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The number of two-qubit gates required to deterministically transform a three-qubit pure quantum state into
another is discussed. We show that any state can be prepared from a product state using at most three CNOT

gates and that starting from the Greenberger-Horne-Zeilinger state, only two suffice. As a consequence, any
three-qubit state can be transformed into any other using at most four CNOT gates. Generalizations to other
two-qubit gates are also discussed.
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I. INTRODUCTION

Quantum information and computation �see, e.g., Ref. �1��
is usually described using qubits as elementary units of in-
formation which are manipulated through quantum opera-
tors. In most practical implementations, such operators have
to be realized as sequences of local transformations acting on
a few qubits at a time. Whereas one-qubit gates alone cannot
create entanglement, it has been shown that together with
two-qubit gates they can form universal sets, from which the
set of all unitary transformations of any number of qubits can
be generated �2�. The complexity of a quantum algorithm is
usually measured by assessing the number of elementary
gates needed to perform the computation. The controlled-
NOT �CNOT� gate, a two-qubit gate whose action can be writ-
ten �00�→ �00�, �01�→ �01�, �10�→ �11�, �11�→ �10�, is one of
the most widely used both for theory and implementations. It
can be shown that the CNOT gate together with one-qubit
gates is a universal set �2�. Experimental implementations of
a CNOT gate �or the equivalent controlled phase flip� have
been recently reported using, e.g., atom-photon interaction in
cavities �3�, linear optics �4�, superconducting qubits �5,6�,
or ion traps �7,8�. While large size quantum computers are
still far away, small platforms of a few qubits exist or can be
envisioned in the framework of these existing experimental
techniques. In most such implementations, two-qubit gates
such as the CNOT are much more demanding than one-qubit
gates.

Theoretical quantum computation has been usually fo-
cused on assessing the number of elementary gates to build a
given unitary operator performing a given computation.
Some works have tried to focus on two-qubit gates and to
minimize their number in order to build a given unitary
transformation for several qubits �9,10�. Still, unitary trans-
formations in many applications are a tool to transform an
initial state to a given state. It seems therefore natural to try
and assess how costly this process is in itself. In this paper,
we thus study the minimal number of two-qubit gates needed
to change a given quantum state to obtain another one. Of
course, this number is necessarily upper bounded by the
number required for a general unitary transformation. We
focus on the case of two and three qubits. For two qubits, the
results of Ref. �11� show that one CNOT is enough to go from
any given pure state to any other. Here we give an explicit
algorithm achieving that. For three qubits, we show that

three CNOTs are enough to go from �000� to any other pure
state, and that two CNOTs suffice if one starts from the
Greenberger-Horne-Zeilinger �GHZ� state ��000�+ �111�� /�2.
A corollary of the latter is thus that four CNOTs are enough to
go from any pure state to any other pure state. The number of
CNOT gates required to go from a state to another defines a
discrete distance on the Hilbert space. Given any fixed state
���, the Hilbert space can be partitioned according to the
distance to ���. It is known that if stochastic one-qubit op-
erations are used, entanglement of three �12� and four �13�
qubits fall into, respectively, two and nine different classes.
Our classification according to the number of CNOTs is dif-
ferent, although there are some relations. Our results gener-
alize to other universal two-qubit gates, in particular to the
iSWAP gate which has been shown to be implementable for
superconducting qubits �14�.

We consider pure states belonging to the 2n-dimensional
Hilbert space C2n

. The space of normalized quantum states is
the sphere S2n+1−1. As the cost of one-qubit gates is negli-
gible, we are interested only in equivalence classes of states
modulo local unitary �LU� transformations. We thus consider
the sets En=S2n+1−1 /U�2�n of states nonequivalent under LU
transformations. In the case of two and three qubits the di-
mension of E2 and E3 was determined in Refs. �15,16� and
their topology has been described in Ref. �17�. Throughout
the paper we will make use of the one-qubit LU operations
Rj

�k����=exp�−i��j
�k�� where the �j

�k� are the Pauli matrices
acting on qubit k. In particular, the operation Ry

�k����
corresponds to a rotation of the qubit cos����0�
+sin����1��cos��+���0�+sin��+���1�.

II. TWO-QUBIT STATES

We first give an explicit algorithm that transforms a gen-
eral two-qubit state ��� into another state ���� using only one
CNOT.

Proof. Since E2 is homeomorphic to �0,1�, only one pa-
rameter �e.g., one Schmidt coefficient� characterizes a state
up to LU. More precisely, by LU each two-qubit state can be
brought to the canonical form ���=cos ��00�+sin ��11�,
which is just Schmidt decomposition. We want to transform
state ��� with parameter � to state ���� with parameter ��.
When ����, we need at least one CNOT. It turns out that
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one CNOT is in fact sufficient, as can be easily seen by check-
ing that the relation Ry

�1��−��CNOT12Ry
�1��������= ���� holds

�by convention, qubit 1 is the leftmost one�. �
In contrast, one needs three CNOT s in general to construct

a specific two-qubit unitary transformation �9�. Transforming
one state to another is thus clearly easier.

III. THREE-QUBIT STATES

We now turn to the three-qubit case. In the following, we
investigate the minimal number of CNOT gates required to
generate any given three-qubit state from two different
choices of initial state.

A. Classification with respect to �000‹

We start with the case where we want to prepare a state
��� from �000�. The distance �in number of CNOTs� from
�000� to ��� is a criterion for the difficulty to prepare ���. We
will show that this distance partitions the Hilbert space into
four classes, and that any state can be prepared from �000�
using three CNOT gates or less. We will examine each of
these four classes in turn.

Class 0. One needs zero CNOT gates to transform ��� to
�000� if and only if the state is of the product form ���
= �����, where ��� , ��� , ��� are normalized single qubit states
�this is trivial, since only LU are used�.

Class 1. One needs one CNOT if and only if the state is of
the form ���= ���1���23 �i.e., it is biseparable�, where ���23 is
an arbitrary entangled state of the last two qubits �18�.

Proof. By LU ��� can be transformed into canonical form

��� =
LU

�0��cos ��00�+sin ��11��. Applying CNOT23 to this ca-
nonical form we obtain �0��cos ��00�+sin ��10��, i.e., state
�0��cos ��0�+sin ��1���0� which is in class 0. We can there-
fore reach �000� in a single CNOT step. Conversely, applying
one CNOT gate on a state from class 0 the state reached is
biseparable and therefore all states that need 1 step to get
from �000� are of the above form. �

In their canonical form states from class 1 can be param-
etrized by a single real parameter �.

Class 2. One needs two CNOT gates if and only if the state
is of the form ���=cos ������+sin ���������, with
	� ����=0, �	� �����	1, and �	� �����	1 �if �	� ����� or
�	� ����� are equal to 1 then ��� belongs to class 1�.

Proof. We first bring the state by LU to the canonical form

��� =
LU

cos ��000�+sin ��1���. If the phases are absorbed into
the definition of local bases, ��� can be written as cos ��0�
+sin ��1�. The rotation Ry

�3�� 

4 − �

2
� followed by a CNOT13

yields a state �cos ��00�+sin ��1�������, which is a state of
class 1 from which we can reach state �000� in a single step.

To prove the converse, we have to show that by using two
CNOT gates one can reach only states of the form ���
=cos ������+sin ���������, or states in class 0 or class 1.
Starting from class 0, we are in class 1 after one step.
Any class 1 state can be written as ����cos ��0��
+ei� sin ��1����. Applying CNOT23 or CNOT32 we get a state in
class 0 or class 1. Applying CNOT21 on the other hand we get

cos ���0��+ei� sin ���̄1���, where ��̄�=�x���, which is in-
deed of the canonical form of class 2 states. Last possibility
is applying CNOT12. In this case it is better to write our
state in the basis �� �= ��0�� �1�� /�2 for the second qubit.
That is, any class 1 state can be written as ����cos ��−��
+ei� sin ��+����. Writing ���=cos ���0�+ei�� sin ���1�, we
then get after applying the CNOT12 state cos ��cos ���0�
−ei�� sin ���1���−��+sin �ei��cos ���0�+ei�� sin ���1���+���,
which is again of the canonical form expected. For CNOT13 or
CNOT31 the argument is similar. �

One needs three real parameters to describe states of class
2 in their canonical form. Note that class 2 states constitute a
subset of GHZ-type states which are of �unnormalized� form
�����+ �������� �12�.

Class 3. One needs three CNOT gates if and only if a state
is not in class 0, 1, or 2.

Proof. States not in the previous classes are of two types:
�i� W-like states defined by the property that the range of the
reduced density matrix of qubits 2 and 3 contains only one
product state. Such states are of the �un-normalized� form
���= �����+ �������23, where ���23 is entangled and orthogo-
nal to ����. Under LU they can be written in the following
canonical form �12�

��� =
LU

cos ��000� + sin �����cos ���10� + sin ���01�� , �1�

with ���=cos ��0�+sin ��1� and �ii� GHZ-like states �19,20�
with the canonical form

��� =
LU

a�000� + ei�b����� , �2�

where ���, ���, and ��� are real single qubit states param-
etrized by one parameter each and a ,b are real parameters,
one of which is fixed by normalization. To exclude class 2
states we must demand that none of ���, ���, and ��� be equal
to �1�. To exclude class 1 and 0 states in Eqs. �1� and �2� �23
must be of rank 2. W-like states �1� require three parameters.
GHZ-like �2� states need 5, and thus are the generic states.

First we show that by using single CNOT one can trans-
form class 3 states to class 2. For W-like states �1� we just
have to apply CNOT23 to the canonical form �1� and we im-
mediately get cos ��000�+sin �����cos ���1�+sin ���0���1�
which is of class 2 �states on the third qubit are orthogonal�.
For GHZ-like states �2� it is a bit more work. Note that
GHZ-type states can be, by rearranging terms and after LU,
written as cos ��000�+sin ��1����23 �expanding �0� on the
first qubit in Eq. �2� into ��� and ���� and adding ��� part to
the second term�, where ���23 can in turn be expanded as
���23=cos ���0
�+sin ���1
��� with �	
 �
���	1 �otherwise
state would be in class 2�. Finally, rotating third
qubit brings the state to cos ��00���+sin ��1��cos ���00�
+ei�� sin ���1���� with real ����=cos g��0�+sin g��1�. After
application of the rotation Ry

�3�� 

4 − g�

2
� followed by CNOT23 we

arrive at cos ��00�̃��+sin ��1��cos ���0�+ei�� sin ���1����̃��
which is of class 2. Since the canonical forms of classes 0, 1,
2, and 3 span the whole Hilbert space and since the forms of
classes 0, 1 and 2 are the only ones that can be reached in 2
steps, it immediately follows that the states of canonical
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forms �1� and �2� require exactly three steps. �
Thus any state is at a distance less than or equal to 3 from

�000�.

B. Classification with respect to GHZ state

Let us now examine the distance to the GHZ state
�GHZ�= ��000�+ �111�� /�2. It turns out that any state is at a
distance less than or equal to 2 from GHZ. We use the fact
that any state in E3 can be characterized by a set of six
polynomial invariants �21,22�. Following Ref. �22�, we de-
note the first three invariants by Ii=tr �i

2, 1� i�3, where �i
is the reduced density matrix of the ith qubit. Any three-qubit
state is equivalent under LU to its canonical form �22�

�0�000� + �1ei��100� + �2�101� + �3�110� + �4�111� , �3�

where the six parameters �0 , . . . ,�4 ,� label the state in E3
and 
�i

2=1. If we take 0���
 the parameters in the ca-
nonical form �3� are unique.

Class 0. States at distance 0 from GHZ are states whose
canonical form �3� is GHZ �this is trivial�.

Class 1. States at distance 1 from GHZ are states whose
canonical form �3� is �up to relabeling�

1
�2

�000� + �2�101� + �3�110� + �4�111� �4�

�with �4�1 /�2�, i.e., states with I1= 1
2 .

Proof. It is straightforward to check that the state �4� has
the same invariants �i.e., is the same up to LU� as
CNOT23Ry

�2���2�Ry
�3���3��GHZ� with �2= 1

2arcsin��2
�2� and �3

= 1
2arccos��3

�2�, and thus is at distance 1 from GHZ. Con-
versely, if a state ��� is at distance 1 from GHZ, then one of
its invariants I1 , I2 , I3 has to be the same as for GHZ. Since
GHZ is symmetric under permutation of the qubits, one can
consider that the CNOT gate applied is CNOT23 �up to relabel-
ing of the qubits before applying the CNOT�. In this case the

invariant I1= 1
2 is conserved. The reduced density matrix of

the first qubit of ��� therefore verifies tr �1
2= 1

2 which in turn
�since it is a 2�2 density matrix� implies that �1= 1

21. All
states with this property can be written as ���= 1

�2
�0����

+ 1
�2

�1�����, with 	� ����=0. The canonical form of such
states is precisely �4�. �

Class 2. All other states are at distance 2 from GHZ.
Proof. We show that all other states are at distance 1 from

states of canonical form �4�. States of canonical form �4� are
characterized by I1= 1

2 . Therefore we have to prove that any
state ��� not in class 0 or 1 can be transformed to a state
verifying I1= 1

2 with only one CNOT gate. The reduced den-
sity matrix of the first qubit is a 2�2 matrix �1= � A

B�

B
1−A

�.
The first invariant is thus given by I1=A2+ �1−A�2+2�B�2. It
is equal to 1

2 if and only if A= 1
2 and B=0, which �since B

is complex� yields three equations. One-parameter rotations
of the qubits before applying CNOT yield free parameters.
It turns out that a solution to the three equations always
exists. Indeed, the state ��� can be reduced either to the
canonical form �1� or to the canonical form �2�. If ���
is in canonical form �1�, one can check that the state
CNOT12Ry

�1���1�Ry
�2���2����, with

tan 2�1 =
cot2 � + cos 2�

sin 2�
,

tan 2�2 =
sin�� + 2�1�cos �� sin 2�

sin�2� + 2�1�cos 2�� sin2 � − cos2 � sin 2�1

�5�

is such that I1= 1
2 . Let us now suppose that ��� is in canonical

form �2�. The one-qubit states ���, ���, ��� can be written in
the form cos ��0�+sin ��1� with parameters, respectively,
�1, �2, and �3. Normalization imposes that a2+b2

+2ab cos � cos �1 cos �2 cos �3=1. One can check that the
state CNOT12Rx

�1����Ry
�1���1�Ry

�2���2����, with parameters of the
rotations given by

tan 2�1 =
�b2 − b4�cos 2�1 − a2

„a2 − 1 − 2b2 cos2 �1 cos 2�2 + 2b4 cos2 �2 sin2�2�1�sin2 �3…

b2 sin�2�1��1 − a2 − b2 + 2a2 cos2 �2�1 − a2 sin2 �3 + b2 cos�2�1�sin2 �3��
,

tan 2�2 = −
b2 sin�2�1 + 2�1�sin 2�2 + 2ab cos � sin��1 + 2�1�sin �2 cos �3

a2 sin 2�1 + b2 sin�2�1 + 2�1�cos 2�2 + 2ab cos � sin��1 + 2�1�cos �2 cos �3
,

tan 2� = −
2ab sin � sin �1 sin �2 cos �3�a2 sin 2�1 − b2 sin�2�1 + 2�1��
2a sin �1 sin �2�2ab2 cos �1 cos �2 + b�a2 + b2�cos � cos �3�

, �6�

verifies I1= 1
2 . �

IV. DISCUSSION

The results above show that the number of CNOTs needed
to transform a state to another state is much less than the

number to produce all unitary transformations. Indeed, ac-
cording to Ref. �10�, one needs at least 14 CNOT gates to
produce any three-qubit unitary transformation. We also note
that the best available algorithm actually does not saturate
the bound, needing 20 CNOTs �10�. Our procedure improves
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previous algorithms for pure states which needed 10 CNOTs
�10�. It is explicit, and selects a specific unitary transforma-
tion leading from one state to the other using less CNOTs than
a general unitary transformation.

Let us now discuss the applicability of these results to
physical systems. In an experimental context, our results can
be used to construct any desired state from the initial state
which is easiest to produce with a given system. In some
experimental setups, two-qubit gates are built from a nearest
neighbor interaction �for example, in Refs. �5,6��. In this
case, the common procedure is to use additional SWAP gates
to transfer the states of two distant qubits to nearest neigh-
bors before performing the CNOTs. However, in our case, due
to the symmetry of GHZ state, one can go from any state to
the GHZ state in two CNOTs without the need of any quan-
tum SWAP. Thus even if only nearest-neighbors CNOTs are
available for three qubits on a line, still only four CNOTs are
enough to go from any state to any other state. If one starts
from �000� and one allows for relabeling of qubits in the final
state, three CNOTs are still enough to go to any state, except
for the GHZ-type class 3 states, Eq. �2�, which need an ad-
ditional CNOT in this architecture.

Any two-qubit gate can be expressed in terms of CNOTs
and one-qubit gates. Thus our result will imply a bound in
the number of two-qubit gates needed to go from one three-
qubit state to another, for any other choice of universal two-
qubit gate. We note that another popular two-qubit gate is the
iSWAP ��00�→ �00�, �01�→ i�10�, �10�→ i�01�, �11�→ �11��
which is natural for implementations corresponding to a XY
interaction. As the iSWAP can be expressed in terms of one
CNOT and one SWAP gate plus one-qubit gates �23�, our re-
sults apply directly to this particular gate provided the SWAP

can be made classically: the number of iSWAPs needed to
transform three qubits is then the same as for CNOTs. This in
particular arises when the physical implementation allows
for a coupling between any pair of qubits, as swapping two

qubits is equivalent to relabeling the qubits for all subsequent
gates by interchanging the role of the qubits. An important
example is the case of superconducting qubits coupled to
each other via cavity bus �14�, one of the most promising
recent developments, where the resonance can be tuned to
couple any pair.

V. CONCLUSION

In conclusion, we have shown that one needs only three
CNOTs plus additional one-qubit gates to transform �000� to
any pure three-qubit states. If one starts from the GHZ state,
only two CNOTs are enough, and thus one needs only four
CNOTs plus additional one-qubit gates to transform any initial
pure three-qubit state to any other pure three-qubit states. An
interesting open question is to find out whether four is the
maximal distance between two three-qubit states �it should
be at least three since �000� is at distance 3 from class 3
states�. It would be also interesting to know how these results
translate to mixed states, or to pure states using stochastic
local operations and classical communication instead of LU.
At last, generalizations to higher numbers of qubits may
pave the way to better optimization of quantum algorithms,
which are usually described as unitary operators but are
sometimes just transformations of a given state into another
one.
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