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Abstract
We consider an open quantum Fermi system which consists of a single
degenerate level with pairing interactions embedded into a superconducting
bath. The time evolution of the reduced density matrix for the system is
given by the Linblad master equation, where the dissipators describe exchange
of Bogoliubov quasiparticles with the bath. We obtain fixed points of the
time evolution equation for the covariance matrix and study their stability by
analyzing full dynamics of the complex order parameter.

PACS numbers: 74.20.Fg, 03.65.Yz

(Some figures may appear in colour only in the online journal)

The Bardeen, Cooper and Schrieffer (BCS) theory of superconductivity [1] is based on the
simple Hamiltonian but it captures the essential physics not only for superconductivity of
electrons in metals, but also the superconductivity of atomic nuclei, nuclear matter, neutron
stars [2] and cold atomic Fermi gases [3]. Here, based on the Lindblad master equation,
we propose the extension of the BCS theory to the open quantum system. We determine
the order parameter—the density of Cooper pairs, and optionally the order parameters of a
superconducting reservoir, self-consistently. A simple model of a single degenerate fermionic
level embedded into a fermionic reservoir is proposed. For a self-consistent treatment of the
reservoir, we recover the standard mean-field superconducting phase transition in the grand-
canonical (equilibrium) state, whereas for a fixed state of the reservoir, we find that the state
of the system follows the state of the reservoir, being either superconducting or normal.

Let us consider a quantum impurity connected to the superconducting bath. The impurity
Hamiltonian consists of a single degenerate level with BCS-type pairing interaction

H = ε
(
a†

↑a↑ + a†
↓a↓

) + Ua†
↑a†

↓a↓a↑. (1)
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Here a†
σ (aσ ) denote creation (annihilation) operators for a fermion with spin σ =↑,↓ in the

impurity. The superconducting bath is described by the Bogoliubov–de Gennes Hamiltonian
and the system–bath interaction is given by the tunneling Hamiltonian ∼ (

a†
σ abσ + h.c.

)
,

where abσ is an annihilation operator for a bath fermion in mode b. We write the Liouville
equation for the total density matrix and project out the bath degrees of freedom. Then, under
the standard assumptions (Markovian approximation, factorization of the (initial) system–bath
density matrix and rotating wave approximation) [4], we obtain the Lindblad master equation
for the reduced (impurity) density matrix ρ(t):

dρ

dt
= −i[H, ρ] +

M∑
ν=1

(
2LνρL†

ν − {L†
νLν, ρ}), (2)

where Lμ are some Lindblad operators [5] which will be specified later.
Introducing the (time-dependent) averages 〈A〉 = trAρ(t), and using the Wick theorem,

we approximate (1) by the mean-field Bogoliubov–de Gennes Hamiltonian

H = ε
(
a†

↑a↑ + a†
↓a↓

) + �
(
eiχa↓a↑ + e−iχa†

↑a†
↓
)
, (3)

where

� eiχ = U
〈
a†

↑a†
↓
〉

(4)

is the complex order parameter.
Hamiltonian (3) can be diagonalized by the canonical Bogoliubov transformation

α1 = −eiχ cos(φ)a↑ + sin(φ)a†
↓, (5)

α
†
2 = e−iχ cos(φ)a†

↓ + sin(φ)a↑, (6)

where tan(2φ) = −�
ε

, and αi are Bogoliubov quasiparticles, which satisfy standard
anticommutation relations. The diagonal form of the Hamiltonian is

H =
√

ε2 + �2
(
α

†
1α1 + α

†
2α2

)
. (7)

We assume that our system is embedded into a superconducting bath described by a
macroscopic gas of Bogoliubov quasiparticles, which can be exchanged with the system.
This process is quite generally described by a combination of the following M = 4 Lindblad
operators:

L1 =
√


1
( − eiη cos(θ )a↑ + sin(θ )a†

↓
)
, (8)

L2 =
√


2
( − e−iη cos(θ )a†

↑ + sin(θ )a↓
)
,

L3 =
√


1
(
eiη cos(θ )a↓ + sin(θ )a†

↑
)
,

L4 =
√


2
(
e−iη cos(θ )a†

↓ + sin(θ )a↑
)
.

The superconducting properties of the bath are not necessarily the same as those of the
embedded system, so the angles θ , and η, may be different from φ, and χ , respectively. The
coupling constants 
1,2 are connected to the Fermi–Dirac distribution of the normal modes of
the Bogoliubov–de Gennes Hamiltonian (3):


1 = γ (1 − f ), 
2 = γ f , f = 1

1 + eβ
√

ε2+�2
, (9)

where γ is a parameter controlling the strength of system–bath coupling.
It is convenient to rewrite the Lindblad equation in terms of Hermitian Majorana fermions

w1 = a↑ + a†
↑, w2 = i

(
a↑ − a†

↑
)
, w3 = a↓ + a†

↓, w4 = i
(
a↓ − a†

↓
)
, (10)
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satisfying {w j, wk} = 2δ j,k, j, k = 1, . . . , 4. Since our master equation is quadratic in terms
of w j, we obtain a closed set of equations for the covariance matrix 〈w jwk〉 = δ j,k − iZj,k(t):

dZ
dt

= −XTZ − ZX + Y. (11)

Here Z(t) is a real, anti-symmetric 4 × 4 matrix, and X and Y are real matrices

X =

⎛
⎜⎜⎝

γ −ε −� sin χ � cos χ

ε γ � cos χ � sin χ

� sin χ −� cos χ γ −ε

−� cos χ −� sin χ ε γ

⎞
⎟⎟⎠ , (12)

Y = 2γ (1 − 2 f )

⎛
⎜⎜⎝

0 cos 2θ − sin η sin 2θ cos η sin 2θ

− cos 2θ 0 cos η sin 2θ sin η sin 2θ

sin η sin 2θ − cos η sin 2θ 0 cos 2θ

− cos η sin 2θ − sin η sin 2θ − cos 2θ 0

⎞
⎟⎟⎠ . (13)

Note that equation (11) is nonlinear, as � and χ depend again on covariances through
relation (4). If in addition, we determine the Lindblad operators self-consistently, which
means that the bath has the same properties as the embedded system; then we should also set
tan 2θ = −�

ε
, (θ ≡ φ) and η ≡ χ .

Fixed points of flow (11), which are solutions of the continuous Lyapunov equation

XT Z + ZX = Y, (14)

determine the stationary states of the system. These stationary states may not be unique
because of the nonlinearity. However, one can show that a stable fixed point is unique. It
follows from the fact that all linear relaxation rates, i.e. eigenvalues of the matrix X (12),
x1,2,3,4 = γ ± i

√
�2 + ε2, have strictly positive real parts for γ > 0. One can further show

that all solutions of equation (14) are of the form

Z =

⎛
⎜⎜⎝

0 z1 z2 z3

−z1 0 z3 −z2

−z2 −z3 0 z1

−z3 z2 −z1 0

⎞
⎟⎟⎠ , (15)

which is specified by only three real variables z1, z2, z3. The Lyapunov equation should be
solved self-consistently (4), i.e.

z2 = −2�

U
sin χ, z3 = 2�

U
cos χ. (16)

Let us now consider two possible cases of the bath, i.e. two possible choices of angles θ, η.

(i) Fixed bath. If the bath is considered fixed, we can set η := 0 without loss of generality,
so equation (16) together with the Lyapunov equation (14) results in the conditions

(γ sin χ − ε cos χ) sin 2θ = � cos 2θ,

U (1 − 2 f )
(((

γ 2 + �2
)

cos χ + γ ε sin χ
)

sin 2θ − �ε cos 2θ
) = 2�

(
γ 2 + �2 + ε2

)
.

(17)

For a normal, non-superconducting bath, sin 2θ = 0, and there exists only a trivial
solution � = 0 for the system. For a superconducting bath, sin 2θ 	= 0, the system is
always superconducting as well, for all inverse temperatures β, as the only solution of
(17) has � 	= 0. In other words, for a superconducting bath, the embedded system cannot
be in the normal state no matter how small the parameter γ is.

3
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(ii) Self-consistent bath. If the superconducting properties of the bath are not known a priori
and it is assumed that the bath has the same order parameter as the system, then the
bath can be considered self-consistent in the following way. We associate the Lindblad
operators with the normal mode creation and annihilation operators such that θ = φ,
η = χ . Inserting these assumptions into the Lyapunov equation (14), we obtain

z1 = ε tanh
(

1
2β

√
�2 + ε2

)
√

�2 + ε2
, (18)

z2 = � sin(χ ) tanh
(

1
2β

√
�2 + ε2

)
√

�2 + ε2
,

z3 = −� cos(χ ) tanh
(

1
2β

√
�2 + ε2

)
√

�2 + ε2
.

The consistency conditions (16) now result in(
U tanh

(
1
2β

√
�2 + ε2

)
2
√

�2 + ε2
+ 1

)
� = 0. (19)

We always have the trivial solution � = 0; however, for temperatures smaller than 1/βc,
where

βc = −2

ε
artanh

(
2ε

U

)
, (20)

we also find a superconducting solution with � 	= 0. Obviously, the critical temperature
only exists for −U > 2ε. Equations (19) and (20) are exactly the result that we obtain in
the standard grand canonical ensemble. The bath-self-consistency conditions completely
eliminate the dependence of the properties of the stationary state on the system–bath
coupling γ .

The self-consistency condition implies that the bath consists of a macroscopic number
of (other) single-particle levels with the same or very similar superconducting properties;
however, in our open-system’s description, we trace out everything but one level. Perhaps such
a model might appear trivial at first sight; however, we believe that it becomes very important
and even practical when applied to out-of-equilibrium systems. For example, let us consider a
lattice described by the Bogoliubov–de Gennes Hamiltonian with local site-dependent order
parameter. The edges of the lattice are attached to different superconducting thermal baths
held at different temperatures and chemical potentials. In this case, the edges would be treated
self-consistently with corresponding thermal baths which would enforce the edge sites to have
the same dynamics and the same superconducting properties as the corresponding baths.

In figure 1, we plot a phase diagram �(β), for both cases (i) and (ii). Note that only

if �bath := −ε tan 2θ is smaller than
√

1
4U2 − ε2, then we may have � = �bath for some

temperature 1/β.
So far we have investigated fixed points of the nonlinear flow (11). Let us now address

the question of their stability by investigating the full dynamics. We shall only focus on case
(ii) of self-consistently determined baths, which possesses a non-unique stationary solution
below the critical temperature. The dynamical equations for z j(t), j = 1, 2, 3 follow directly
from equation (11) with ansatz (15). By means of self-consistency equations (16), we replace
z2(t), z3(t) by �(t), χ(t), resulting in a system of three non-linear differential equations,

d�

dt
= −2γ�

(
U tanh

(
β

2

√
ε2 + �2

)
2
√

ε2 + �2
+ 1

)
, (21)
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Figure 1. The phase diagram of the magnitude of the order parameter � versus the inverse
temperature. � > 0 signals the superconducting phase. The blue curve corresponds to the self-
consistently determined bath, whereas the black and red curves correspond to fixed superconducting
baths, with �bath = −ε tan 2θ (indicated by horizontal dashed lines), with θ = −π/20 and
θ = −π/7, respectively. Other parameters are ε = 1, γ = 1 and U = −3.

dz1

dt
= 2γ

(
ε

tanh
(

β

2

√
ε2 + �2

)
√

ε2 + �2
− z1

)
, (22)

dχ

dt
= Uz1 + 2ε. (23)

Note that the first equation (21) is independent of the other two and yields a closed first-order
differential equation for the magnitude of the order parameter �. Writing it as d�/dt = G(�),

we can easily study the stability of two possible fixed points �1, and �2 (G(� j) = 0, j = 1, 2,
�1 = 0, and �2 	= 0 if β > βc). For the trivial fixed point, we find

G′(0) = −2γ

(
U

2ε
tanh

(
βε

2

)
+ 1

)
, (24)

which means that the non-superconducting state is stable, G′(0) < 0, if β < βc and unstable,
G′(0) > 0, if β > βc. As for the second, non-trivial fixed point �2, one can easily show that
it is always stable, G′(�2) < 0, if β > βc. The flow of the order parameter �(t) in different
cases is illustrated in figure 2. We note that the other two phase-space variables z1(t) and χ(t)
are completely enslaved by the order parameter �(t), so they again converge either to their
trivial (non-superconducting) or non-trivial (superconducting) fixed point values.

In conclusion, based on the Lindblad master equation, we proposed the extension of the
BCS theory to open Fermi systems exchanging Bogouliubov quasiparticles with the bath.
We derived the equations of motion for the covariance matrix and found the fixed points
of the flow equations. If the bath is considered self-consistently with the system, the results
become equivalent to the grand canonical ensemble and all dependence on the Lindblad
dissipators is eliminated. If the superconductivity of the bath is fixed, the system remains in
the superconducting state for all values of temperature no matter how small the system–bath
coupling is. We performed full nonlinear dynamic analysis of the fixed point and found that
below the critical temperature, the fixed point which corresponds to the normal phase is not
stable, whereas the superconducting solution is stable. Note that our results are closely related
to an exact treatment of the open BCS model in quasi-spin formulation [6]. However, in [6],
the (quasi-)particles cannot be exchanged with the system, so the study of the thermodynamic
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Figure 2. Time-dependent order parameter �(t) as a function of time, for β < βc (red curves)
and β > βc (black curves), and for an attractive potential U < 0 (full curves) and a repulsive
potential U > 0 (dashed curves). We plot some typical trajectories starting from green points
and ending in one of the two stable fixed points (blue). The numerical values of parameters are
ε = 1, γ = 1 and |U | = 3.

limit is more subtle. We thus believe that our single-level formulation provides a minimal
model of open BCS quantum dynamics and should serve as the first step in approaching the
non-equilibrium open BCS models with several different temperature/particle reservoirs.
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