,
+1/N,~1/4. For regular dynamidsase(b)] andt>10 the
correlation integral grows a€ due to a nonvanishing pla-
teauc=0.046 in the correlation function. In this case the 02 r
differenceC(t) — D(t) is approximatelyC(t)/J=#2, which
has been checked numerically also for larget24, con-
firming fi-independent decay dfp(t). The oscillations in FIG. 2. Purity fidelityFp(t) (main figure and squared fidelity
these functions are not accounted for by the present theorjz(t)|* (inse in the chaotic regimésolid curves and in the inte-
and are probably particular but interesting properties of thgrable regimedotted curves for §=0.1. The dashed lines indicate
model. Whether they relate to oscillations seen in R&fis  the linear and quadratic approximations, respectively. Note the dif-
an open question. ferences in vertical scales.

1
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the competition of the decay rate and the decay shape as
expected for a nonsmall value 6f=1/4. It is important to
remember that the integral over the square of the Wigner

25
125

]
ol

function gives the purity and therefore the fading of the pic-
_ chaotic ture will be indicative of the purity decay. On the other hand,

T the movement of the center is an indication of the rapid
decay of fidelity(not shown in the figune

In this paper, we study the linearized behavior of the evo-

lution of entanglement under echo dynamics for time scales
large compared to those of the quantum Zeno effect, but
sufficiently short for the expansion to be valid. Similarly to
the behavior of fidelity the decay of purity fidelity is typi-
\ cally quadratic for nonmixing systems, and linear for mixing
0.8r 0 0 20 30t 1 ones, the first situation arising for integrable systems and the
second for chaotic ones. An interesting particular but rel-

0 50 100 t 150 200 _ _ ticu
evant case appears if we consider coherent initial states and
integrable classical dynamics. In this case we have shown
that purity fidelity, still having a quadratic decay, can be

computed classically in the leading order whichfisnde-
FIG. 3. (Color Echo dynamics for weak couplingi=0.005.  pendent, so the time scale for purity fidelity decay of a co-

Square of the Wigner function for chaotic dynamitsp diagrams  herent state is longer by a factor proportionafito'? than
and integrable dynamics as a function of tithettom diagramsat  the corresponding one for a random state. Coherent states in
times corresponding to the axis. Color code: top left. Purity fidelityintegrable systems are thus particularly long lived for semi-
is shown in the frame on the same time scale and for short times iglassical echo situations. On the other hand, for chaotic clas-
the inset. Red curves give the integrable and blue curves the Chao@0a| dynamics and coherent initial states we find that punty
evolution. Full curves show the complete numerics, symbols th@fidelity is the same as for random states, and its decay will be
evaluation starting from the numerical correlation functions of Fig.g|ower than for either random or coherent initial states and
1, and dashed curves the linear or quadratic approximation. integrable dynamics provided that time is sufficiently long or

time scale as the Wigner functions in the main frame and af€"turbationd is sufficiently small.

amplification of short times in the inset. We observe detailed \We are grateful to W. Schleich for his extensive discus-
agreement of numerics with results obtained from the nusion of our manuscript. Financial support by the Ministry of
merical values of the correlation integrd® and(3) repro-  Education, Science and Sports of Slovenia and from projects
ducing the oscillatory structure. From the same correlationunder Grant No. IN-112200, DGAPA UNAM, Mexico, Grant
integrals we obtained the coefficients for the linear and quaNo. 25192-E CONACYT Mexico, and Grant No. DAAD19-
dratic decays, which agree well if we discard the oscillations02-1-0086, ARO United States is gratefully acknowledged.
We see a crossing of the two curvestatty~12 for Fp. T.P. and M.Z thank CIC, where this work was completed,
These times are larger than the Zeno timel() and indicate for its hospitality.
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