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Estimation of purity in terms of correlation functions
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We prove a rigorous inequality that estimates the purity of a reduced density matrix of a composite quantum
system in terms of cross correlation of the same state and an arbitrary product state. Various immediate
applications of our result are proposed, in particular, concerning Gaussian wave-packet propagation under
classically regular dynamics.
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The autocorrelation function of time evolution, als
known assurvival probabilityor asfidelity in the context of
echo dynamics@1#, is an important tool in the discussion o
quantum systems. Indeed, the autocorrelation function c
tains a large amount of information, but analysis in terms
the more general concept of cross-correlation functions
bring additional insight. This has been recently demonstra
for spectral statistics@2#. In this paper, we shall seek a bett
understanding of the evolution of entanglement in terms
cross-correlation functions. This is particularly interestin
because entanglement is at the very root of quantum mec
ics, and we shall therefore test the usefulness of cro
correlation functions in this context. Note that the first e
perimental test on the value of cross correlations for
analysis of spectral statistics was carried out in a microw
experiment with classical fields@3# rather than in the contex
of quantum mechanics.

Entanglement indicates that to what extent the state un
consideration can be written as a product of states in
subsystems selected due to their interest in the physical
text. For pure states, entanglement is reflected in the pro
ties of the reduced density matrix for any of the two su
systems. It is tempting to use some form of entropy
describe this property, but this makes analytic work ve
difficult. We shall therefore use the purity of a subsystem@4#
as a measure of entanglement. Purity is defined as the
of the square of the reduced density matrix. The fact that
use an analytic function allows us to obtain the basic
equalities with cross correlations, which give the main res
of this paper. To explore that to what extent these inequali
can be exhausted, we shall turn to two examples, which
called for our attention to this problem.

First, considering the time evolution under an integra
Jaynes-Cummings Hamiltonian of a wave packet formin
product state, Nemes and co-workers@5# observed a strong
maximum in the purity after half the period of the classic
orbit around which the packet was constructed@5#. It is in-
tuitively clear that the autocorrelation function will show
revival only after a full period, and thus cannot contribute
explanation for this phenomenon. Note that the Jayn
Cummings Hamiltonian

H5\va†a1\eJz1
\G

A2J
~aJ11a†J2!, ~1!
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describing an oscillator with the standard annihilation ope
tor a and SU~2! spin JW , has a mirror symmetry given by

a→2a, J6→2J6 , Jz→Jz , ~2!

which is also evident in Figs. 1 and 2 of Ref.@5#. We may
then conjecture that the oscillations seen in the linear
tropy, defined as one minus purity, are due to maxima in
autocorrelation functions for full periods and maxima in t
cross-correlation functions with the mirror image of the in
tial state for the half period.

Second, following the time evolution of a similar pack
under echo dynamics with the same Hamiltonian and a sl
detuning as perturbation, we found that coherent states
served purity to a higher order in\ than other states, e.g
random states@6#. Here the conjecture is that the cros
correlation function with the classically transported image
the original packet will yield an explanation.

These examples serve to illustrate our analytic results
the framework of a model, whose use is widespread
atomic physics and quantum optics, in particular, for Ry
berg atoms in cavities and for atoms in Paul traps with
ternally driven fields. The first case will become rather ob
ous once the inequalities are derived, and for the second
we shall derive the result within the linear-response appro
mation.

Consider a composite system with a Hilbert space

H5H1^ H2 , ~3!

consisting of two factor spacesH1,2 which may have either
finite or infinite dimensions.

Let uc& be an arbitrary pure state of a composite syst
which, after tracing over the subsystem 2, defines a redu
density operator over the subsystem 1:

r15 tr2uc&^cu. ~4!

We can prove the following general inequality for estimati
the purity:

I @r1#5 tr1r1
2 ~5!

of a reduced stater1.
Theorem. The following inequality holds
©2003 The American Physical Society08-1
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u^fuc&u4<I @r1# ~6!

for any product stateuf&5uf1& ^ uf2&.
Proof. Uhlmann’s theorem@7# states for pure statesr

5uc&^cu ands5uf&^fu that

u^fuc&u25tr rs<tr1@ tr2rtr2s#5^f1ur1uf1&. ~7!

Then, applying the Cauchy-Schwartz inequality for operat
utr(A†B)u2<tr(AA†)tr(BB†), we get

utr1@ tr2rtr2s#u2<tr1@ tr2r#2tr1@ tr2s#25I @r1#. ~8!

Combining inequalities~7! and ~8!, we get result~6!.
Corollary 1. An interesting special case of the above

sult is obtained ifuf&5uc(0)& is an initial disentangled stat
of a unitary quantumtime evolutionuc&5uc(t)&. Then our
result says that the entanglement growth, as measure
purity, is bounded from below by the autocorrelation fun
tion u^c(0)uc(t)&u4.

Corollary 2. A more general situation arises ifuf& is any
factorizable state as required by the theorem. Then, we
tain that the growth of entanglement, as measured by
purity is bounded from below by all cross-correlation fun
tions of the typeu^fuc(t)&u4.

The second corollary includes the first as a special c
and is the general result that we need in order to apply cr
correlation functions to understand oscillations or sl
growth of the entanglement.

To explore the possibility of approaching equality in t
second corollary~and the main theorem!, we have to look at
the eigenvalues of the reduced density matrix~which are
identical for both subspaces@8#!. Since the purity is the trace
of an analytic function of the reduced density matrix, t
optimal functionf, with which we can establish a cros
correlation, is a product of the eigenfunctions correspond
to the largest eigenvalue. Note that the eigenvalues are
same for the reduced density matrix in both subspaces. I
denote this eigenvalue by 12d, the cross-correlation func
tion will take the valueu^fuc(t)&u45(12d)2. Actually, pu-
rity I will obey the slightly sharper inequality

~12d!21d2>I>~12d!21
d2

min„dim~H1!,dim~H2!…21
,

~9!

where dim indicates the dimension of the corresponding H
bert space. We obtain this inequality by assuming the
extreme cases: either the missing intensityd2 is concentrated
to a single product state or it is evenly distributed among
such states. The former provides the upper bound and
latter the lower bound. As the lower limit is larger than t
value (12d)2, we obtain from Corollary 2 that equality in
Eq. ~6! can only be reached forI 51. Note that inequality~6!
provides a fairly sharp lower bound if the purity is close to
because then 12I;d while I 2u^fuc(t)&u4;d2, i.e., the er-
ror of the lower bound is quadratic in the deviation of t
purity from unity.

We can now hope to find sets of functionsf i such that the
cross correlation with these will explain the behavior of t
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purity as long as the latter is near to 1. Yet, to elucidate
must be able to construct such a set without diagonaliz
the density matrix. If we have a symmetry group that a
separately on the two subspaces, this set is trivially gener
by applying the symmetry operations to the initial functio
c(0). For theexample discussed earlier, a cross correlat
with the function, obtained by applying reflection~2! to
c(0), will have maxima at 1/2,3/2, . . . of the full period.
We shall now turn to the other example we mentione
namely, the slow decay of purity for coherent states in
integrable system. This question was discussed in Ref.@6#
for arbitrary Gaussian packets in the context of echo dyna
ics, and illustrated again in the Jaynes-Cummings mode

We can follow the line of considering cross correlations
little further in this context if we consider the quantit
tr1@ tr2rtr2s#5R(r1 ,s1) considered in Eq.~7!. For r

5r(t) ands5r(0), this quantity was introduced as reduce
fidelity in Ref. @9# implying a reduced autocorrelation func
tion if we do not treat an echo situation. With this notatio
we haveI (r1)>R2(r1 ,s1)>u^fuc&u4, but, in addition, the
second identity is fulfilled iff is chosen as the eigenfunctio
of the largest eigenvalue ofr1. By choosingr15r(t) ands
arbitrary, we have an additional cross correlation that
may use. The basic advantage of this quantity is that it is,
like purity, defined on the subspace alone, and may there
be useful in some situations. As far as approaching the id
tity with purity is concerned, this quantity has no advantag

We shall next follow the same line of reasoning to find
optimized factorizable functionf to understand the behavio
of the purity when it is near identity for a general Gauss
wave packet:

^xW uc&5C expS i

\
@~xW2XW !•A~xW2XW !1PW •xW # D , ~10!

centered at (XW ,PW ) and having the shape described by t
~generally complex! matrix

A5S A11 A12

A21 A22
D ~11!

corresponding to a division of ad5d11d2 dimensional con-
figuration space intod1- and d2-dimensional partsxW
5(x1 ,x2). The purity of a reduced wave-packetr(x1 ,x18)
5*dx2^x1 ,x2uc&^cux18 ,x2& is I 5*dx1dx18ur(x1 ,x18)u

2

which can be evaluated in terms of a 2d-dimensional Gauss
ian integral@6#

I 5~det ImA!

3U Im A11
i

2
A12* 0 2

i

2
A12

i

2
A21* Im A22 2

i

2
A21 0

0 2
i

2
A12 Im A11

i

2
A12*

2
i

2
A21 0

i

2
A21* Im A22

U21/2

,

~12!
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where the vertical lines indicate the determinant of a mat
According to our result, this expression should be boun
from below by cross correlation with any disentangled st
which we again choose to be a Gaussian packet center
the same point in phase space

^xW uf&5D expS i

\
@~xW2XW !•B~xW2XW !1PW •xW # D , ~13!

with

B5S B11 0

0 B22
D . ~14!

A straightforward evaluation of the Gaussian integral yie
for the cross correlation

u^fuc&u45
~det ImA!~det ImB!

udet~A2B* !u2
~15!

which, as we have shown, is strictly smaller than Eq.~12! for
any B of form ~14!.

One may now ask the following question: Which pack
~13! optimizes inequality~6!? In general, this is a comple
optimization problem, however we may solve it asympto
cally when purity is close to 1. In this case, off-diagon
elements of the shape matrix are small, so we may w
A125eZ12,A215eZ21, wheree is small. It turns out that the
inequality is optimized to the leading order ine if we take
B115A11,B225A22, namely, in this caseu^fuc&u451
2c1e21O(e4), I 512c2e21O(e4), wherec15c2.

We note that the cross correlation~15! is manifestly\
independent. It may be used to compute the dynamical, ti
dependent, cross-correlation function of a propagat
Gaussian packetuc(t)& ~as long as linearized dynamics is
,
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good approximation!, since we know that the time depen
dence of the shape matrixA5A(t) is given by the ratio of
two pieces of the classical monodromy matrix@10#. We have
thus shown that to the lowest order we can easily optim
the reference wave functionuf&, though it will clearly have
to vary with time. We could first simply use the transport
original ~and factorizable! stateuc(0)& centered around the
new position, i.e.,B5A(0), where^fuc(t)& may be called
the transported autocorrelation function. This would not o
timize the lower bound, but for short times it might be qu
good, and it would certainly make the bound\ independent.
Furthermore, one could apply bound~15! to the case of echo
dynamics where the linear-response approximation is v
even for long times if the perturbation is sufficiently sma
~see Ref.@6#!.

We may summarize our results by stating that
found a general inequality between the fourth power of
cross~and auto! -correlation functions and the purity. Fu
thermore, we were able to assert that the lower limit is
most identical to the value if the purity is near to one. Th
any such value of purity can be explained by the fact that
evolving state acquires a large overlap with a factoriza
state, and the difference between purity and our lower bo
is of second order in the deviation of purity from identit
The knowledge of this factorizable state may contribute
the understanding of the slow decay or renewed max
~also known as recoherence! for the purity. Particular ex-
amples of such situations are given in the case of a symm
group whose representation factorizes in the variables
which we wish to split the spaces, and in the case of cohe
states.
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