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Abstract
We present a derivation of the Markovian master equation for an out-of-equilibrium quantum
dot connected to two superconducting reservoirs, which are described by the Bogoliubov–de
Gennes Hamiltonians and have the chemical potentials, the temperatures, and the complex
order parameters as the relevant quantities. We consider a specific example in which the
quantum dot is represented by the Anderson impurity model and study the transport
properties, proximity effect and Andreev bound states in equilibrium as well as
far-from-equilibrium setups.

(Some figures may appear in colour only in the online journal)

1. Introduction

Recent advancements of experimental techniques make it
possible to fabricate nano-electronic devices where a quantum
dot is connected to two superconducting electrodes [1]. Below
the critical temperature, the electrons form a superconducting
condensate (in other words, a single macroscopic quantum
state). Therefore, in the case where the electrodes are
superconducting, the quantum dot setup allows us to study
the single electron tunneling between two condensates held at
different chemical potentials or temperatures or being forced
to have different order parameters (e.g. different phases of
the anomalous electron density). The mixture of different
physical phenomena, such as single electron tunneling,
quantum phase transition, and macroscopic condensation,
opens the possibilities to study the fundamental physics [2].

The electron transport through a quantum dot involves
three different energy scales: the tunneling coupling between
the dot and the electrodes, the strength of electronic
correlations inside the dot, and the order parameter for the
superconducting state in the electrodes. Most of the theoretical

research that has been done so far has employed Keldysh
non-equilibrium Green’s functions (NEGFs) or scattering
theory type approaches [3–6]. NEGF and scattering theory are
able to treat the tunneling coupling exactly, but they usually
fully neglect correlations inside the dot or they rely on mean
field or perturbation theory to treat them. Here we develop an
approach which is based on the Markovian quantum master
equation [7, 8]. The master equation approach to quantum
transport works in the opposite regime—it can treat the
correlations inside the dot very accurately (even exactly in the
case of model systems) but the tunneling is usually considered
in the Born–Markov approximation. Such an approach has
been proved very useful for treating non-equilibrium transport
problem in various quantum systems [9–20]. It has been
also applied to superconducting systems [21], where the
proximity effect in one dimensional wires was studied. A
Lindblad master equation with quadratic Lindblad operators
was obtained in the mean field approximation by mapping
the many body super-operator to a single-particle form [22].
We note that a consistent treatment of the baths in the
master equation approach poses many delicate issues [23] (see
e.g. also discussion in [16]).
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Here we present a derivation of the master equation in
the case when the electrodes are described by Bogoliubov–de
Gennes Hamiltonians and then apply it to the non-equilibrium
superconducting Anderson impurity model. We study in detail
the transport properties of the model and the proximity effect
in a quantum dot. Three different regimes are considered.
First, we focus on the generic case 2ε + U 6= 0, where ε
is the resonance level energy and U the interaction strength,
where an exact, analytic expression for the steady state is
found. In the particle–hole symmetric regime 2ε + U = 0
we consider two cases, namely a dissipative one 1 < |ε ±

µ/2| and a non-dissipative one 1 > |ε ± µ/2|, where µ
is the chemical potential bias and 1 the magnitude of the
superconducting order parameter. In the dissipative case the
phase difference dependent non-equilibrium particle current,
the energy current, and the proximity effect are obtained. In
the non-dissipative case, the Josephson current originating
from the Andreev bound states is discussed. The energies
of the Andreev bound states and the corresponding particle
current are obtained for arbitrary superconducting order
parameter 1 and onsite energy level of the quantum dot ε.

The paper is organized as follows. In section 2, we
derive the master equation for a quantum system connected
to superconducting baths, and then specialize on the specific
derivation for the out-of-equilibrium Anderson impurity
model connected to the two superconducting leads. In
section 3, we present the numerical and analytical solutions
of the master equation for the model cases. Conclusions
are given in section 4. We use natural dimensionless units
throughout the paper, in which h̄ = kB = |e| = 1, where−e is
the electron charge.

2. Markovian master equation for a quantum dot
connected to superconducting baths

In the derivation of the Lindblad master equation one usually
assumes that the interaction operators between the system
and the bath are written in a Hermitian form [23]. This is
always possible and it usually simplifies the formal derivation.
Therefore, we begin with the outline of a general derivation
of the Lindblad master equation and highlight the main
differences from the usual textbook approach [23]. The
complete Hamiltonian is divided into three parts

H = HS + HB + HI, (1)

where HB denotes the bath Hamiltonian, HS is the system
Hamiltonian, and HI is the interaction between the system
and the bath. The interaction can always be represented in the
following separable form

HI =
∑
α

AαBα (2)

where the operators Aα (acting on the system) and Bα (acting
on the bath) commute, [Aα,Bα] = 0. As noted before, we shall
avoid the common assumption that A†

α = Aα and B†
α = Bα ,

since in our case the special form of the superconducting
bath correlation functions induces two physically distinct
contributions to the dissipator that are clearly separated only

if we use the above form of the interaction (2). However, since
HI needs to be Hermitian, the set {AαBα} has to include pairs
of mutually Hermitian conjugate operators, i.e. for each α
there exists α′, such that Aα′ = A†

α,Bα′ = B†
α . The density

matrix of the complete system satisfies the von Neumann
equation. We use the standard Born–Markov approximations,
namely that the density matrix of the complete system can
be written in a separable form ρ(t) = ρS ⊗ ρB, where ρS
denotes the density matrix of the system and ρB the density
matrix of the bath, which is assumed to be in a Gibbs state.
Therefore, we can simplify the von Neumann equation and
trace out the bath degrees of freedom. Further, by performing
an additional secular approximation we obtain the Lindblad
master equation for the reduced density matrix of the system

dρS(τ )

dτ
= −i[HLS, ρS(τ )] + D̂ρS(τ ), (3)

HLS =
∑
ω

∑
α,β

Sαβ(ω)5̂−ω(Aα)5̂ω(Aβ), (4)

D̂ρS(τ ) =
∑
ω

∑
α,β

γαβ(ω)
(

25̂ω(Aβ)ρS(τ )5̂−ω(Aα)

−

{
5̂−ω(Aα)5̂ω(Aβ), ρS(τ )

})
, (5)

where [•, •] denotes the commutator and {•, •} the
anticommutator. The super-operators 5̂ω are projection super-
operators on the eigenoperators of the system Hamiltonian HS
and are defined as

5̂ω(OS) =
∑

ε′−ε=ω

|ε〉〈ε|OS|ε
′
〉〈ε′|, (6)

where |ε〉〈ε| are the projection operators on the possibly
degenerate subspace of the system with the energy ε

(HS|ε〉 = ε|ε〉) and OS is an arbitrary operator acting on the
system. Note that equation (3) can be brought to a standard
Lindblad form since the matrix γαβ is Hermitian and positive
semi-definite [23]. The functions Sαβ(ω) and γαβ(ω) are
computed from the bath correlation function

0αβ(ω) = 0(Bα,Bβ |ω)

=

∫
∞

0
ds eiωs trB(Bα(τ )Bβ(τ − s))

= γαβ(ω)+ iSαβ(ω), (7)

γαβ(ω) = γ (Bα,Bβ |ω) = 1
2 (0(Bα,Bβ |ω)

+ 0∗(B†
β ,B†

α|ω)), (8)

Sαβ(ω) = S(Bα,Bβ |ω) =
1
2i
(0(Bα,Bβ |ω)

− 0∗(B†
β ,B†

α|ω)), (9)

where trB(•) denotes a trace over the bath.
Let us now apply the above consideration to a specific

model, shown in figure 1. We consider a quantum dot con-
nected to two uncorrelated one dimensional superconducting
leads described by the Bogoliubov–de Gennes Hamiltonian

HB =
∑

k

εk(b
†
k,↑bk,↑ + b†

−k,↓b−k,↓)

+ 1(eiφb−k,↓bk,↑ + e−iφb†
k,↑b

†
−k,↓). (10)
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Figure 1. Schematic illustration of the out-of-equilibrium
superconducting Anderson impurity model: one spin-degenerate
level with energy ε and local electronic repulsion U is connected to
two superconducting semi-infinite leads described by the
Bogoliubov–de Gennes Hamiltonians. The chemical potential
difference between left and right sreservoir µ is included in the
model through the bath correlation functions and describes the
effect of a bias voltage, which is usually measured in experiment. In
a similar manner the energy ε may be associated with the gate
voltage.

Here b†
k,σ /bk,σ are creation/annihilation operators for an

electron with spin σ =↑,↓ and single-particle energy εk,
1eiφ is the complex order parameter, which governs the
superconducting properties of the leads. The index k runs over
the modes of the left and right leads and 1 and phase φ may
have different values for the left and right leads (but we do
not wish to burden the notation with additional indices). The
quantum dot consists of one spin-degenerate level with onsite
energy ε and with local Coulomb interaction U > 0:

HS = ε
∑
σ

nσ + Un↑n↓, (11)

where nσ = a†
σaσ is the number operator for electrons with

spin σ in the quantum dot. Here a†
σ and aσ are creation and

annihilation operators in the quantum dot, respectively. The
interaction between the quantum dot and the superconducting
leads is taken to be in the standard tunneling form

HI =
∑
kσ

tk,σ (b
†
k,σaσ + a†

σbk,σ ). (12)

Since we are dealing with fermions the creation and
the annihilation operators in the bath and in the system
anticommute, {a(†)σ , b(†)k,σ ′} = 0. To establish the connection
with the master equation derived above (3), where we
assumed that system and bath operators in HI commute
with each other, we perform a Jordan–Wigner rotation
of fermionic creation and annihilation operators. Namely,
we identify the operators in the interaction part of the
Hamiltonian HI as Aσ = aσPB acting on the system and the
corresponding Bk,σ = tk,σb†

k,σPB acting on the bath, where

PB = exp(iπ
∑

k,σb†
k,σbk,σ ) is the parity operator in the bath,

which satisfies the following (anti)commutation relations:

[a(†)σ ,PB] = 0, {b(†)k,σ ,PB} = 0. (13)

It is easy to verify that Aσ and Bk,σk (for k = 1, 2, . . . and
σ, σk =↑,↓) commute,

[Aσ ,Bk,σk ] = [aσPB, tk,σk bk,σk PB]

= tk,σk(aσPBbk,σk PB − bk,σk PBaσPB)

= tk,σk(aσPBbk,σk PB − aσPBbk,σk PB) = 0.

(14)

Hence, the interaction part of the Hamiltonian can be written
as

HI =
∑
k,σ

tk,σ ((b
†
k,σPB)(PBaσ )+ (a

†
σPB)(PBbk,σ ))

=

∑
k,σ

(AσBk,σ + A†
σB†

k,σ ). (15)

Now we can calculate the correlation matrices (7) for our
model (see the appendix). In order to obtain the dissipative
part of the dynamics we have to find the projectors of the
operators Aσ , A†

σ on the eigenoperators of the Hamiltonian
as well. The eigenvectors (states) and the corresponding
eigenvalues (energies) of the dot Hamiltonian are denoted as
follows:

States |0〉 | ↑〉 = a†
↑
|0〉 | ↓〉 = a†

↓
|0〉 | ↑↓〉 = a†

↑
a†
↓
|0〉

Energies 0 ε ε 2ε + U

(16)

Here the state |0〉 denotes the particle vacuum. Hence, the
non-zero projections of the operators Aσ and A†

σ on the
eigenspace of the Hamiltonian are

5̂ε(aσPB) = |0〉〈σ |,

5̂ε+U(aσPB) = sσ |σ̄ 〉〈↑↓ |,

5̂−ε(PBa†
σ ) = |σ 〉〈0|,

5̂−ε−U(PBa†
σ ) = sσ | ↑↓〉〈σ̄ |,

(17)

where s↑ = 1, s↓ = −1 and σ̄ denotes the opposite spin of
σ . Inserting the above projections (17) and the correlation
functions calculated in the appendix into the master
equation (3) we obtain the dissipative part of the Liouvillean
of the quantum dot connected to a superconducting reservoir

D̂(1)(ρ) =
∑
σ

(γ (1)(−ε)(2|σ 〉〈0|ρ|0〉〈σ | − {|0〉〈0|, ρ})

+ γ (1)(−ε − U)(2| ↑↓〉〈σ̄ |ρ|σ̄ 〉〈↑↓ |

− {|σ̄ 〉〈σ̄ |, ρ})+ γ (1)(ε)(2|0〉〈σ |ρ|σ 〉〈0|

− {|σ 〉〈σ |, ρ})+ γ (1)(ε + U)(2|σ̄ 〉〈↑↓ |ρ| ↑↓〉

× 〈σ̄ | − {| ↑↓〉〈↑↓ |, ρ})) (18)

and the Lamb shift term (see [23] for the definition) in the
Hamiltonian

H(1)
LS =

∑
σ

(S(1)(−ε)|0〉〈0| + S(1)(−ε − U)|σ̄ 〉〈σ̄ |

+ S(1)(ε)|σ 〉〈σ | + S(1)(ε + U)| ↑↓〉〈↑↓ |). (19)

3
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In the particle–hole symmetric case (2ε +U = 0) we have an
additional contribution to the Lamb shift and the dissipator.
This is a consequence of two effects: (i) the non-vanishing
superconducting correlation functions 0(PBb†

k,↑,PBb†
−k,↓|ω)

and 0(bk,↑PB, b−k,↓PB|ω), which signal a finite density of
Cooper pairs, and (ii) the twofold degeneracy of the energy
zero in the dot, which ensures non-vanishing projections
of the operators Aσ and A†

σ on the eigenspaces of the
Hamiltonian HS with opposite energies. Therefore, products
5̂ε(aσPB)5̂−ε(aσ̄PB) and 5̂ε(PBa†

σ )5̂−ε(PBa†
σ̄ ) appearing

in the sums (4) and (5) do not vanish as in the non-degenerate
case (2ε + U 6= 0), and we obtain the following, additional
contributions to the dissipator,

D̂(2)(ρ) =
∑
σ

(2γ (2)(ε)| ↑↓〉〈σ |ρ|σ 〉〈0|

+ γ (2)(−ε)(2|σ̄ 〉〈0|ρ| ↑↓〉〈σ̄ |

− {| ↑↓〉〈0|, ρ})+ 2γ (2)∗(ε)|0〉

× 〈σ̄ |ρ|σ̄ 〉〈↑↓ |

+ γ (2)∗(−ε)(2|σ 〉〈↑↓ |ρ|0〉〈σ |

− {|0〉〈↑↓ |, ρ})) (20)

and to the Lamb shift,

H(2)
LS = 2

(
S(2)(−ε)| ↑↓〉〈0| + S(2)

∗
(−ε)|0〉〈↑↓ |

)
. (21)

For the sake of simplicity the above expressions for the
dissipators (18) and (20) and the Lamb shifts equations (21)
and (19) are written for one bath only. The contribution of the
second bath is identical and additive, so the total dissipator
and the Lamb shift become

D̂ = D̂L + D̂R, HLS = HLS,L + HLS,R,

D̂ν = D̂(1)
ν + D̂(2)

ν , HLS,ν = H(1)
LS,ν + H(2)

LS,ν,
(22)

where ν = L,R. Note that we neglect the broadening of the
system energy levels due to the coupling to the leads, i.e. the
levels are infinitely narrow. The broadening can be included
by hand setting for example η = κ (see appendix) or by
self-consistent treatment of the master equation as suggested
in [24].

3. Solution of the master equation

In this section we shall find the steady state density matrix
ρNESS of the master equation (3). First we consider the
non-degenerate quantum dot, where we have only one
contribution to the dissipator, namely (18), and the Liouville
equation is simplified to a rate equation. An explicit analytic
form of steady state is obtained. In the second subsection
we consider the particle–hole symmetric case, where the
steady state is calculated numerically. We find non-trivial
non-equilibrium sub-gap dynamics due to the effect of the
Lamb shift (21). In both cases we discuss the non-equilibrium
particle current and energy current defined as a change of the
number of particles in the system and the system’s energy,
respectively, due to the interaction with the left bath

Jn
= D̂H

L

(
n
)
+ i
[
HLS,L, n

]
, n =

∑
σ

a†
σaσ , (23)

Je
= D̂H

L

(
HS
)
+ i
[
HLS,L,HS

]
, (24)

where the superscript H denotes the Heisenberg representation
of the super-operator D̂H

L . We also discuss the proximity
effect, namely the Cooper pair density in the quantum dot

1doteiφdot = 〈a↑a↓〉. (25)

3.1. Non-degenerate quantum dot: 2ε + U 6= 0

As already explained, in the non-degenerate case we need to
take into account only the first part of the dissipator (D̂(1)),
equation (18). The subscript ν = L,R in the correlation
functions γ (j)ν and S(j)ν denotes different baths. In this case
the steady state can be found analytically by writing the
Liouvillean in the matrix form and noting that the coherences
decouple from the rates, which results in a simple rate
equation, the solution of which is

ρNESS = (ρ0|0〉〈0| + ρ1(| ↑〉〈↑ | + | ↓〉〈↓ |)

+ ρ2| ↑↓〉〈↑↓ |)/(ρ0 + 2ρ1 + ρ2),

ρ0 = (γ
(1)
L (ε)+ γ

(1)
R (ε))

× (γ
(1)
L (U + ε)+ γ (1)R (U + ε)),

ρ1 = (γ
(1)
L (−ε)+ γ

(1)
R (−ε))

× (γ
(1)
L (U + ε)+ γ (1)R (U + ε)),

ρ2 = (γ
(1)
L (−ε)+ γ

(1)
R (−ε))

× (γ
(1)
L (−U − ε)+ γ (1)R (−U − ε)).

(26)

Interesting observables in the non-degenerate case are the
particle current (23) and the energy current (24), which
simplify to

Jn
=

∑
σ

(−4γ (1)L (−ε)|0〉〈0|

+ (−2γ (1)L (−ε − U)+ 2γ (1)L (ε))|σ 〉〈σ |

+ 4γ (1)L (ε + U)| ↑↓〉〈↑↓ |), (27)

and

Je
=

∑
σ

(−4εγ (1)L (−ε)|0〉〈0| + (−2Uγ (1)L (−ε − U)

+ 2εγ (1)L (ε))|σ 〉〈σ |

+ 4(U + ε)γ (1)L (ε + U)| ↑↓〉〈↑↓ |), (28)

respectively, where the subscript (L) denotes the left bath. By
using the equations (26) and (27), and (28) we can easily
calculate the expectation values of the particle and energy
currents in the steady state. The chemical potential is included
by replacing ε→ ε±µ/2 in the left (+) and the right (−) bath
correlation functions. The qualitative behavior of the currents
(and the differential conductance) can entirely be explained by
the electronic density of states in the superconducting leads
(superconducting density of states—SDOS),

ρL(ω) = 2(|ω| −1)|ω|/
√
ω2 −12, (29)

4
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Figure 2. (a) Current–voltage characteristics of the Anderson impurity. The dashed line corresponds to the normal leads (1L,R = 0) and the
full line corresponds to the superconducting leads (1L,R = 0.5). For superconducting leads the shift of the step by 21 and the negative
differential conductance are a consequence of the SDOS. Other model parameters: ε = 1,U = 2,TL,R = 0.1, 0 = 0.1. (b) Schematic
representation of the configuration with the maximal current. The chemical potential is µ = 1L +1R, therefore the top of the right
superconducting gap aligns with the bottom of the left superconducting gap; they align at the energy ε = |1L −1R|/2.

Figure 3. Density plot of differential conductance (G = ∂〈Jn
〉/∂µ) as a function of the level position ε and the bias voltage (chemical

potential difference) µ, for different values of the order parameters 1L,R (indicated on top of each panel). The characteristic distances
denoted in the first three panels are calculated from equation (30); see the main text and figure 2(b). Dark/light gray represent high/low
values of differential conductance G with, in each plot, suitably adjusted relative scale. Other model parameters:
U = 2,TL,R = 0.1, 0 = 0.1.

where2(ω) is the Heaviside step function (shown in figure 1).
The coupling strength to the baths γ (1)L,R is proportional to the
SDOS, as shown in the appendix. Hence, the main features of
SDOS, namely a gap 21where the electronic density of states
is zero and a divergence at the border of the gap are reflected
in the current–voltage characteristics (see figure 2) and the
differential conductance G = ∂〈Jn

〉/∂µ map (see figure 3).
Far from the gap, i.e. when 1L,R � |ε ± µ/2| and 1L,R �

|ε±µ/2+U|, the current approaches the value calculated for
the normal leads. As we approach the superconducting gap
(by changing the chemical potential µ or the onsite energy ε)
we observe a peak in the differential conductance when one
set of the following conditions is satisfied:

ω = 1L − µ/2 and ω ≤ −1R + µ/2

or

ω ≥ 1L − µ/2 and ω = −1R + µ/2,

(30)

where ω = ε or ω = ε+U is the transition frequency between
the subsequent levels of the dot. The conditions (30) are valid
if µ > 0, but for µ < 0 the roles of the baths are exchanged
(1L ↔ 1R). After the peak we observe negative differential
conductance as a consequence of the decreasing density of
states, which is clearly shown in figure 2. The characteristic

distances appearing in the differential conductance map in
figure 3 can easily be calculated from the first and the last
condition in equation (30), namely the interaction energy
U, the sum of the superconducting order parameters in
left and right leads 1L + 1R, and the difference of the
superconducting order parameters in the leads |1L − 1R|.
The interaction energy determines the difference between the
two possible transition energies ω for one-particle transfer
and thus also the relative shift of the diamond structures on
the ε (gate voltage) axis in figure 3. The distance 1L + 1R
determines the bias voltage (or chemical potential) that has to
be applied to the leads in order to get the maximal particle
current, namely to align the top of one superconducting
gap with the bottom of the other; they align at the energy
|1L − 1R|/2, which is shown in panel (b) of figure 2. A
similar behavior has already been observed studying the same
model system with non-equilibrium Green’s functions [3,
6], where the correlations in the quantum dot were treated
approximately—in the restricted Hartree approximation [3] or
by truncating the hierarchy of equations of motion for Green’s
functions [6]. In contrast, here we consider the interaction in
the dot exactly, which enables us to study the current in all
regimes.

5
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Figure 4. Out-of-equilibrium phase difference 1φ = φL − φR dependent particle current 〈Jn
〉 (dashed line), energy current 〈Je

〉 (dash
dotted line) and proximity effect (1dot = |〈a↑a↓〉|, full line). The left panel is calculated for a temperature bias (µ = 0,TL = 0.2,TR = 1)
and the right panel shows the results obtained for a non-zero bias voltage (or chemical potential; µ = 4,TL,R = 0.2). Note that if TL = TR
and µ = 0 the particle current, energy current and Cooper pair density in the quantum dot vanish; therefore, the obtained phase dependence
is a purely non-equilibrium effect. Other model parameters: 2ε = −U = −2, 0 = 0.1,1L,R = 0.5.

Figure 5. The proximity effect in a quantum dot 1doteiφdot = 〈a↑a↓〉 for various regimes. The color and thickness distinguish between the
temperatures of the right bath (thin, black, TR = 1; thick, orange, TR = 0.1) and the dashing represents the chemical potential (full line,
µ = 0; dashed lines, µ = 0.5; dotted lines, µ = 4). The curves calculated for large chemical potential bias are shifted by π relative to the
curves calculated for small chemical potential bias. An additional small phase shift occurs if a chemical potential bias and a temperature
bias are present. Other model parameters: ε = −1, 0 = 0.1,TL = 1,1L,R = 0.5.

Note that the Cooper pair density in the quantum dot (the
proximity effect) vanishes since there are no coherences in the
steady state of the non-degenerate dot. If the level is placed
inside of the superconducting gap of both superconductors
the dot is not coupled to the environment and we obtain
a trivial unitary evolution. In the next subsection we shall
show that in the particle–hole symmetric case the evolution
of the level inside of the gaps is changed due to an additional
non-vanishing Lamb shift term.

3.2. Particle–hole symmetric case 2ε + U = 0

In the symmetric case (2ε + U = 0) an additional non-trivial
term appears in the Lindblad master equation, which is
not present for non-superconducting leads and describes
Cooper pair tunneling between the bath and the dot. Not
surprisingly, the dependence of the time evolution on the
phase of superconducting order parameters in the leads is
introduced through this second part of the dissipator (20).
An analytic solution in this case is cumbersome, since the
populations are now coupled to the coherences through the
extra dissipator, therefore we rely on numerical calculations
to find the exact steady state. As in the non-degenerate case
we study the particle current, energy current and proximity

effect. It is interesting that in equilibrium we have no
particle current, although the superconducting parameters in
the left and the right lead have different phases. The energy
current and the Cooper pair density in the dot are zero as
well. However, in out-of-equilibrium steady state the currents
depend on the difference of the superconducting phases in
the leads 1φ = φL − φR (see figure 4). Moreover, a finite
non-equilibrium proximity effect equation (25) is obtained,
also shown in figure 4. Although we are unable to derive exact
analytic expressions for the observed quantities we find some
interesting effects when passing from the small bias regime
µ < 2(|ε| + 1), where 1L = 1R = 1, to the large bias
voltage regime µ > 2(|ε| + 1). If we change the chemical
potential difference from small to large values we observe
a phase flip, which is a π -shift in the phase dependence
of the order parameter in the quantum dot. For zero bias
voltage the phase profile is linear and it is antisymmetric
under the reflection around the point (1φ, φdot) = (π, π).
This symmetry in the phase dependence φdot(1φ) is present
whenever the temperature difference or the chemical potential
difference between the baths is zero. This is illustrated in
figure 5, where we show the dependence of the phase φdot
and the amplitude 1dot of the complex order parameter in the
quantum dot on the superconducting phase difference 1φ.
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Figure 6. We plot current carrying energy levels of the Lamb shift modified Hamiltonian Hsym (left) and the corresponding particle current
(right) calculated in the Gibbs state of Hsym. Black dashed lines show the equilibrium result, namely the analytic result of equations (32) and
(34), calculated for 1L,R = 2, µ = 0. Out of equilibrium (orange lines) crossing of Andreev bound state energies is avoided (parameters:
1L = 2,1R = 5, µ = 1). Note that in the case of non-zero chemical potential difference or bias voltage (orange lines) the particle current
oscillates around zero. Other model parameters: ε = −1/2, 0 = 0.1,TL,R = 1.

Next we consider the non-dissipative case, namely a
narrow dot level (i.e. when the lifetime of the electron
on the level is much larger than 1/21) is placed inside
the superconducting gap below the chemical potential of
the baths. Surprisingly, we observe a finite non-dissipative
particle current, which comes from the distortion of the
Hamiltonian due to the coupling to the baths, i.e. from the
Lamb shift. The modified Hamiltonian in the described case
is

Hsym =


2S(1)(−ε) 0 0 2S(2)

∗
(−ε)

0 ε + 2S(1)(ε) 0 0

0 0 ε + 2S(1)(ε) 0

2S(2)(−ε) 0 0 2S(1)(−ε)

 ,
S(j)(ω) = S(j)L (ω)+ S(j)R (ω), j = 1, 2.

(31)

The Hamiltonian in the degenerate subspace spanned by the
states |0〉 and | ↑↓〉 is perturbed by the interaction with
the environment. This lifts the degeneracy and the obtained
energy eigenstates

|9±〉 =
1
√

2
(±e−i1φ/2

| ↑↓〉 + |0〉),

E± = 2S(1)(−ε)± 4|S(2)(−ε)| cos
(
1φ

2

) (32)

are no longer eigenstates of the particle number operator. The
particle current in this case simplifies to

Jn
= 4i

(
−S(2)L (−ε)| ↑↓〉〈0| + S(2)L

∗

(−ε)|0〉〈↑↓ |
)
. (33)

and the expectation value of the particle current in the states
|9±〉 is

〈9±|J
n
|9±〉 = ∓2|S(2)(−ε)| sin

(
1φ

2

)
. (34)

In the above equations (32) and (34) we assume that 1L =

1R = 1 and |ε| = U/2 < 1. The current carrying states
can be interpreted as the Andreev bound states (see [2]).
Further, we assume that the dot is in the Gibbs state ρG of the
modified system Hamiltonian Hsym = HS+HLS and calculate
the particle current (see figure 6). Interestingly, the particle
current oscillates around zero also in the case where we have
a non-zero chemical potential difference.

4. Conclusions

We derived a master equation for the electron transport
through the quantum dot connected to two superconducting
leads. In our derivations the Born–Markov and the rotating-
wave approximations were used, which reduce the master
equation to the standard Lindblad form with non-trivial
dissipators and the Lamb shift terms originating from
the superconducting baths. Then, the master equation
was explicitly solved for the out-of-equilibrium Anderson
impurity model and the exact steady state density matrix in
the generic regime 2ε+U 6= 0 was found. In the particle–hole
symmetric regime 2ε + U = 0 a phase dependent dissipator
was obtained. Surprisingly, the equilibrium solution in this
case does not exhibit a superconducting phase difference
dependent particle current, whereas in the out-of-equilibrium
steady state the particle current, the energy current, and the
Cooper pair density of states in the quantum dot depend on
the difference of the superconducting phases in the baths
1φ. In the sub-gap case, Andreev bound states [25] are
found as eigenstates of the Lamb shift perturbed Hamiltonian.
Their energies and the corresponding non-dissipative particle
current were obtained also in the non-equilibrium situation.
The master equation derived in this article can be extended to
treat larger systems, e.g. the double quantum dot, molecules,
and one dimensional wires.
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Appendix. Calculation of correlation function for
superconducting bath

In the appendix we shall obtain the correlation function in the
bath with the Bogoliubov–de Gennes Hamiltonian, which can
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be diagonalized by the Bogoliubov transformation

bk,↑ = −u(εk)dk,↑ + v(εk)d
†
k,↓,

b−k,↓ = u(εk)dk,↓ + v(εk)d
†
k,↑

u(ε) = e−iφ

√
1
2
+

ε

2ω(ε)
,

v(ε) =

√
1
2
−

ε

2ω(ε)

ω(εk) =

√
ε2

k +1
2, tan(2φk) = −

1

εk
,

HB =
∑

k

∑
σ

ω(εk)d
†
k,σdk,σ .

(A.1)

We assume that the bath is in equilibrium at temperature T

〈d†
k,σdk′,σ ′〉B = n(εk)δk,k′δσ,σ ′ ,

n(εk) =
1

1+ eω(εk)/T
.

(A.2)

Hence, the only non-zero correlation functions are

0(PBb†
k,σ , bk,σPB|ω) = i|u(εk)|

2 n(εk)

ω + ω(εk)+ iη

+ i|v(εk)|
2 1− n(εk)

ω − ω(εk)+ iη
,

0(bk,σPB,PBb†
k,σ |ω) = i|v(εk)|

2 n(εk)

ω + ω(εk)+ iη

+ i|u(εk)|
2 1− n(εk)

ω − ω(εk)+ iη
,

0(bk,↑PB, b−k,↓PB|ω) = −iu(εk)v(εk)

(
n(εk)

ω + ω(εk)+ iη

−
1− n(εk)

ω − ω(εk)+ iη

)
,

0(PBb†
k,↑,PBb†

−k,↓|ω) = iu(εk)
∗v(εk)

∗

(
n(εk)

ω + ω(εk)+ iη

−
1− n(εk)

ω − ω(εk)+ iη

)
.

(A.3)

At the end of the calculation we shall take the limit η→ 0+.
Further, we assume an energy and spin independent coupling
to environments κ = π

∑
k|tk,σ |

2δ(ε − εk) and obtain

γ (1)(ω, η) =
∑

k

|tk,σ |
2γ (PBb†

k,σ , bk,σPB|ω)

=

∑
k

∫
∞

−∞

dε δ(ε − εk)|tk,σ |
2

×

(
η|u(εk)|

2nk

η

2

+ (ωk + ω)
2
+
η|v(εk)|

2(1− nk)

η2 + (ω − ωk)2

)
≈
κ

π

∫
∞

−∞

dε η
(
|u(ε)|2n(ε)

η2 + (ω(ε)+ ω)2

+
|v(ε)|2 (1− n(ε))

η2 + (ω − ω(ε))2

)

=
κ

π

∫
∞

0
dε η

(
n(ε)

η2 + (ω(ε)+ ω)2

+
1− n(ε)

η2 + (ω − ω(ε))2

)
,

γ (1)(ω) = lim
η→0

γ (1)(ω, η)

= κρL(ω)(1− n(ω)),

γ (2)(ω, η) =
∑

k

|tk,σ |
2γ (bk,↑PB, b−k,↓PB|ω)

≈
κ

π

∫
∞

0
dε u(ε)v(ε)η

×

(
n(ε)

η2+(ω(ε)+ ω)2
−

1− n(ε)

η2 + (ω − ω(ε))2

)
,

γ (2)(ω) = lim
η→0

γ (2)(ω, η)

= 2κρL(ω)(1− n(ω))u(ω)v(ω)(2(ω)

−2(−ω)),

(A.4)

where ρL(ω) = 2(ω−1)ω/
√
ω2 −12 is the superconduct-

ing density of states and 2(ω) is the Heaviside step function.
All other correlation functions are up to a sign equal to
γ (1)(ω) or γ (2)(ω). In order to determine the Lamb shift we
have to calculate the following sums:

S(1)(ω) =
∑

k

|tk,σ |
2S(PBb†

k,σ , bk,σPB|ω)

=

∑
k

|tk,σ |
2S(bk,σPB,PBb†

k,σ |ω),

S(2)(ω) =
∑

k

|tk,σ |
2S(bk,↑PB, b−k,↓PB|ω),∑

k

|tk,σ |
2S(bk,↓PB, b−k,↑PB|ω) = −S(2)(ω),∑

k

|tk,σ |
2S(PBb†

k,↑,PBb†
−k,↓|ω) = −S(2)∗(ω),∑

k

|tk,σ |
2S(PBb†

k,↓,PBb†
−k,↑|ω) = S(2)∗(ω).

(A.5)

This can be done numerically using the relations (A.3) and the
definitions (7). The results are independent of the bandwidth
used in the sums (A.5).
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