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Abstract
We define a quantum Perron–Frobenius master operator over a suitable normed
space of translationally invariant states adjoint to the quasi-local C∗ algebra
of quantum lattice gasses (e.g. spin chains), whose spectrum determines the
exponents of decay of time correlation functions. The theoretical ideas are
applied to a generic example of kicked Ising spin 1

2 chains. We show that
the ‘chaotic eigenmodes’ corresponding to leading eigenvalue resonances have
fractal structure in the basis of local operators.

PACS numbers: 03.65.Sq, 03.65.Yz, 05.45.Jn, 05.45.Mt

It is well known that ergodic properties of classical dynamical systems, e.g. the rate of
relaxation towards equilibrium, are connected to the spectral properties of Perron–Frobenius
transfer operators (PFTO) on appropriate function spaces of phase space distributions [1, 2].
From a rigorous point of view, this connection has been established only for certain classes of
1D mappings and general Anosov systems [1]. However, there are many heuristic theoretical
results and numerical experiments in the physics literature supporting the general applicability
of the Ruelle resonance spectrum [3], more recently also in systems with mixed phase space
[4]. We know that isolated bounded quantum systems can exhibit genuinely mixing behaviour
(unique approach to equilibrium) only in the semiclassical or thermodynamic limit where the
spectrum of the unitary (Schrödinger) propagator may become continuous. Recently, there
were some attempts to define effective non-unitary quantum PFTO based on quantum–classical
correspondence at small values of effective h̄ [5, 6]. The spectrum of such quantum PFTO
becomes the usual Ruelle spectrum of classical PFTO in the semiclassical limit h̄ → 0, and
can explain exponents of decay of quantum and classical correlation functions.

In this paper, we address the question whether one can define quantum PFTO in the
thermodynamic limit of a many-body system without referring to any classical limit (which
may not even exist, e.g. for Fermi lattices). We propose a definition of ‘chaotic resonances’,
a non-commutative analogue of the Perron–Frobenius–Ruelle spectrum in infinite quantum
lattice systems, providing a mechanism for the exponential decay of time correlations. The
key idea in our proposal is a physical mechanism analogous to the phase space coarse graining
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in classical and semiclassical approaches, namely we shall consider projections to finite
dimensional spaces of local observables of finite but increasing order of locality. After a brief
general discussion, we specialize on the properties of PFTO of a periodically kicked Ising
spin 1

2 chain. We show that the leading eigenvalues of PFTO inside the unit circle correspond
to the exponential correlation decay, and that the structure of the corresponding eigenvectors
is fractal in the basis of local density operators. A related spectral approach to quantum
relaxation has been undertaken in [7].

We consider a quantum system living on a lattice1 Z with each point x ∈ Z being
associated with an N-level Hilbert space Hx . Let � = {�1, �1 + 1, . . . , �2}, �1 � �2, be a
sublattice of |�| := �2 − �1 + 1 points, to which one assigns a local C∗ algebra A� of bounded
operators over N |�|-dimensional space

⊗
x∈� Hx . Using the limit with inclusion � → Z and

closure in the operator norm ‖A‖ one defines a standard quasi-local C∗ operator algebra
A [8]. Let gj (x) = 11{−∞,...,x−1} ⊗ gj ⊗ 11{x+1,...,∞}, j = 0, . . . , N2 − 1 be the generators
of A{x} ≡ GL(N), such that g0 = 11, Tr g

†
jgk = Nδjk , and Sm be the set of multi-indices

s = (s1, s2, . . . , sm) with s1, sm ∈ {1, . . . , N2 − 1} and sj ∈ {0, . . . , N2 − 1} for 1 < j < m,
and S = ⋃∞

m=1 Sm. The set of unimodal operators

Gs(x) = gs1(x)gs2(x + 1) · · ·gsl(s)
(x + l(s) − 1) (1)

‖Gs(x)‖ = 1, for all x ∈ Z and s ∈ S, where l(s) = m if s ∈ Sm, together with an
identity operator 11, form a complete basis of A, namely any A ∈ A can be uniquely written as
A = a011 +

∑
x∈Z

∑
s∈S as(x)Gx(x) for some a0, as(x) ∈ C.

We introduce two essential automorphisms of the operator algebra A: the shift
automorphism S simply translates the lattice by one site, namely SGs(x) := Gs(x + 1).
The time automorphism T performs a finite-time (‘one step’) evolution generated by some
Hamiltonian H. If H is autonomous then T = eiτadH where (adH)A := [H,A] = HA − AH ,
or more generally, if H is periodically time dependent H(t + τ ) = H(t) generating the unitary
Floquet map U then TA = U∗AU . Generally, existence of time automorphism is a separate
and difficult problem (see [8]); here we will later apply our thinking to a model where the
existence of T is obvious. We assume that our Hamiltonian is translationally invariant (TI)
so the time and shift automorphisms commute, TS = ST.

One should imagine that T is just a quantum analogue of the Koopman operator which
propagates observables, and is unitary in the operator topology, i.e. ‖TA‖ = ‖A‖ for
any A ∈ A. In classical mechanics, PFTO is Koopman’s adjoint propagating the phase
space distributions, i.e. continuous linear functionals on the space of observables. With
this analogy in mind, we consider time propagation in the space A∗ of continuous (i.e.
bounded) linear functionals over A, including the convex subset of quantum states. Any
element ω ∈ A∗ is completely specified by its C-values on the basis, ω0 = ω(1), ωs(x) =
ω(Gs(x)). It can be written in terms of a sequence of ‘density operators’ ��(ω) =
ω011 +

∑{x,x+l(s)−1}⊂�
x,s ωs(x)Gs(x) as ω(A) = lim�→Z〈��(ω)A〉 = ω0a0 +

∑
s,x ωsas, where

〈B〉 := lim�→Z N−|�| Tr �B is a tracial state (infinite temperature Gibbs state). This is due to
orthonormality of the basis, 〈G∗

s′ (x ′)Gs(x)〉 = δs,s′δx,x′ , 〈11Gs(x)〉 = 0. However, a formal
inclusion limit �(ω) = lim�→Z ��(ω) will generally not converge inside quasi-local algebra
A. As for general properties of coefficients of arbitrary A ∈ A, ω ∈ A∗ we note that as(x)

must be bounded in l2 norm, since ‖A‖2
2 := |a0|2 +

∑
x,s |as(x)|2 < ‖A‖2 < ∞, while ωs(x)

must only be bounded in l∞ norm, since ∞ > ‖ω‖ := supA∈A |ω(A)|/‖A‖ � ‖ω‖∞ :=
supx,s{|ω0|, |ωs(x)|}.
1 Here we consider one-dimensional lattices though we believe our discussion should be easily generalized to higher
dimensions.
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In the following, we will limit our discussion on the subspace T ⊂ A∗ of TI states
perpendicular to the trivial equilibrium state, T = {ω ∈ A∗; ω ◦ S = ω,ω0 = 0}. From the
translational invariance, it follows that coefficients should be independent of x, ωs(x) ≡ ωs,
so the density operator is of the form �(ω) = ∑

s ωsZs in terms of the operator basis
Zs := ∑

x Gs(x). The space T is obviously invariant under any TI time automorphism T, i.e.
if ω ∈ T then ω ◦ T ∈ T. It is suitable to define a natural metric on the space T of TI states,
namely for ω, θ ∈ T,

(ω|θ) = lim
�→Z

1

|�| 〈�
∗
�(ω)��(θ)〉 =

∑

s∈S
ω∗

sθs. (2)

We note that the Hilbert space of TI operators �(ω) with ‖ω‖2
2 := (ω|ω) < ∞ is a dynamical

Lie algebra of spatially extended pseudo-local observables studied in [10].
Now we define a quantum PFTO as the adjoint time automorphism T̂ on T,

(T̂ω)(A) = ω(TA). (3)

However, the master operator T̂ is strictly unitary, ‖T̂ω‖ = supA |ω(TA)|/‖A‖ = ‖ω‖, if we
insist on continuity of ω with respect to test operators A from the entire quasi-local algebra
A. Instead, one should consider a different (smaller) space of test operators A so that T̂ has
a possible point spectrum inside the unit circle. Rigorous analysis of the required operator
space leads to difficult mathematical problems, so we suggest here a different, practical
solution. Namely, for an explicit construction of PFTO we propose a kind of Ulam finite-rank
approximation. Let P̂r denote a complete sequence of finite-rank orthogonal projections from
T onto its finite-dimensional subspaces Tr = {ω ∈ T; ω(Gs(x)) = 0 if l(s) > r}, dim Tr =
(N2 − 1)N2r−2. We define a sequence of operators T̂r = P̂r T̂P̂r which may be represented
with finite-dimensional matrices T

(r)

s,s′ as (T̂rω)s = ∑l(s)�r

s′ T
(r)

s,s′ωs′ . Although limr→∞ T̂r

cannot converge in master operator topology (but may converge in ω-topology), we conjecture
that there may be a part of the eigenvalues and eigenvectors of T̂r which converges with
growing r to, what we call, the quantum Ruelle resonance spectrum. We note that the space
Tr may be considered as an analogy to the space of coarse grained phase-space densities with
resolution 1/r.

One of the most straightforward applications of the Ruelle resonance spectrum is the decay
of time correlations. Let {e−qn} be a point spectrum of T̂, non-degenerate by assumption, and{
θR
n

}
,
{
θL
n

}
the corresponding right and left eigenvectors, T̂θR

n = e−qnθR
n , T̂†θL

n = e−q∗
n θL

n ,
defined by the limit r → ∞ from the spectral representations of T̂r . Then, for any pair
of states η, ω ∈ T, or extended TI observables �(η),�(ω), the time correlation function
(η|ω(t)) = lim�→Z〈��(η)Ut��(ω)U−t〉 has the asymptotic behaviour (see, e.g., [2], p 90):

(η|ω(t)) →
∑

n

wn e−qnt wn =
(
η
∣∣θR

n

)(
θL
n

∣∣ω
)

(
θL
n

∣∣θR
n

) . (4)

It is interesting to point out that the denominator
(
θL
n

∣∣θR
n

)
may be finite, although we have∥∥θL,R

n

∥∥
2 = ∞ for any eigenvalue away from the unit circle, Re qn = 0, since T̂ is unitary in the

‖.‖2 norm. If there is a gap and the spectrum {e−qn} lies strictly inside a unit circle, apart from
the possible exception of a non-degenerate equilibrium state, then the quantum many-body
system is (exponentially) mixing, whereas if there are non-trivial eigenvalues on the unit circle
then the system is non-mixing. The latter happens in generic completely integrable many-body
systems [9], where the infinite set of conservation laws Qn [11] in our language corresponds
to infinitely degenerate eigenvalue 1 of PFTO, T̂Qn = Qn.

Let us illustrate and validate our ideas by a specific example. We consider the kicked
Ising (KI) spin 1

2 chain, kicked periodically with a tilted magnetic field [12], having a
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Figure 1. Non-vanishing matrix elements (black) of KI-PF matrix for r = 4 (left), 5 (right) in the
code-ordered basis.

Floquet map U = e−iH1 e−iH0 with H1 = J
∑

x∈Z
σ1(x)σ1(x + 1), H0 = ∑

x∈Z
hxσ1(x) +

hzσ3(x). Here, N = 2, and the generators of GL(2) are the identity g0 = 11 and Pauli
matrices, gj = σj , j = 1, 2, 3. It has been established that the KI model is non-trivially
integrable for transverse field hx = 0 [9], while rich behaviour, ranging from non-ergodic to
mixing dynamics, has been suggested in non-integrable cases of a tilted field [12]. The time
evolutions in spaces A and T are given by

T = ei adH0 ei adH1 (5)

and (3). The KI model has a convenient feature, namely T̂Tr ⊂ Tr+1, so that T̂r can be
computed exactly, since the adjoint propagators ez adHj can only increase the order r of locality
by j, j ∈ {0, 1}. We have devised a divide-and-conquer algorithm (details will be published
elsewhere) for performing fast computation of the transformation ei adHj

∑l(s)�r
s vsZs =∑l(s)�r+1

s v′
sZs, and hence the complete truncated matrix T (r), in O(r4r ) computer operations.

Numerical computation of the full spectrum of T (r) is limited to the maximal order r = 7 by
the diagonalization procedure, while the leading eigenvalue resonance can be determined up
to r = 12 using an efficient power method. It is suitable to order the multi-indices s = s(c)

by increasing value of a unique code c = ∑l(s)

m=1 sm4m−1. The allowed code c should not be
divisible by 4 since s1 = 0, and its length l(s) is the position of its most significant non-zero
digit. Therefore, the KI-PF matrix Tc′c ≡ T

(r)

s(c′)s(c) has a geometric block-band structure,
namely Tc′c = Tcc′ = 0 if c′ > 16c. One can show that the matrix Tc′c has a fractal structure,
i.e. self-similarity upon scaling of row/column indices by factor 4, or increasing r by 1
(see figure 1). Note that the structure of the KI-PF matrix Tc′c does not depend on the values
of parameters J, hx, hz, except in the integrable planes hx = 0, and hz = 0, where additional
matrix elements vanish.

KI-PFTO has a good parity, R̂T̂ = T̂R̂, defined as (R̂ω)(s1,s2,...,sr ) = ω(sr ,sr−1,...,s1), so the
spectrum of T̂ can be labelled as even/odd w.r.t. eigenvalue ±1 of the parity operation R̂. The
symmetry R̂ has been used to roughly halve the dimension of the matrices T (r). In figure 2
we show spectra of the truncated KI-PFTO T̂r for increasing order r = 5, 6, 7. We consider
two cases of parameter values: (a) strongly non-integrable J = 0.7, hx = 0.5, hz = 1.1, and
(b) integrable J = 0.7, hx = 0.0, hz = 1.1. In case (a) we find converged eigenvalues lying
well inside the unit circle (see table 1 for the leading two resonances), while in case (b) we
have a multiply degenerate eigenvalue 1 corresponding to local invariants of motion. We have
systematically scanned a large portion of the parameter space (J, hx, hz) and found a rich
variety of behaviour, quite importantly also a finite proportion of non-integrable cases where
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r=5

r=6

r=7

hx=0.5 hx=0.0

Figure 2. The spectra of truncated KI-PF operators Tr , for r = 5, 6, 7 in strongly non-integrable
(left) and integrable (right) cases (see text), lying inside complex unit circles (thin curves). The
points in the upper/lower unit semi-discs correspond to positive/negative parity eigenvectors.
Arrows point at the converged position of the leading eigenvalue e−q1 .

Table 1. The convergence of two leading resonances together with their weights with respect to
magnetization M = �(µ).

n r qn wn(µ)

1 6 0.048 791 0.048 10
9 0.047 741 0.046 76

12 0.047 074 0.046 59

2 5 0.2413 − 1.474i (5.25 + 10.31i) × 10−3

6 0.1903 − 1.491i (0.453 + 4.444i) × 10−3

7 0.1904 − 1.499i (0.294 + 4.679i) × 10−3

some eigenvalues e−qn converge onto the unit circle (most often → ±1) thereby making the
dynamics non-mixing or even non-ergodic (e.g. as in the ‘intermediate case’ reported in [12]).
In the following, we concentrate on the ergodic and mixing case (a).

In figure 3 we compare the time autocorrelation of the magnetization µs = δs,(3),M =
�(µ) = ∑

x∈Z σ3(x) = Z(3), computed from: (i) exact time evolution of finite lattices of
length L with periodic boundary conditions (described in [12]), (ii) iteration of truncated KI-PF
matrix Cr(t) = (

µ
∣∣T̂t

rµ
)

and (iii) asymptotics (4) based on the leading eigenvalue resonance.
We conclude that convergence of KI-PF matrix results is indeed very fast, since the curves
Cr(r) for r = 6, 7, 8, . . . , are practically indistinguishable. On the other hand, simulations on
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Figure 3. Correlation function C(t) = (µ|µ(t)), in the mixing case hx = 0.5, computed from
finite system dynamics for different sizes L (symbols), and from truncated adjoint propagators of
infinite systems (curves) for different orders r.

finite lattices are much more time consuming,and convergence with L is much slower. We show
that the exponent, and the pre-factor, of the asymptotic decay are indeed given by the leading
eigenvalue q1 of T̂ and the corresponding weight w1(µ). This description of relaxation to
equilibrium can be systematically improved by including other resonances—stable eigenvalues
of T̂r . The convergence of the eigenvalues and weights of the two leading resonances with
order r is shown in table 1. For any ‘localized’ observable/state, such as M, the numerical
weights wn are significant only for a small part of the eigenvalues. These correspond in the
limit r → ∞ to the point spectrum of T̂. For the majority of eigenvalues which correspond
to the essential spectrum and whose distribution typically looks stationary with r, the weights
wn quickly tend to zero. In other words, for true eigenvectors the denominator of wn (see
equation (4)) is finite, i.e. the sum

(
θL
n

∣∣θR
n

) = ∑r
m=1 um, where um := ∑l(s)=m

s

(
θR
n

)∗
s

(
θL
n

)
s
,

converges as r → ∞ since um are fast decaying, so it can be normalized by
∑∞

m=1 um = 1. On
the other hand, for ‘extended’ eigenvectors corresponding to the essential spectrum coefficients
um do not decay with m (or even increase) so

∑∞
m=1 um = ∞. Convergence and fast decay

of the series um for the leading eigenvalue resonance of case (a) is shown in the inset of
figure 4. However, convergence of

(
θL
n

∣∣θR
n

)
does not mean that the expansion coefficients

of, say the right, eigenvector vc = (
θR
n

)
s(c)

will decay as c → ∞. In fact, we know that∑
c |vc|2 = ∞ if Re qn > 0. Instead we find, for well-converged resonances, that the

structure of the coefficients vc is typically fractal: for sufficiently large c we have statistical
self-similarity

|vc| = α|v4c| (6)

where .̄ means averaging over a narrow range of code, which is a consequence of the fractal
matrix structure (figure 1). This is illustrated in figure 4 where we show vc for the leading
resonance n = 1 with the estimated scaling exponent α ≈ 1.56 ± 0.05. The corresponding
left eigenvector has statistically similar behaviour.

An appropriate quantum Perron–Frobenius evolution operator for infinite quantum lattice
systems has been proposed whose lack of unitarity provides a mechanism of quantum
dissipation and relaxation to equilibrium in isolated conservative systems. We have constructed
a numerical example of kicked Ising chain, where we have shown how the leading eigenvalue
of the transfer operator and the corresponding left and right eigenvector explain the asymptotic
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Figure 4. Fractal properties of expansion coefficients vc of the right leading resonance n = 1
eigenvector computed for r = 12. The dashed line indicates the scaling c−0.32. In the inset we
demonstrate fast decay of um, for m > 3, at three different values of r = 10, 11, 12.

behaviour of time correlation function of arbitrary observables/states. We believe that these
are generic results and that our method can also be applied in other, say time-independent,
quantum lattices.
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