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Estimation of purity in terms of correlation functions
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We prove a rigorous inequality that estimates the purity of a reduced density matrix of a composite quantum
system in terms of cross correlation of the same state and an arbitrary product state. Various immediate
applications of our result are proposed, in particular, concerning Gaussian wave-packet propagation under
classically regular dynamics.
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The autocorrelation function of time evolution, also describing an oscillator with the standard annihilation opera-
known assurvival probabilityor asfidelity in the context of  tor a and SU2) spinJ, has a mirror symmetry given by
echo dynamic$l], is an important tool in the discussion of
guantum systems. Indeed, the autocorrelation function con- a——a, Ja——J., J,—J,, 2)
tains a large amount of information, but analysis in terms of
the more general concept of cross-correlation functions cawhich is also evident in Figs. 1 and 2 of R¢E]. We may
bring additional insight. This has been recently demonstrate¢hen conjecture that the oscillations seen in the linear en-
for spectral statisticE2]. In this paper, we shall seek a better tropy, defined as one minus purity, are due to maxima in the
understanding of the evolution of entanglement in terms okutocorrelation functions for full periods and maxima in the
cross-correlation functions. This is particularly interesting,cross-correlation functions with the mirror image of the ini-
because entanglement is at the very root of quantum mechatial state for the half period.
ics, and we shall therefore test the usefulness of cross- Second, following the time evolution of a similar packet
correlation functions in this context. Note that the first ex-under echo dynamics with the same Hamiltonian and a slight
perimental test on the value of cross correlations for thejetuning as perturbation, we found that coherent states con-
analysis of spectral statistics was carried out in a microwaveerved purity to a higher order i than other states, e.g.,
experiment with classical field$] rather than in the context random state§6]. Here the conjecture is that the cross-
of quantum mechanics. correlation function with the classically transported image of

Entanglement indicates that to what extent the state undere original packet will yield an explanation.
consideration can be written as a product of states in two These examples serve to illustrate our analytic results in
subsystems selected due to their interest in the physical cofne framework of a model, whose use is widespread in
text. For pure states, entanglement is reflected in the propestomic physics and quantum optics, in particular, for Ryd-
ties of the reduced density matrix for any of the two sub-perg atoms in cavities and for atoms in Paul traps with ex-
systems. It is tempting to use some form of entropy toternally driven fields. The first case will become rather obvi-
describe this property, but this makes analytic work veryous once the inequalities are derived, and for the second case
difficult. We shall therefore use the purity of a subsystdih  we shall derive the result within the linear-response approxi-
as a measure of entanglement. Purity is defined as the traggation.
of the square of the reduced density matrix. The fact that we Consider a composite system with a Hilbert space
use an analytic function allows us to obtain the basic in-
equalities with cross correlations, which give the main result H=H;®H,, (3)
of this paper. To explore that to what extent these inequalities
can be exhausted, we shall turn to two examples, which firsgonsisting of two factor spacég,; , which may have either
called for our attention to this problem. finite or infinite dimensions.

First, considering the time evolution under an integrable | et |(//> be an arbitrary pure state of a composite system
Jaynes-Cummings Hamiltonian of a wave packet forming avhich, after tracing over the subsystem 2, defines a reduced
product state, Nemes and co-workgs$ observed a strong density operator over the subsystem 1:
maximum in the purity after half the period of the classical
orbit around which the packet was construcgdl It is in- p1= tr ) (4. (4
tuitively clear that the autocorrelation function will show a
revival only after a full period, and thus cannot contribute anwe can prove the following general inequality for estimating
explanation for this phenomenon. Note that the Jaynesthe purity:

Cummings Hamiltonian

Ilp1]= trip} (5)
hG
H=fiwa'a+hel,+ —(ad, +a'd ), (1)  ofareduced statp,. _
V23 Theorem The following inequality holds
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() |*<I[p4] (6)  purity as long as the latter is near to 1. Yet, to elucidate we
must be able to construct such a set without diagonalizing
for any product statep)=|¢p1)®|d,). the density matrix. If we have a symmetry group that acts
Proof. Uhimann’s theoren{7] states for pure states  separately on the two subspaces, this set is trivially generated
=|y)(y| ando=|¢)(¢| that by applying the symmetry operations to the initial function

(0). For theexample discussed earlier, a cross correlation
[(p|)|2=tr po<tri[troptrya]={1|p1|1). (7)  with the function, obtained by applying reflectid®) to
#(0), will have maxima at 1/2,3/2 .. of thefull period.
Then, applying the Cauchy-Schwartz inequality for operatorsie shall now turn to the other example we mentioned,

[tr(ATB)|°<tr(AA")tr(BB'), we get namely, the slow decay of purity for coherent states in an
integrable system. This question was discussed in [éf.
|tra[troptroo]|?<tri[trop]?try[troo]°=1[p1].  (8)  for arbitrary Gaussian packets in the context of echo dynam-
o N ics, and illustrated again in the Jaynes-Cummings model.
Combining inequalitieg7) and(8), we get resul(6). We can follow the line of considering cross correlations a

Corollary 1. An interesting special case of the above re-little further in this context if we consider the quantity
sult is obtained if ¢)=|(0)) is an initial disentangled state tr[tr,ptr,o]=R(p;,0;,) considered in Eq.(7). For p
of a unitary quantuntime evolution|)=|¢(t)). Then our = p(t) ando=p(0), this quantity was introduced as reduced
result says that the entanglement growth, as measured Higlelity in Ref.[9] implying a reduced autocorrelation func-
purity, is bounded from below by the autocorrelation func-tion if we do not treat an echo situation. With this notation,
tion |((0)| 4 (t))]*. we havel (p1)=R?(p;,01)=|(|4)|*, but, in addition, the

Corollary 2. A more general situation arisesm;) is any second identity is fulfilled ifp is chosen as the eigenfunction
factorizable state as required by the theorem. Then, we ot®f the largest eigenvalue pf. By choosingp;=p(t) ando
tain that the growth of entanglement, as measured by tharbitrary, we have an additional cross correlation that we
purity is bounded from below by all cross-correlation func- May use. The basic advantage of this quantity is that it is, just
tions of the type( |y (t))|*. like purlty,.defmed on th_e subspace alone, and may thergfore

The second corollary includes the first as a special casB€ Useful in some situations. As far as approaching the iden-
and is the general result that we need in order to apply crosdly With purity is concerned, this quantity has no advantages.
correlation functions to understand oscillations or slow V& shall next follow the same line of reasoning to find an
growth of the entanglement. optimized factorizable functiog to understand the behavior

To explore the possibility of approaching equality in the of the purity when it is near identity for a general Gaussian

second corollaryand the main theoreimwe have to look at wave packet:

the eigenvalues of the reduced density matwhich are . oL e e oo

identical for both subspacé8]). Since the purity is the trace (x|gy=C eXP(g[(X—X) “A(X=X)+ P~X]), (10

of an analytic function of the reduced density matrix, the

optimal function ¢, with which we can establish a cross- centered at X,P) and having the shape described by the
correlation, is a product of the eigenfunctions correspondinggenerally complexmatrix

to the largest eigenvalue. Note that the eigenvalues are the

same for the reduced density matrix in both subspaces. If we _ ( A AlZ)
denote this eigenvalue by-15, the cross-correlation func- A Ay
tion will take the valug({ ¢|y(t))|*=(1— 8)2. Actually, pu-
rity 1 will obey the slightly sharper inequality

(11)

corresponding to a division of@=d;+d, dimensional con-

figuration space intod;- and d,-dimensional partsi
52 =(Xq,Xy). The purity of a reduced wave-packex,,x;)
min(dim(Hy), dim(H))—1" =S X[ ) (elx1,x2) is  1=[dxgdxq|p(x1,x7)[?
9) which can be evaluated in terms of d-Blimensional Gauss-
ian integral[6]
where dim indicates the dimension of the corresponding Hil-
bert space. We obtain this inequality by assuming the two I =(detimA)
extreme cases: either the missing intengitys concentrated ;
to a single product state or it is evenly distributed among all ImA;; AL 0 —-A
such states. The former provides the upper bound and the
latter the lower bound. As the lower limit is larger than the . i
value (1— 8)?, we obtain from Corollary 2 that equality in 7M1 Im Az
Eq. (6) can only be reached for=1. Note that inequality6) X .
provides a fairly sharp lower bound if the purity is close to 1 0 —ZA;, ImAy A*
because then-I~ & while | —|{ ¢|4(t))|*~ &% i.e., the er- 2 12
ror of the lower bound is quadratic in the deviation of the i i
purity from unity. =Ay 0 EAgl ImA,,
We can now hope to find sets of functiospssuch that the
cross correlation with these will explain the behavior of the (12

(1-6)2+ 8°=1=(1-6)*+

-1/2
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where the vertical lines indicate the determinant of a matrixgood approximation since we know that the time depen-
According to our result, this expression should be boundedence of the shape matrix=A(t) is given by the ratio of
from below by cross correlation with any disentangled statgwo pieces of the classical monodromy maf{20]. We have
which we again choose to be a Gaussian packet centered thus shown that to the lowest order we can easily optimize
the same point in phase space the reference wave functidw), though it will clearly have
to vary with time. We could first simply use the transported
- [ . e o - original (and factorizablg state|#(0)) centered around the
(x|¢)=D eXP(g[(X_X) Bx=X)+ P-x]), (13 new position, i.e.B=A(0), where(|¥(t)) may be called
the transported autocorrelation function. This would not op-

with timize the lower bound, but for short times it might be quite
good, and it would certainly make the boufiddndependent.
By; O Furthermore, one could apply boufitb) to the case of echo
o B,y (14) dynamics where the linear-response approximation is valid

even for long times if the perturbation is sufficiently small
A straightforward evaluation of the Gaussian integral yields(se\?v Ref[6]).

for the cross correlation e may summarize our results by stating that we
found a general inequality between the fourth power of the
(detImA)(det InB) cross(and autg -correlation functions and the purity. Fur-

(|| *= (15  thermore, we were able to assert that the lower limit is al-
most identical to the value if the purity is near to one. Thus,
any such value of purity can be explained by the fact that the
evolving state acquires a large overlap with a factorizable

K the followi ion: Which K state, and the difference between purity and our lower bound
One may now ask the following question: Which packets ¢ second order in the deviation of purity from identity.

(13) optimizes inequality(6)? In general, this is a complex The knowledge of this factorizable state may contribute to
optimization problem, however we may solve it asymptoti-the ynderstanding of the slow decay or renewed maxima
cally when purity is close to 1. In this case, off-diagonal (also known as recoherencéor the purity. Particular ex-
elements of the shape matrix are small, so we may writggmples of such situations are given in the case of a symmetry
A1p=€Z15,A21= €Z,1, Wheree is small. It turns out that the group whose representation factorizes in the variables in
inequality is optimized to the leading order éif we take  which we wish to split the spaces, and in the case of coherent
B11=A;1,B=A,,, namely, in this case|(¢|4)|*=1 states.
—c,€+0(eY), 1=1—c,e?+0(e*), wherec,=c,.

We note that the cross correlati@f5) is manifestlyz

|det A—B*)|?

which, as we have shown, is strictly smaller than 8¢) for
any B of form (14).

Financial support by the Ministry of Education, Science
and Sports of Slovenia and from Project Nos. IN-112200,
$HGAPA UNAM, Mexico, 41000 CONACYT Mexico, and

dependent, cross-correlation function of a prOpagati”QDAAD19-02-1-0086, ARO United States is gratefully ac-
Gaussian packets(t)) (as long as linearized dynamics is a knowledged.

[1] H.M. Pastawskiet al, Phys. Rev. Lett75, 4310(1995; P.R. [4] W.H. Zurek, Phys. Today4(10), 36 (1991); W.H. Zurek and

Levsteinet al, J. Chem. Physl08 2718(1998; R.A. Jalabert J.P. Paz, Physica B3, 300(1995.
and H.M. Pastawski, Phys. Rev. Le&6, 2490 (2001); T. [5] R.M. Angelo, K. Furuya, M.C. Nemes, and G.Q. Pellegrino,
Prosen, Phys. Rev. B5, 036208(2002; T. Prosen and M. Phys. Rev. A64, 043801(2001). .
Znidarig, J. Phys. A35, 1455(2002; Ph. Jacquot al, Phys. [6] T. Prosen, T.H. Seligman, and Mnidlaric, Phys. Rev. A67,
Rev. E64, 055203R) (2001); N.R. Cerruti and S. Tomsovic, 042112(2003.
Phys. Rev. Lett.88, 054103(2002; F.M. Cucchiettiet al, [7] A. Uhlmann, Rep. Math. Phy$®, 273 (1976.
Phys. Rev. B65, 046209(2002; D. Wisniacki and D. Cohen, [8] H. Araki and E.H. Lieb, Commun. Math. Phyk8, 160(1970.
ibid. 66, 046209(2002. [9] M. Znidaric and T. Prosen, J. Phys. 36, 2463(2003.
[2] T. Gorin and T.H. Seligman, Phys. Rev.65, 026214(2002. [10] E.J. Heller, inChaos and Quantum Physjeited by A. Voros
[3] R. Schéer et al, J. Phys. A36, 3289(2003. et al. (North-Holland, Amsterdam, 1991

062108-3



