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Abstract
We construct a family of non-Kolmogorov–Arnold–Moser (non-KAM)
piecewise-linear continuous 2D area-preserving maps which have sharply
divided phase space with regions of regular elliptic and chaotic hyperbolic
motion. For such systems the shape of the islands of regular motion is either a
solid ellipse or a solid polygon, depending on the (ir)rationality of the frequency,
and thus the total area of the regular region of phase space can be computed
analytically or at least rigorously estimated from below. We analyse the spectral
statistics for a few examples of the quantization of our maps, and show that
they provide a convenient ‘playground’ for testing and confirming the key
assumptions required for the validity of Berry–Robnik formulae.

PACS numbers: 05.45.Mt, 03.65.Sq

1. Introduction

The energy level statistics of quantum systems whose classical counterparts have mixed phase
space made up of coexisting regular and chaotic regions is still a matter of lively debate (see
e.g. Ketzmerick et al (2000), Makino et al (1999, 2000), and Prosen (1998)). The asymptotic
semiclassical formulae were derived a while ago by Berry and Robnik (1984) for the nearest-
neighbour level spacing distribution and by Seligman and Verbaarschot (1985) for the long-
range two-point spectral statistics. However, from rigorously, even in classical mechanics the
coexistence of regular and chaotic motion is an open problem (Strelcyn 1991).

The main problem is that the two key assumptions required for the validity of the Berry–
Robnik-type formulae, namely: (I) the statistical independence of the regular and chaotic
spectral subsequences; and (II) absence of dynamical localization and other mechanisms for
deviation from random-matrix spectral statistics of ‘chaotic levels’ (see e.g. Bohigas et al
(1993)), become valid only in the very ‘far’ semiclassical regime of very small effective values
of Planck’s constant. There are two essential obstacles to the validity of the key assumptions
((I), (II)) in generic Hamiltonian dynamical systems at numerically or experimentally
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accessible values of h̄: (A) the complex structure of the infinite number of regular islands
which form a fractal boundary with the chaotic sea; and (B) the abundance of cantori and other
‘sticky’ invariant objects in phase space which form partial barriers to transport on chaotic
components. It is worth mentioning that even the numerical calculation of just the fractional
volume of the regular region of classical phase space is in general a difficult problem (Robnik
et al 1997, Prosen and Robnik 1998). The first statistically significant demonstrations of
the Berry–Robnik formulae thus came rather late (Prosen and Robnik 1994, Prosen 1995,
1998), since one typically needed extremely large sequential quantum numbers in order to
be in the so-called far semiclassical regime. Therefore, at practically accessible energies one
will generically find, apart from regular and chaotic eigenstates ‘living’ on regular and chaotic
phase-space components, respectively, also the so-called hierarchical states which are localized
by the cantori near the boundaries between the regular islands and the chaotic components
(Ketzmerick et al 2000). However, it is clear that the relative fraction of such hierarchical
states will decrease when approaching the semiclassical limit, so in the ultimate semiclassical
regime—though perhaps practically irrelevant—the simple Berry–Robnik theory will apply.

The central motivation for the present paper is to provide an example of a (toy) dynamical
system where assumptions (I), (II) are easy to control and verify, thus making the Berry–
Robnik theory self-evident, even in the so-called ‘near’ semiclassical regime. On the other
hand, we want to explore the possibility of reducing the complexity of classical phase space, by
violating the assumptions of the Kolmogorov–Arnold–Moser (KAM) theorem (Moser 1973) in
a minimal way, namely by taking a potential which is aC1- but not aC2-function of coordinates.
In order to do this we study a kicked-rotor-type map on the unit torus [0, 1) × [0, 1), where
the kicking function is continuous but not continuously differentiable:

yn = yn−1 + ε(1 − |2xn−1 − 1|) (mod 1)

xn = xn−1 + yn (mod 1).
(1)

x and y are the angle and momentum variables, respectively, and we can assume without loss
of generality that ε > 0. The map (1) will be called a continuous sawtooth map (CSM), and its
properties are fundamentally different from the hyperbolic discontinuous sawtooth map which
has a long history (Dana et al (1989); see also, Devaney (1989), Troll (1991, 1992)). However,
we should mention that also a mixed, elliptic–hyperbolic continuous piecewise-linear map,
namely the ‘linearized standard map’, which is very similar (but not identical) to (1), has been
studied by Scharf and Sundaram (1991, 1992). In relation to this, one should note an additional
constant in the potential of (1) which changes the character of the primary fixed points (and
also the global appearance of phase-space ‘portraits’) with respect to those of the works of
Scharf and Sundaram (1991, 1992) where the classical and quantum aspects of homoclinic
tangles around the hyperbolic fixed point were studied.

It is convenient to decompose the map (1) as M = Mfree ◦ Mkick where Mfree(x, y) =
(x + y, x), Mkick(x, y) = (x, y + ε(1 − |2x − 1|)), and to write its symmetric version as
M ′ = M

(1/2)
kick ◦Mfree ◦M(1/2)

kick .

2. Properties of the classical continuous sawtooth map

CSM (1) has a very unusual non-KAM-like phase-space structure that immediately caught our
attention. Though it is locally always linear, it is neither purely elliptic nor purely hyperbolic
if ε < 2, since the trace of the Jacobian flips between 2 + 2ε and 2 − 2ε for x < 1/2 and
x > 1/2, respectively. The primary fixed point (0, 0) is neither elliptic nor hyperbolic since it
lies on the boundary between the two regions—the cut—which consists of two lines, namely
x = 0, or equivalently x = 1, and x = 1/2. It is easy to convince oneself that the existence of
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Figure 1. The chaotic component of a symmetric CSM′ for ε = 1.31. White regions are the
regular elliptic islands belonging to one stable 1-cycle and two stable 3-cycles (islands belonging
to different cycles are denoted by different labels (1, 3, or 3′)).

regular motion in the CSM will depend on the existence of stable cycles of the map, while for
ε > 2 the map is uniformly hyperbolic, since then all periodic orbits (cycles) are hyperbolic.

The cycles of the CSM, whose points denoted by z∗ satisfy Mkz∗ = z∗, can be computed
systematically for small integer values of k by solving a certain system of linear equations,
with inequality constraints due to the piecewise linearity of the map. The stability of a k-cycle
α = {Mjz∗, j = 0, 1, k − 1} is determined from its monodromy matrix

Tα = Tb(M(k−1)z∗) · · · Tb(Mz∗)Tb(z∗) (2)

which depends only on a sequence of binary symbols, b(z∗) = L or R, if x(Mjz∗) < 1/2 or
x(Mjz∗) > 1/2, respectively, and

T L

R
=

[
1 ± 2ε 1
±2ε 1

]
. (3)

The cycle α is stable if |Tr Tα| < 2. Then the points Mjz∗ sit at the centres of k elliptic
islands where the motion is entirely determined by a linear map Tα . The sizes of the elliptic
islands i.e. the boundary ellipse, can be determined from the simple condition that at least one
of the islands should touch the cut x = 0, 1/2, or 1, while beyond the cut the symbolic code
determining the linear map changes and the motion typically becomes chaotic (see figure 1 for
an illustration). One can easily write an explicit equation for the family of k ellipses around
any point z∗ of a stable k-cycle α and also for the occupied phase-space area ρα . Now the
question arises of what happens if we launch a trajectory just outside but near the boundary
ellipse of an island around cycle α? Does it remain trapped in the vicinity of the elliptic island
or shoot off into the chaotic sea?

It turns out that the answer to this question depends sensitively on the frequency ω, where
exp(iω) is an eigenvalue of Tα . If frequencyω is irrational, then there is typically a narrow strip
around the elliptic island of KAM-like structures with many stable satellite islands (see figure 2
for an example with ε = 1.3). The width of this elliptic strip is typically small and can vary
considerably; for example, it can be practically vanishing like in the case of ε = 1.31 shown in
figure 1. On the other hand, if the frequency is rational,ω = 2πm/n, then the motion around the
k-cycle is periodic with the periodp = nk. In this case, the motion on the outer ellipses beyond
the boundary ellipse can also be stable, provided that all the points of such a p-cycle lie on the
same sides of the cut as the corresponding points of the original k-cycle. The set of all such
points consists of k n-sided (squeezed regular) polygons drawn around the boundary ellipses
each having one of its sides lying along one of the cuts x = 0, 1/2, 1. However, all the orbits
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Figure 2. A magnified view of the region near a 1-cycle elliptic island with ε = 1.3 (slightly
different to that in figure 1). The straight vertical line is the cut at x = 1/2. We show parts of 40
different trajectories consisting of 3200 000 iterations each.

Figure 3. The single solid chaotic component for the case with ε = 3/2.

launched outside the stable polygons turn out to be chaotic, and quickly fill the chaotic region.
Therefore, in the resonant case of rational frequency ω, the regular islands have the shapes of
polygons with a clear-cut boundary with the chaotic region. In figure 3 we show an amusing
example for ε = 3/2 with one stable 1-cycle withω = 2π/3 yielding a single regular triangular
region of area ρ = 1/8, whereas its complement is a single solid chaotic component. Non-
existence of possible higher stable cycles or islands has been carefully numerically checked.
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Let us conclude this section by making some global numerical observations. We were
almost always able to find at least one stable cycle in the range 0 < ε < 2; however, the length
of the shortest existing stable cycle grows as ε decreases. Since the sizes of the corresponding
islands decrease with increasing cycle length, one may predict an approach to a kind of slowly
ergodic, diffusive regime as ε → 0. Another notable observation is that the total number of
stable cycles having islands with significant area typically turns out to be quite small and finite;
therefore the global phase-space structure appears much ‘cleaner’ than in the typical KAM
situation.

3. Quantum spectral statistics and the Berry–Robnik formula

We quantize the symmetrized CSM map M ′ on a finite Hilbert space of dimension N using
the standard procedure (see e.g. Prosen and Robnik (1994) where the same notation is used):

Ukk′ = 〈xk|Û |xk′ 〉 = exp
(
2π iN

(
1
2 (xk − xk′)2 + 1

2εh(xk) + 1
2εh(xk′)

))
(4)

h(x) =
{
x2 + 1

4 , x < 1
2

−x2 + 2x − 1
4 , x > 1

2 .
(5)

Here, |xk〉, with xk = (k−1/2)/N , k = 0, 1, . . . , N−1, is a complete basis of discrete position
states. We compute the quasienergy spectrum {ϕn, n = 1, . . . , N} by simply diagonalizing the
unitary matrix U |n〉 = exp(iϕn)|n〉. Assuming that the sequence of quasienergies is ordered,
we define a sequence of normalized level spacings as Sn = N(ϕn+1 − ϕn)/2π . Here we are
considering the integrated level spacing distribution W(S) = #{Sn < S; n = 1, 2, . . . , N}/N ,
which is the probability that the randomly chosen spacing is less than S.

Berry and Robnik (1984) have proposed a formula for the level spacing distribution of
systems with mixed phase space. On the basis of assumptions (I) and (II), Berry and Robnik
have decomposed the spectrum into statistically independent Poissonian and GOE/GUE
spectral samples, corresponding to the regular and chaotic phase-space regions, respectively.
Since the gap probability E(S) that there is no level in a random spectral interval of size S
factorizes upon statistically independent superposition of the level sequence, one can write

EBR(S) = EPoisson(ρ1S)EGOE(ρ2S) (6)

for the simplest two-component case, where ρ1 is the relative phase-space volume of all regular
elliptic islands and ρ1 + ρ2 = 1. The integrated level spacing distribution WBR(S) is related
to the gap distribution EBR(S) through the equation

WBR(S) = 1 − dEBR(S)

dS
. (7)

We calculated the level spacing distribution of our mapping for various values of the parameter
ε and compared the results with the values obtained with the Berry–Robnik formula. The value
of the parameter ρ1 was calculated analytically from all of the areas of regular elliptic islands
in the classical phase space. Of course, we obtained the best results for the cases where the
area of the boundary KAM-like regions (rings) around the elliptic islands that we neglected
was the smallest. We note that regular levels belonging to islands around any stable cycle can
be calculated in the semiclassical approximation by quantizing a harmonic oscillator sited at
the centre of the island chain, giving ϕregn = ϕ

reg

0 + ωn. This clearly generates a Poissonian
subspectrum for irrational ω and a highly degenerate subspectrum for rational ω. In figure 4
we present the results for the case in figure 1 with ε = 1.31 where ρ1 = 0.122 783, which
agrees excellently with the Berry–Robnik formula.
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Figure 4. We show the deviation of the integrated level spacing distribution from the Berry–Robnik
formula for the case of ε = 1.31 and N = 2000 (a), N = 8000 (b). Note that deviation is very
small in absolute units and around the expected one-sigma error band (±√

W(S)(1 −W(S))/N).

Perhaps even more interesting is the quantization of the case with a single sharp triangular
island with ε = 3/2. Here we use the (semiclassically approximate) degeneracy of the regular
levels in order to separate the regular and the chaotic (sub-) spectrum. Indeed, the total fraction
of regular (degenerate) levels turns out to be very close to the semiclassical value ρ1 = 1/8
which is the classical area of the triangular island. Furthermore, the statistics of chaotic levels
turns out to be in statistical agreement with the infinite-dimensional GOE prediction, as shown
in figure 5.

4. Conclusions

We have presented an interesting toy model of dynamical systems, a family of kicked-rotor-
type piecewise-linear area-preserving maps, which violate the conditions of the KAM theorem
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Figure 5. We show the deviation of the integrated level spacing distribution of the chaotic
subsequence for the triangular case with ε = 1.5 and N = 1200 (a), N = 8000 (b) from the
expected GOE distribution. Again, the deviation is very small and within the expected statistical
error.

in a minimal way. We constructed examples with mixed phase space with a simple and sharp
boundary between regions of regular and chaotic motion where we can calculate their relative
measures analytically. We applied our map to study quantum level statistics, where we showed
most clearly how the key assumptions required in the derivation of the Berry–Robnik formula
are clearly satisfied due to the simple phase-space structure.
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