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Evolution of entanglement under echo dynamics
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Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and
quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum
mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior
between integrable and chaotic systems on one hand and between random and coherent initial states for
integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale.
Analytic results are illustrated numerically in a Jaynes-Cummings model.
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More than a century ago Loschmidt, in his discussio
with Bolzmann illustrating irreversibility in a gas, suggest
to invert the velocity of each atom individually in order
revert to the initial situation. Recently, Loschmidt echo
have been of great interest in the control of quantu
information processing@1#. As entanglement is the essenti
property of quantum mechanics, in the present paper we
lyze the Loschmidt echo appearing in the entanglemen
two quantum systems. As a measure of entanglement we
purity @2# and show analytically as well as numerically th
for classically integrable systems the purity decays a
2cInt

2, whereas for a classically chaotic system the de
after the Zeno time scale is described by 12ccht. For a co-
herent state the constantcIn is independent of\. For chaotic
systems~or random initial states in integrable systems! this
constant on the other hand is proportional to 1/\2, thus de-
fining quite different time scales.

Zurek @2# proposed to use the rate of decoherence a
characteristic of chaos in quantum mechanics and this is
casionally reinterpreted in terms of entanglement@3# be-
tween different parts of a closed quantum system. Such s
ies were limited to forward time evolution. Yet th
insensitivity of quantum mechanics to small changes in
tial conditions has been a basic difficulty in the introducti
of the concepts of chaos to this field, and the idea to
sensitivity to perturbations in the time evolution@4# has
emerged recently as one of the tools of choice to overco
this difficulty @5,6#. Specifically all these authors usefidelity,
i.e., the correlation function between a quantum state ev
ing under the action of two Hamiltonians differing by a pe
turbation, which is equivalent to the autocorrelation functi
under echo dynamics. Since fidelity measures irreversib
of a full quantum state under the echo, it is also desirabl
undertand irreversibility of a less restrictive quantity like e
tanglement. A recent study in spin chains@7#, more related to
quantum computing, revealed no qualitative difference
tween fidelity and the evolution of entanglement under e
dynamics as measured conveniently by purity there den
aspurity fidelity. This system allows no classical analog, a
by consequence no coherent states. Yet these we shall
to be essential to recover results analogous to the one
Zurek and Nemes@2,3#. Based on the idea that a partial tra
simulates decoherence, our results lead to the conjecture
1050-2947/2003/67~4!/042112~4!/$20.00 67 0421
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Zurek’s result holds exclusively for coherent states in
central system, i.e., that we may not expect faster deco
ence for chaotic central systems than for integrable one
we use random states that are more relevant to quantum
formation.

To implement this idea we have to consider systems w
at least two degrees of freedom to allow for entanglem
and a well defined classical limit\→0. The ~unperturbed!
Hamiltonian will contain a parameter permitting a transiti
from order to chaos, and will typically couple the two d
grees of freedom. A perturbation is then defined to obtai
second similar Hamiltonian. We give general results for e
tanglement under echo dynamics starting from an ini
product~disentangled! state. To illustrate our results we us
the Jaynes-Cummings~JC! model @8#. The usual corotating
~integrable! version of this model has great practical impo
tance in atomic physics and illustrates the\-independent
evolution of entanglement for coherent states. For the a
ments involving the chaotic dynamics we include count
rotating terms@3,10# to construct a toy model that allows fo
chaos. Even this model may not be entirely unrealistic
atoms in a Paul trap in a driven field, as standard papers
conditions where this term is small@11#.

For general considerations and analytic calculations te
niques of linear response developed originally for the eva
ation of fidelity@6# are extended to calculate purity fidelity i
terms of time correlation functions of the perturbation. In t
case of coherent states we could carry the evaluation of
ear response one step further using it in a semiclass
framework that relates the decay rates directly to the stab
matrix of the orbit along which the packet evolves.

We consider the unitary time evolution given by the ec
operator M d(t)5Ud

†(t)U(t). Here U(t) is generated by
some unperturbed HamiltonianH asU(t)5e2 iHt /\ and simi-
larly Ud(t)5e2 i (H1dV)t/\, whereV is the perturbation with
strengthd. It is useful to rewrite the echo operator as tim
ordered product@6# in the interaction picture,

M d~ t !5T̂ exp@ iS~ t !d/\#, ~1!

whereS(t)ª*0
t V(t)dt with V(t)ªU†(t)VU(t). This op-

erator shall act on a composite system with the Hilbert sp
H5H1^ H2, consisting of two factors with dimensionsN1
©2003 The American Physical Society12-1
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andN2, which we may look upon as a ‘‘central system’’ an
an ‘‘environment.’’ We are interested only in informatio
about the subsystem 1 which is contained in areduced den-
sity matrix r1(t)ªtr2r(t), r(t)5uc(t)&^c(t)u. We shall
study the purity fidelity@7# FP(t)ª tr1@r1(t)#2 as a measure
of factorizability of a joint stateuc(t)&5M d(t)uc(0)&. We
choose this quantity rather than some entropy because o
simple analytic dependence onr1(t). Here the partial traces
with indices 1 and 2 are taken in the corresponding fac
spaces and the reduced density matrix is acting on the
factor space. We always assume that we start with a fac
ized state att50, i.e.,FP(0)51. For comparison we sha
also use the fidelityuF(t)u25u^c(0)uM d(t)uc(0)&u2.

Expanding the echo operator~1! in d, we get@6#

uF~ t !u2512d2\22C~ t !1•••,

C~ t !ª^S2~ t !&2^S~ t !&2. ~2!

Here ^•& denotes an expectation in the product initial st
uc(0)&5u1,1& with the abbreviationu i ,n&ªu i &1^ un&2. The
same techniques yield for purity fidelity

FP~ t !5122d2\22$C~ t !2D~ t !%1•••,

D~ t !ª(
nÞ1

u^1,nuS~ t !u1,1&u21(
iÞ1

u^ i ,1uS~ t !u1,1&u2.

~3!

For both series to converge it is sufficient to use abounded
perturbation operatorV, but we expect the linear-respons
formula to be a good approximation for a much wider cla
of perturbations. The somewhat unusual correlation func
D(t) contains only off-diagonal matrix elements of the o
eratorS(t) and determines the difference betweenFP(t) and
uF(t)u4. From expansions~2! and ~3! we can see that the
decay is determined by time correlation functions of the p
turbation. The stronger the decay of correlation functio
^cuV(t)V(t8)uc& asut2t8u grows, the slower is the increas
of C(t) and the slower is the decay ofF(t) andFP(t).

We limit our discussion to systems which have a class
limit. For such systems chaos typically implies decay of
time correlation functions of the perturbation observa
~i.e., mixing!, while regular motion implies nonergodic be
havior. Fidelity decay for both situations is discussed in R
@6#. Under rather general assumptions one findsexponential
decay forchaoticdynamics

uF~ t !u25exp~2t/tem!, tem5~2s!21\2d22, ~4!

where adiffusion coefficientsª limt→`C(t)/(2t) is inde-
pendent of the initial stateuc(0)& ~for sufficiently long
times, typically t@ ln 1/\). In classically regular situation
the fidelity exhibits a quadratic decay in the leading order
d even for long times, sinceC(t)→ c̄t2, wherec̄ depends on
the structure of the initial state. For a coherent initial state
find a Gaussiandecay of fidelity

uF~ t !u25exp@2~ t/tne!
2#, tne5 c̄21/2\d21 ~5!
04211
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with c̄}\ @6#. It is worth to stress that in the regime of linea
response~small d), formulas~4! and~5! agree with Eqs.~2!
and ~3! from which the time scalestem,tne are obtained.

As for purity fidelity of chaotic systems, one may argu
thatS(t) should look like arandom matrixso the termD(t)
should be small compared toC(t) in Eq. ~3!, namely,
D(t)/C(t);1/N111/N2 because of the smaller number
terms involved in the sums. Thus, if both dimensionsN1,2
grow as \→0 one expects in the asymptotic regime th
FP(t)5uF(t)u45exp(22t/tem), and does not significantly
depend on the initial state. In particular this also holds
coherent initial states. Using similar arguments for regu
dynamics but a random initial state, one again sees
FP(t) follows uF(t)u4 closely @7#.

Yet for coherent statesand regular classical dynamics th
is not the case because the termD(t) is not negligible. We
show that the differenceC(t)2D(t) cancels in the leading
order in \, i.e., C(t)2D(t);\2, meaning thatFP(t)
as compared to uF(t)u2 decays on a qualitatively
longer, \-independent time scaletne

P 5K/d;\21/2tne.
This will be the main result of the present paper. In ord
to establish this we consider the evolution of a Gauss
wave packet along a stable orbitzW t5(xW t ,pW t) as ^xW uc(t)&
5C exp„( i /\)@(xW2xW t)•At(xW2xW t)1pW t•xW #…, where the block
form of the complexd3d matrix

At5S A11 A12

A21 A22
D ~6!

corresponds to obvious division of (d5d11d2)-dimensional
configuration space intod1- andd2-dimensional parts.At is a
ratio of two pieces of a classical monodromy matrix@9# so it
is \ independent. The purity of a reduced wa
packet r(x1 ,x18)5*dx2^x1 ,x2uc(t)&^c(t)ux18 ,x2& is FP

5*dx1dx18ur(x1 ,x18)u
251 if A125A2150 while in general

we find \-independent expression

FP5~det ImA!

3U Im A11
i

2
A12* 0 2

i

2
A12

i

2
A21* Im A22 2

i

2
A21 0

0 2
i

2
A12 Im A11

i

2
A12

2
i

2
A21 0

i

2
A21* Im A22

U21/2

,

whereu•u denotes a determinant of 2d32d matrix. For clas-
sical echo dynamics, the covariance matrixA5At is given
by a linear stability analysis asA5A01tdB for some matrix
B, whereA0,125A0,2150. Then purity fidelity is\ indepen-
dent and can be evaluated in the leading orders asFP(t)
512(td/K)21•••.

We thus reach the following interesting conclusion: Bo
fidelity and purity fidelity decay quadratically in integrab
situations, while they decay linearly in chaotic ones, once
2-2
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are beyond the Zeno time scale. Yet there is a very relev
difference in time scales themselves, if we discuss the pu
of coherent rather than random states. For integrable
tems, purity fidelity decays on an\-independent scale. Thi
leads to situations with very stable purity fidelity, while th
same perturbation generates decay of the fidelity of the
herent state as well as the decay of the purity fidelity o
random state on much shorter time scales, dictated by
value of\. Note though that for sufficiently small perturba
tions at fixed\ the quadratic decline of purity fidelity alway
prevails.

To illustrate these results we use the JC Hamiltonian
cluding corotatingand counterrotating terms for the chaot
case as

H5\va†a1\eJz1
\

A2J
~GaJ11G8aJ21H.c.! ~7!

with standard boson operatorsa,a†, @a,a†#51, and stan-
dard SU~2! generatorsJ6 ,Jz . We choose\51/J ensuring
that the classical limit is reached forJ→` while the angular
momentum\J51 is fixed. If eitherG50 or G850 the
model is integrable with an additional invariant being t
difference or the sum of quanta for the spin and the osc
tor. In all calculations we used coherent initial states for
product system, i.e., direct product of coherent states of
oscillator, ua&25eaa†2a* au0&2, and of the spin@SU~2!#,
uu,f&15(11tt* )2Jexp(tJ2)uJ,J& with t5eif tan(u/2)
@12#.

For our numerics we fixJ54 and choose initial position
of SU~2! coherent state at (u,f)5(1,1) and for the oscillator
at a51.15. The parameters in JC Hamiltonian are~a! in
chaotic regimev5e50.3 andG5G851, ~b! in integrable
regime v5e50.3 and G51,G850. The corresponding
classical Poincare´ section shows a single practically ergod
component in the chaotic case~a! ~at energyE51.0 deter-
mined from the initial condition!, whereas integrable case~b!
(E50.63) shows a generic family of invariant tori. The pe
turbation is realized by varying the parametere in JC Hamil-
tonian ~7!, also known as dephasing, so the~bounded! per-
turbation generator isV5\Jz .

We now show numerical results obtained by diagonali
tion in truncated Hilbert spaces. Stability of the calculati
with respect to truncation was checked. Figure 1 presents
correlation integralsC(t)/t andD(t)/t for chaotic and regu-
lar regimes. For chaotic dynamics@case~a!# the correlation
integral converges aftert'10 to a well defined diffusion
coefficients50.10 with theD term being of order of 1/N1
11/N2'1/4. For regular dynamics@case~b!# and t.10 the
correlation integral grows ast2 due to a nonvanishing pla
teau c̄50.046 in the correlation function. In this case t
differenceC(t)2D(t) is approximatelyC(t)/J}\2, which
has been checked numerically also for largerJ<24, con-
firming \-independent decay ofFP(t). The oscillations in
these functions are not accounted for by the present the
and are probably particular but interesting properties of
model. Whether they relate to oscillations seen in Ref.@3# is
an open question.
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We first report a calculation with a strong perturbationd
50.1, which rapidly exceeds the realm of validity of line
response, in Fig. 2 where the main figure gives the pu
fidelity and the inset the fidelity. For the fidelity decay~inset!
we find excellent agreement with the exponential decay~4!
in a chaotic regime and a faster Gaussian decay in a reg
regime~5!, where the decay rates are fixed as above. Ho
ever, for purity fidelity we find already att'20 that the
decay starts to be influenced by the saturation value
FP(t→`)'1/(2J11). Therefore purity fidelity is higher
for the integrable case than for the chaotic one not only
short times, as expected, but even at large times. Thi
relevant because we shall next choose a weak perturba
d50.005 to avoid this problem. We expect and find t
crossover after a fairly short time. This calculation allow
comparison with theory as well as an illustration of the ev
lution of the square of the Wigner function, corresponding
the reduced density matrixr1(t) for the angular-momentum
states on the sphere using the definition of Ref.@12#. Near
the top and bottom of Fig. 3 we see this evolution for t
chaotic and the integrable Hamiltonian, respectively. In
center of the figure, we plot the purity fidelity on the sam

FIG. 1. Correlation integralsC(t)/t and D(t)/t for the regular
~top two dotted curves! and chaotic~lower two solid curves! re-
gimes. In both cases the upper curve is forC(t)/t and the lower for
D(t)/t. The horizontal dashed lines indicate 2s50.20 ~upper! and

0.20/4 ~lower!, whereas the increasing ones have the slopec̄

50.046~upper! and (120.98/4)c̄ ~lower!.

FIG. 2. Purity fidelityFP(t) ~main figure! and squared fidelity
uF(t)u4 ~inset! in the chaotic regime~solid curves! and in the inte-
grable regime~dotted curves!, for d50.1. The dashed lines indicat
the linear and quadratic approximations, respectively. Note the
ferences in vertical scales.
2-3
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time scale as the Wigner functions in the main frame and
amplification of short times in the inset. We observe detai
agreement of numerics with results obtained from the
merical values of the correlation integrals~2! and ~3! repro-
ducing the oscillatory structure. From the same correlat
integrals we obtained the coefficients for the linear and q
dratic decays, which agree well if we discard the oscillatio
We see a crossing of the two curves att5tP* '12 for FP .
These times are larger than the Zeno time ('1) and indicate

FIG. 3. ~Color! Echo dynamics for weak coupling:d50.005.
Square of the Wigner function for chaotic dynamics~top diagrams!
and integrable dynamics as a function of time~bottom diagrams! at
times corresponding to the axis. Color code: top left. Purity fide
is shown in the frame on the same time scale and for short time
the inset. Red curves give the integrable and blue curves the ch
evolution. Full curves show the complete numerics, symbols
evaluation starting from the numerical correlation functions of F
1, and dashed curves the linear or quadratic approximation.
-
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the competition of the decay rate and the decay shap
expected for a nonsmall value of\51/4. It is important to
remember that the integral over the square of the Wig
function gives the purity and therefore the fading of the p
ture will be indicative of the purity decay. On the other han
the movement of the center is an indication of the ra
decay of fidelity~not shown in the figure!.

In this paper, we study the linearized behavior of the e
lution of entanglement under echo dynamics for time sca
large compared to those of the quantum Zeno effect,
sufficiently short for the expansion to be valid. Similarly
the behavior of fidelity the decay of purity fidelity is typ
cally quadratic for nonmixing systems, and linear for mixin
ones, the first situation arising for integrable systems and
second for chaotic ones. An interesting particular but r
evant case appears if we consider coherent initial states
integrable classical dynamics. In this case we have sho
that purity fidelity, still having a quadratic decay, can
computed classically in the leading order which is\ inde-
pendent, so the time scale for purity fidelity decay of a c
herent state is longer by a factor proportional to\21/2 than
the corresponding one for a random state. Coherent stat
integrable systems are thus particularly long lived for se
classical echo situations. On the other hand, for chaotic c
sical dynamics and coherent initial states we find that pu
fidelity is the same as for random states, and its decay wil
slower than for either random or coherent initial states a
integrable dynamics provided that time is sufficiently long
perturbationd is sufficiently small.
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