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We examine the nature, number, and interrelation of conservation laws in the one-dimensional Hubbard
model. In previous work by Shastf{Phys. Rev. Lett56, 1529(1986); 56, 2334(1986); 56, 2453(1986); J.
Stat. Phys50, 57 (1988], who studied the model on a large but finite number of lattice sitg3,(only N,
+1 conservation laws, correspondingNgQ+ 1 operators that commute with themselves and the Hamiltonian,
were explicitly identified, rather than the 2N, conservation laws expected from the solvability and integra-
bility of the model. Using a pseudoparticle approach related to the thermodynamic Bethe ansatz, we discover
an additionalN,+ 1 independent conservation laws correspondingdolocal mututally commuting opera-
tors, which we caltransfer-matrix currentsFurther, for the model defined in the whole Hilbert space, we find
there are two other independent commuting operdtbessquares of the-spin and spin operatorso that the
total number of local plus nonlocal commuting conservation laws for the one-dimensional Hubbard model is
2N,+4. Finally, we introduce an alternative set oN2+4 conservation laws which assume particularly
simple forms in terms of th@seudoparticleand Yang-particleoperators. This set of mutually commuting
operators lends itself more readily to calculations of physically relevant correlation functions at finite energy or
frequency than the previous set.

DOI: 10.1103/PhysRevB.63.205114 PACS nuniger71.10.Pm, 05.30.Ch, 11.36j}, 71.20-b

[. INTRODUCTION Shastr{ explored the relationship between the solvability
of the model and the concept aftegrability (inspired by
The one-dimensional Hubbard model, arguably the simiiouvilian integrability in classical mechanicby exhibiting
plest physical model foN interacting electrons on a lattice an infinite numberin the thermodynamic limitN,— o) of
of N, sites, is well known to be solvable by the coordinatecommuting operators corresponding to the expected conser-
Bethe ansatZ-® Lieb and Wu reduced the problem of diago- vation laws. He also found a two-dimensional classical ver-
nalizing the model to solving a set of two coupled nonlineartex model whose transfer matrix commutes with the Hubbard
equations. TakahasHi introduced thestring hypothesis Hamiltonian. These results were verified by other
which led to the thermodynamic Bethe-ansatz-coupled nonapproache$:*? The invariance of the model under two
linear equationgalso see Ref. 2)3While the two Lieb-Wu  Y[su2)] Yangians was also studiédt'*
equations are associated with two typesrapidities each As an alternative to the coordinate Bethe ansatz, the so-
thermodynamic Bethe ansatz equation of Takahashi is alslation of many integrable quantum models can also be ob-
associated with a different type of rapidity, whose numberttained by means of the inverse scattering method, first intro-
becomes infinite in the limit oN,—. The string hypoth- duced in Ref. 15. This is the quantum version of the inverse
esis is only valid in the limit of very largeN, which is  scattering method used in classical problems. This method
associated with the thermodynamic Bethe-ansatz equationgrovides more insight into the structure and symmetries of
Reference 4 considered Takahashi's thermodynamittegrable systems than the usual Bethe-ansatz solution.
Bethe-ansatz equations, and associated each of the cortdewever, as a consequence of the nonadditive property of
sponding rapidities with a branch gfseudoparticlesThe the Hubbard-modeR matrix, its solution by means of the
concept of a pseudoparticle is well defined only within theinverse scattering method has remained a long-standing open
thermodynamic Bethe ansatz equations and follows from thgroblem.
ideal positions of the discretpseudomomenturguantum Recently, Martins and Ramos solved this problem by first
numbers associated with the string-hypothesis rapidities. Thiinding the commutation rules of the operators present in the
pseudoparticles are neither fermions nor bosons, but they dembedding vertex model found by Shastry, and then solving
obey an anticommuting algebra. As a result of the integrathe one-dimensional Hubbard model by means of the inverse
bility of the Hubbard model, their collisions are dissipation- scattering methodf1’ They found that a hidden symmetry of
less and do not lead to momentum and/or energy transfesjx-vertex type was important for the integrability of the
with pseudoparticle collisions producing only shifts in their model.
phase$:® The pseudoparticle operator representation of the Within the inverse-scattering solution of the model, the
thermodynamic Bethe-ansatz solution provides insight intdN,— 1 local conservation laws first identified by Shastry can
the low- and finite-energy elementary excitations of thebe extracted from the transfer matrix. This follows from the
model and associated symmetfiasd is useful for the study fact that the associated auxiliary eigenvalue is analytic in the
of correlation functions at finite energy and frequendy. spectral parameter. TheN,— 1 coefficients of the. expan-
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sion of the logarithm of that eigenvalue provide the expres- Having established the number and nature of these con-
sions in terms of Bethe-ansatz rapidities for the correspondservation laws, we introduce an alternative set of indepen-
ing N,— 1 Shatry’s conservation lawéHence, in this paper dent pseudoparticteconservation laws. We are able to show
we call theN,—1 conservation laws found in Refs. 8—11 that these Rl;+4 conservation laws are independent and,
and 17 transfer-matrix charges because the expressions are considerably simpler—in terms

However, there remain important open issues regardinﬁf pseudoparticle operators—than those in the form derived
the nature, number, and interrelations of the conservatiofom the transfer matrix, are much more useful for calculat-
laws in the one-dimensional Hubbard model. For instancelnd Physically relevant correlation functions for finite energy

what is the total number of independent conservation laws?" ffeauency; mdee?dg results in this direction were or will be

For a large but finite number of lattice sités,, the total presented el_sewhe : . :

number of transfer-matrix charges i+ 1, when one in- The remainder of the paper is organized as follows. In

cludes the obvious conservation of total electron number aniec' Il we introduce some useful basic information both on
o : . - e one-dimensional Hubbard model and on the pseudopar-
magnetization. This number appears insufficient to ensur

the int bility of th del which b | 1o classi Iﬁcle and Yang-particle algebra. Thé,+ 1 transfer-matrix
€ Integrability of the model, which by analogy 10 classiCaly rants, which are in one-to-one correspondence with the
mechanics ought to requirerainimumnumber of commut-

: ; previously knowrN,+ 1 transfer-matrix charges, are studied
ing conservation laws equal to the number of degrees of

: o2 o2
freedom, which is Rl,, since there are two degrees of free- Icnhasregs Iélr'] dngr?g;ﬁ; Z\:)Itr?stti[]lftsec aaggt%g ;aeirr?;oerséntggif
dom, spin- and spin-down electrons, per lattice site. 9 P

conservation laws. In Sec. IV we introduce an alternative set

In this paper we provide insights into that open issue. We

first show that combining the expressions of the transferpf 2N,+4 independent conservation laws wittelatively)

matrix charges in terms of the Bethe-ansatz rapidities prog,imple expressions in terms of the pseudoparticle and Yang-

vided by the transfer-matrix approd&hon the one hand, particle operators. Fina_lly, in Sec. V, we discuss our results
with the thermodynamic Bethe ansatz string hypothesis o"Fmd add some concluding remarks.

TakahasHi® on the other hand, allows us to express these

conservation laws in the pseudopatrticle basis. Then, observ- Il. MODEL AND PSEUDOPARTICLE PICTURE

@ng that the numbers of rig.ht and _Ie_ft pseudqparticles are |n a chemical potentigk and magnetic fieldd the Hub-
independently conservedre find explicit expressions for an 5rq Hamiltonian reads

extra set of N,+1 new conservation laws beyond the

transfer-matrix charges previously found by Shastry; we .. -

term the operators corresponding to these new conservation H= HSO(4)+§ Pa2Sq, @)
laws transfer-matrix currentsThese conservation laws are

nonlocalwhen expressed in terms of electron operators, wittwherea runs overc (for charge ands (for spin). The Hamil-
their nonlocality providing a natural explanation for their not tonian

having been previously foundo our knowledgg R R A

While we know how to express the transfer-matrix Hsoay=T+U[D—N/2] i)
chargesboth in terms of pseudoparticle and electron operay, ¢ S@4) symmetry, and
tors, we have the expression of the newly found transfer-
matrix currentsonly in terms of pseudoparticle operators. N " - ~ -
For general values of the onsite repulsidnwe have been T=-t2 [¢/,¢ 11, HC], D=2 njn;; (3
unable to find explicit expressions for them in terms of elec- e .
tron operators. Hence, to gain insight, we study the limitare thekinetic-energyand the double-occupancy operators,
U/t—0, where as usualis the transfer integral. In this limit, respectively. The operators
we obtain explicit expressions for the conservation laws cor- ~ ~ . A
responding to the first few transfer-matrix currents, demon- Si=—3[Na—N], $=-3[N;—N|], (4)
f)gggt%rtsh;ﬁ ttr?igyliriri'ﬁ indeed nonlocal in terms of electronare the.diagonallgenerators of the (8US; gr)qss algebras’

The Bethe ansatz solution refers to the Hilbert subspaccraeSpeCt'Vely' Using th_ese standard definitions, we see that
spanned the lowest weight sta@sVs's) or highest weight #¢” # andus= poH, With o the Bohr magneton arid the
states(HWS's) of the 7-spin and spin algebrds.In this external magnetic field. We assuiNg is large and even, and
paper we call these two algebrasandS, algebras respec- recall, for definiteness, that the number operators are
tively. In the case of the one-dimensional Hubbard model R ) R R )
defined in the whole Hilbert space we find that the squares of N=E N,, N,= 2 Njo nj,(,:c;rgcjo, (5)
the S, and S operators—which for simplicity we denoé@ 7 J

and &2, respectively—are independent conservation lawsand ¢/, and c;, are o electron operators at sitg

We express these two conservation laws both in terms of 1, ... Na.

electronic and pseudoparticle/pseudohole operators, with the The Hamiltoniari3|so(4) [Eq. (2)] has S@®4) symmetry*®

final result that we find a total of R, +4 independent con- and commutes with the six generators of feand S, alge-
servation laws. bras, with the expressions of the two corresponding diagonal
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generators being given in E@) and the off-diagonal gen- 2
erators of these two SB) algebras reading Qj+1— 0= (10
a

. N . This property of the pseudomomentumcorrespond to the
t_ T ot -
Se= 2 (—=Dlejefp, &= 2 (—Dejey) ©®  jdeal positions of the Bethe-ansatz rapidities associated with
the string hypothesis. Moreover,
and

i P<a=al" ), (11)
§l=2 CJTLCn: ”SSZE CJTTCH’ (7) \r/g:are the limits of the &,vy)-band pseudo-Brillouin zones
respectively. The operato¥? and $2 can be expressed in 0 - s s K 12
terms of the generators of Eq4), (6), and(7) as follows: Qa/y™ tlay ™ Oarc %OyC’ONa’

2 A R atz 2742 2z 1
=5,.5,=8/5,+[&]*-&.
Sa Saf Suz Sa Sa [Sa] Sa (8) qay N [N 1]’ yC,O: i§[1+(_1)N0]:0,i 1,

In Eq. (8) and throughout this paper, we use unfts 1. (13
Moreover, we also use units with a lattice spacingl and

an electron charge-e=1. We consider densities=N/N, 1€ ndex

and spin densitiesn=[N;—N,]/N, in the domains &n . 14
<1 and I=n<2 and —nsm=n and —(2—n)sm=(2

—n), respectively. refers to right ¢= + 1) and left (= — 1) @,y pseudoparticle

The Bethe ansatz solvability of the one-dimensional Hub-movers whose number,, ., ,, are independently conserved

bard model[Eq. (1)] is restricted to the Hilbert subspace and are eigenvalues of the operator@a‘%b; No
spanned by the LWS'&Refs. 1 and Ror HWS’s (Ref. 17 of =(24,Na,—Neo); andN, == N, , denotes the num-
the S; and S; algebras, i.e., by the states whdBgandS,  ber of occupiedq; values at thea,y band—the a,y
numbers are such th&,= —Sz or S,=S, respectively. pseudoparticles.
The Bethe-ansatz solution used in this paper describes en- As we shall show in Sec. Ill, the independent conserva-
ergy eigenstates associated with densities and spin densitiien of the .= =1 pseudoparticle numbers plays a central
in the domains &n<1 and 0<ms=n, respectively, i.e., as- role in the derivation oN,+ 1 transfer-matrixcurrentsthat
sociated withS, LWS'’s. The description of the states corre- go beyond the transfer-matrix charges found by Shastry.
sponding to the extendedandm domains mentioned above Along with the N, , occupied pseudomomentum values,
is achieved by application of the off-diagonal generators othere areN , empty pseudomomentum values, which we
the SU2) S, andS; algebra¥ on the LWS’s, as we discuss call a,y pseudoholes in eaal, y band: we have
below.

The use of the S@) algebra reveals that the model is N =N, +N2 g
integrable in the whole Hilbert spat&The transfer-matrix
charges are closely related to that integrability, and the total , ,
numger of pseudo);/)article branches ofgthe ogerator basis of Ney=Noom 2 [y =ly=7[INa, (19

Ref. 4 isN,+1, and is equal to the number of these inde- ve0

pendent conservation laws. These pseudoparticle branchagd

are labeled by the pseudoparticle quantum numhbeasd vy

with @=c,s and y=0,1,2 ... N, /2 and 0,1,2...,N,/2 Nho N.—N¢po, Ngoz N, 0_22 Ng., - (16)
—1 for ¢ and s, respectively, which indeed gives a total ’ ' Yy

number ofN,+ 1 independent branches.

The a,y pseudoparticles are well-defined objects when
N, is large, and the string hypothesis becomes Vatiéur-
ther, from the inverse-scattering Bethe-ansatz soldfidh,
one can extract explicit expressions for the Hamiltonian, th
other transfer-matrix chargéas we find in Sec. I)| and the 2
diagonal partgin the energy basjsf all operators in terms 9= 157, a7
of elementary anticommuting,y pseudoparticle operators a
bé «y @ndbg , ., such that wherelf'0 (or 17 for all remaininge, y bands are integers

and half-integers foN,/2+Ng (or N7, |) odd and even, re-
{08 a0y Bqrar 7} = Bq.q1 O 83,y - (9 spectively.
In Ref. 4, two types oty,0 pseudoholes were considered,

At each @ y band there areNj  q; values, i.e.,j  which were distinguished by an extra quantum numiger,
=1,2,... with ==+1. In that reference th§, non-LWS’s were described in

Equations(15 and (16) reveal that the numbers af,y
pseudoholesNa ,» are fully determined by the set af,y
pseudoparticle numbergN, ,}. Furthermore, the discrete
Lpseudomomentum values are such that

H’y’
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termslofa,[g’ pseudoholescorresponding to the two types +1) and left-moving ¢=—1) electrons At U=0 all con-
B= =z of «,0 pseudoholgsby anticommuting elementary servation laws can be expressed in terms of the opef2@pr

operatorsa; , , and ag, g and a number operatd\, ,

=34N0 4(a) where N} j(a)=a] , saq.q5. In terms of

a

thesea, B pseudohole operators, the @JS, generators of
Egs.(4), (6), and(7) read

AS(ZIZ Z BNZ,'By

éT:E a/ Aq,a,—(1/2) 1
=10 (°4 3 q,a,+(1/2)9q,a,— (1/2)

éﬁ% aa,a,—(l/Z)aq,a,+(1/2)1 (18
and the number§, associated with the eigenvalu8g[ S,
+1] of the operatorg8) can be written as

>
1/2)

NP ., (19
gz °

h h
Saz%Na,O_ z yNa,y’ Na,0=
y>0

where the pseudohole numbet§ , can also be expressed in

terms of pseudoparticle numbers—see adb).

For our later discussion, we shall find another representa-
tion of the non-LWS'’s to be useful. It involves describing the

non-LWS'’s by applying onto th&, LWS’s of creation op-
erators forc ands Yang particleshaving momentay,= 7
andgs=0, respectively. These operators are

- 8,
d, = d, = (20
q, —  Ya, —
\V—2S% A
and obeycommutatiorrelations
[dqa,dga,]zﬁa,a/. (22)

The S, SU(2) generatorss?, S!, andS,, involved in the
expression of ther Yang-particle operators of E420), are
expressed in Eqs4), (6), and (7) in terms of electronic
operators, and in Eq$18) in terms of, 8 pseudoholes.

I1l. TRANSFER-MATRIX CHARGES AND
TRANSFER-MATRIX CURRENTS

For U=0, the 2N, operators

N, (K)=cl,Cro (22)
and associated\2, operators
N3 (k) =CoCly (23

wherecl(r andcy, are o electron operators at momentum
with discrete values

2 ) Ng N, N, Ng
kj—N—aj, J——7+1,—7+2,...,0,...7— ,7,
(24

commute with Hamiltoniargl) and are conservation laws. It
is convenient to introduce the quantum numbersgn()1
for k#0 which refers to the number of right-moving €

[or (23)]. For instance, one can construdil2local conser-
vation laws, associated with two (T and |) decoupled
free-fermion models andN, corresponding nonlocal laws,
for the number right- and left-movinglectronsare indepen-
dent conservation laws. Furthermore, in contrast to the
>0 case, atl =0 one can rewritall 4N, conservation laws
in a local form!?

On the other hand, for finite values &f the electronic
operators(22) and (23) do not commute with Hamiltonian
(1). However, all energy and momentum eigenstai@sbe
described by distributionsN, ,(q) and thw(q) for
pseudoparticles and pseudoholes, respectf/@lyese distri-
butions are the eigenvalues of the operators

N _ T

Na,'y(q)_bq,a,ybq,a,y (25)
and

“h _ +

Na;v(q)_bq,avqu,a.yv (26)

respectively.[Note that for y=0 we have thatN’, ,(q)
=E§=i(1,2)l§|2yﬂ(q).] In addition, we consider the Yang-
particle operators

(27)

whose eigenvalues are the numberao¥ang particles,

NG
No=dg dg .

N,=S*+57, (28)

such that 8= V,<2S, and with \V,=0 for the S, LWS’s.
Operator(27) can be written in terms o#,3 pseudohole
(relative to thea,y=0 band and «,y pseudoparticle num-
ber operators as follows:

Na:N2,+(l/2)_ 2 yNa,y' (29)

v>0
For finite values olJ, the elementary, «a,y pseudoparticle
operatorg Eq. (25)] and thea Yang-particle operatorgEqg.
(29] commute with Hamiltonian(1), i.e., these operators
are conserved and thus represent conservation avate,
however, that in contrast to the electronic operatdzs.
(22)], the number ofy, @, y pseudoparticle operators of Eq.
(25 depends on the pseudoparticle fillings. To understand
this point, we introduce the useful concept of a “subcanoni-
cal ensemble Hilbert subspac€SEHS, which is spanned
by all energy and momentum eigenstates with the same set
of numbers{N,, , .} and{VN,}. Unlike the electroniopera-
tors [Eq. (22)], whose number is 12, independently of the
values of the electron numbekk;, the number of the opera-
tors[see Eq.25)] is different for different SEHS'’s. This is
because the pseudomomentum discrete vajyes Eq. (17)
are such thaj=1,2, ... Njw, where according to Eq15),
and in contrast to a noninteracting system, the values of the
numbersNzy,/ depend on the pseudoparticle occupancies. It
follows that, unlike the Rl, electronic operatorgEq. (22)],
the operators of forn{25) are not in general independent.
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However, these operators have an important propeitly: Let us start our detailed analysis by finding expressions
conservation laws of the one-dimensional Hubbard modelor the N,+1 known transfer-matrix charges in terms of
can be expressed in terms of the elementary operé®@s pseudoparticle operators. The transfer-matrix charges with
and(29), as we discuss below. the simplest expressions af& and &Z. In addition to their
Our first goal in this paper is to identify the maximal set representations in terms of electrofigg. (4)] and of «, 3
of independenttonservation laws. By analogy to classical pseudohole$Eq. (18)], we can write these diagonal genera-
mechanics, the integrability of modél) ought to require a tors of theS, and S algebras in terms of the basiga,y
minimum number of independent commuting conservationpseudoparticle operatofgq. (25)] and « Yang-particle op-
laws equal to the number of degrees of freedom, which igrators[Eq. (27)]. The corresponding expressions involve
2N, . Therefore, we expect that out of operat¢®$) and simpleq andy summations of the operatofgg. (25)], and
(29) one can constructt least2N, independent conservation read
laws.
The N+ 1 transfer-matrix charges include the operators

& and & of Eq. (4), which are associated with the electron
number and the magnetization, respectively. For the one-

Q'=Si=—3[N,— N]=—%§ [1-Neo(a)]

dimensional Hubbard model defined in the Hilbert subspace +> > N, (OI)H%,
spanned by5, LWS's, we have tha§,= —S’,, and the two >0 q 7
§2 operators of Eq(8) and the two diagonal S@) S, gen- (30)

eratorsAsz of Eq. (4) correspond to the same numbers.
On the other hand, for the one-dimensional Hubbard Q2=82=—3[N,—N;]=-3> Nco(@)+> Ngo(q)
model defined in the whole Hilbert space, the two operators q q
of Eq. (8) become independent conservation laws relative to R .
the set ofN,+ 1 transfer-matrix charges, which gives a total + 2 2 [1+ yINg (@) + NG,
number ofN,+ 3 independent conservation laws. The use of ¥=0 4

Egs. (4), (6), (7), and(18) leads directly to expressions for ' . -
thqe t\(/vg c(o)ns(egvation( Ia\)/vs of Eq®) inythe elepctronic and where we have defined the two transfer-matrix charge3’as

pseudoparticle/pseudohole basis, respectively. Therefore, vighd Q% respectively. Moreover, we denote ky" with m
know how to writeN,+ 3 independent conservation laws in =1:2, ... Nat+1 theN,+1 transfer-matrix charges of Refs.
terms of electronic operators. These are the two operators &1l and 17.

Eq. (8), and the previously knowm,+1 transfer-matrix On the other hand, the expressions of all remairfdgr
charges of Refs. 8—11 and 17. This still leaves us short of 1 transfer-matrix charges do not involve the Yang-
our expected number of 2N, conservation laws. particle operator$Eq. (27)] and are functionals exclusively

To find the remaining laws, we take a hint from the resultsOf the basiay, «, y pseudoparticle operatof&q. (25)]. How-
for the caseU=0. For U=0, the numbers of right- and €Ver their expressions in terms of the Ia'Fter pseudoparticle
left-moving electrons aréndependentlyconserved. Thus we OPerators are more involved than expressi@®. All these
can in principle immediately write down twice as many con-Na—1 operators can be expressed in terms of the operators
servation laws; later, as an explicit check of our general reN ,(q) and of therapidity operators
sults, we shall do this fotJ/t—0. For now, however, we
proceed by observing that whereas for finite valuet dhe Reo(q)=4tsinK(g)1/U, R ,(q), (31
numbers of right- and left-moving electrons are no longer ) ) )
good quantum numbers, the numbers of right- and |eft3£vhose expressions are functionals of all the basic operators
moving pseudoparticlesassociated with the quantum num- N, ,(q) of Eq. (25). Therefore, rapidity operatof81) com-
bers of Eq.(14) are good quantum numbers. This simple but mute with Hamiltonian(1), and the energy eigenstastes are
key insight underlies the detailed calculations that follow inalso eigenstates of these operators. Rapidity oper&Bdjs
the remainder of this section. As a guide to these calculaplay an important role in the pseudoparticle operator repre-
tions, let us briefly outline the logic behind them. If the num- sentation of the model(For further information on these
bers of right- and left-moving pseudoparticles are separatelgperators, see Sec. IV of Ref)&he functional dependence
conserved, so must their sums and differences. By studyingf the eigenvalues of operators(31), Rc(Q)
the expressions for known conservation laws corresponding 4t sinK(g)J/Uu and R .,(q), on the distributions
to transfer-matrix charges in terms of the pseudoparticles, whl,,. ,,(q') are defined by the coupled integral equations
will eventually be able to show that their expressions involve(66)—(69) of Ref. 4. As discussed in that reference, the latter
the addition of two separate sums over right- and left- equations are fully equivalent to the set of thermodynamic
moving pseudoparticle operators. This suggests that we looBethe-ansatz equations first derived by Takahashi within his
for the conservation laws to be expressed in terms of similastring hypothesié. These eigenvalues are the real part of
sums over thedifferences of right- and left-moving Bethe-anstaz rapiditiés’ and are functionals of the
pseudoparticles. Doing so indeed allows us to find a new seiseudoparticle distribution, ..(q").
of N,+1 independent conservation laws which ammlocal Solving the above coupled integral equations to find the
in the original electronic basis even in the linit't—0. expressions for the functional®; ,(q) in terms of the
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pseudoparticle distributions is an involved problem. How-resentation introduced in Ref. 4, after some algebra we arrive
ever, it is straightforward to show that that solution leads toat the following expressions for Hamiltoni@®) and the first
expressions for these functionals that are summations overontrivial transfer-matrix chargg33) in terms of the
the quantum numbeg’, «’, andy’ involving the distribu-  pseudoparticle operators
tionsN,/ ,/(q"). The corresponding operatd?gy(q) have
the same expressions, with the distAributidmr,y,(q’) re- Q3=*:|sq4)= —2t>, N o(q) {cogK(q)]+ (U/8t)}
placed by the corresponding operatbrs ,(q"). q
In order to show that the expressions of the>2 R
transfer-matrix charges involve the rapidity operators of Eq. +(U/4) Y, [1— Nco(a)]
(31), we consider the auxiliary eigenvalue of E§9) of Ref. q
17. Although the authors of that reference considered the
Bethe-ansatz solution associated with HWS's of Shealge- -> E Ne,, q)[ yU—2t
bras, it is straightforward to derive from their expressions the >0
corresponding functions for the Bethe-ansatz solution asso-
ciated withS, LWS’s. The main point is that all coefficients \/1 (U/4t)2[R Sa)+il 'y]z]
of the A expansion of the logarithm of the auxiliary eigen- ':il
value,[Eqg. (106) of Ref. 17], only involve the rapidity func- (34)
tion (107) of the same reference. In our césés the dis- and
crete value of the rapidity functiof(q;), which is the

eigenvalue of the corresponding operatdiq;) of Eq. (31). . . . .
By considering the limit of largéN, and i]ntroducing the Q*=4t> N¢o(q) {cogK(a)]+(U20)}sinK(q)]

rapidities associated with the string hypothesis, we find that d

all them>2 transfer-matrix charge®™ have the following

general expression in the pseudoparticle basis: +U E 2

Ne,( q)[(umt)(y—l) Re.,(Q)

v>0

Q"= UMAN+ 2 Nool @) OFTR(a)] = 2 [Rey(@+ily]

+§O ; Ne, (@) OTR: (@)1 (32 X 1 (U/4)[R; (q) +il y]z], (35)

Here m=3,4,... N,+1, and the functionsOg\(x) and respectively. Comparision of general express{88) with
O7(x) can be extracted from combining the inverse-expressiong34) and(35) leads to
scattering Bethe ansatz solution of Ref. 17 with the string 3
h ; it ’ ; Og(x)=—2t cosx—(U/2)

ypothesis rapidities. General equati@2) confirms that the 0 '
expression of then>2 transfer-matrix charges only involve (36)
the operator\, ,(g) and the rapidity operator&(q) and , 2 2
Re.,(q) of Eq.(31). However, the chargd€g. (32)] involve Oy(x)=—yU+2t Py V1= (U747 x+il y?],
all operatorsila,y(q) of Eq. (25) because the rapidity opera-
tors are functionals of these basic operators. and

To clarify this general result, we consider the explicit ex- 4 )

pression in the pseudoparticle basis of Hamiltonia, Oo(x)=4t[cosx+(U/2t)]sinx,
which is the transfer-matrix charg@?, and the expression (37
for the first nontrivial transfer-matrix charge commuting with
it, which we denote byQ*. In terms of electronic operators O5(x)=U { (U/4t)(y—1) x— 2, [x+ily]
this first nontrivial transfer-matrix charge re4ds I==1

X 1= (U/4t) [ x+il y]?

Q4: - Itjza [CJTo'CjJrZO'_ er-f— 20'Cj a']
respectively. The same procedure leads to expressions for the
- [c],Civ10—Cli10Ci0][ N4 10+ Ny o= 11. remainder N,—3 transfer-matrix chargesQ™, with m
J.o =5,...N,+1, in terms of pseudoparticle operators. Here
(33 omit the expressions fan>4, which are of the general form
given in Eq.(32), with the functionsOg'(x) and O7(x)
Recomputing expansiofl06) of Ref. 17 for electrons more involved than expressioli36) and (37).
instead of holes, introducing thg>0 rapidities associated In addition to the conservation laws associated with these
with the string hypothesis, and using the pseudoparticle regN,— 1 transfer-matrix charges, there are only two more in-
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dependent local laws. These are associated with thg)S !
and S, algebras, and are the two operat&fs(4). Further- J —2]4
+

N| -

% 0 (¢q) eNe ()

more, we know that the twoonlocaloperatorséi (8) also
lead to independent conservation laws. We thus have identi- N
fied N, + 3 independent conservation laws. Armed with these yZo EL % @(Lq)Lch,y(q)],
results, we shall next show that the conservation laws corre-
sponding to the transfer-matrix charges can be expressed as
sums over separately conserved contributions of right- and 1 1
left-moving pseudoparticles. Then, by looking at the differ-jzz_{ DD 00 N (@) + 2 D O(eq)eNgo(q)
ence of the right- and left-moving pseudoparticles, we shall 2| 2% “q ’ ¢ q ’
see that this approach indeed leads to the expected indepen-
dent conservation laws, which we shall call transfer-matrix +2 > > 01+ V]Ns,y(Q)],
currents and which anmeonlocalin character, an attribute that y>0 « q
explains their elusiveness.
We use the subscript introduced in Eq.(14) to distin- and form>2 read
guish right ¢=+1) and left ¢(=—1) pseudoparticles and
the corresponding operators. When expressed in terms of . 1 . .
pseudoparticle operators, tiy+ 1 transfer-matrix charges JmZE[Z Eq: ©(1q)tNe,o(a) OgK(a)]
Q™ can be rewritten as

(42)

N A
on=S o, - 222 @(nquc,y(q)Oy[Rc,ym)]}.
L (43)
where, form=1 and 2, we find
That this set ofN,+1 operators[Egs. (41)—(43)] corre-
a1 N - sponds to independent conservation laws follows immedi-
Q=- 52 O (eq)[1~Neo(a)] ately from their construction as the difference between sepa-
q . .
rately and independently conserved right and left
. - pseudoparticle operators.
+ ;0 ; 0 (:a) YNe,,(a) + 37, Can we express these new conservation laws explicitly in
(39 terms of electron operators? Unfortunately, for gendrahe
answer is “not yet.” In the limitU/t— 0, however, we have
R . . been able to find such expressions. That they are both non-
Q?=-32 ()N o(q)+ > O(:a)N;o(q) local and nontrivial suggests that finding the results for gen-
q a eral U will be a challenging problem.
ForU/t—0, the left- and right-movinglectron operators

+ 20 > 00 [1+yINg (o) +5A%, become separately conserved, and we can apply the same
SR approach used above—taking the difference of right minus
and form>2 operatorg38) read left instead of the sum—to generate the transfer matrix “cur-

rent” operators associated with each transfer-matrix
Am_ N e “charge” operator. The validity of this procedure is justified
Q. —5m,3(U/8)Na+§ ©(a)Nc,o(a) Oo[K(a)] by the fact that in the limit ofU/t—0 the expressions of
right (left) electronic operators in terms of pseudoparticles
- N me A involve only right (left) pseudoparticle operators. Starting
+y§0 % O(aNe (@) O3[R (@] (40 yith the expressions for the currents in terms of electron
operatorsclg and ¢, of momentumk, and using Fourier
and ©(.q)=1 for .q>0, ©(0)=1/2, and®(.q)=0 for  transforms to re-express these operators in terms of the elec-
sponding to transfer-matrix charges can be expressed iMigebra we find expressions for the first fem<1, 2, 3, and

terms of “right plus left" pseudopariicle operators. 4) transfer-matrix currentS™ associated with the transfer-

Since the opera_tor@_’l‘l and_QTl are conse_rved indepen-  matrix charges of Eqg30), (34), and(35). The results are
dently, we can define immediately the following set of asso-

ciatedN,+ 1 operators, which in anticipation of our results i [1—(—1)i-i'
+

we shall denote as transfer-matrix curredits J=— ————C,Cjr0o, (44)
4T 5T (-=i"
=13 .QM, (41) -
- i [1_(_1)|J*J l] : ;
. . V=g & o Lepcin gl (49
which, form=1 and 2 can be written as am (-=1i"
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it . 1 than operator$32) and (41). Finally, the physics contained
P ¥ [+(-DITN Y ———clc,, inthe commuting pseudoparticle conservation laws can be
2 i#i'o I=*1(j—=j'+1) further clarified by the study of a relation that exists between
(46)  these laws and a hidden non-Abelian algebra which caracter-
and izes the model in the thermodynamic lifiit.

For finite values ofJ one can construdd,+ 1 pseudopar-
., it o, ticle “charge” conservation laws
Y=o 2 =) Y ———cfoe,.
27 (i S (j-jre2n

(47) Naf% N,.,(q), (48)

Applying similar manipulations to the higher transfer-
matrix charge$Eq. (32)], we can find similar expressions for
the remaindeN,— 3 transfer-matrix currenf€q. (41)]. Ex- ~ ~
pressions(44)—(45) confirm the non-local character of the Joy=32 2 0() N, (q). (49
operators of Eq(41): that is, in contrast to the expressions £
for the (local) transfer-matrix charges, which involve a single

] summation, _the EXpressions of operat(_zré)—(47) involve characters and the commutirg Yang particle characters,
two j summations, i.e., are nonlocal. This nonlocal characte

also characterizes the transfer-matrix currents of(Eg). for and on the completeness Of, the correspondmgAbass, we find
finite values ofU. that the set oN,+ 3 commutingchargeoperatorsV,, of Eq.

To summarize our results in this section, we have showr27) andN,, ., of Eq. (48) correspond to independent conser-
that the one-dimensional Hubbard model Mg+ 1 local ~ vation laws.
independent conservation laws aNg+ 3 nonlocal indepen- Moreover, since they,y pseudoparticles obey indepen-
dent conservation laws. In addition, we have provided exdentright ¢(=+1) and left (=—1) conservation laws, the
plicit expressions for these operators in terms of pseudopaset of 2N, + 2 operatorsila,w are independent conservation
ticle operators. The total number of the above independengyys, It follows that theN,+ 1 currentoperators),, ., of Eq.
conservation laws is R,+4, and is Iarger_ than the mini-  (49) are also independent conservation laws. ’
mum ngmber of .P;\Ia independent conservatlo'n laws reqwred As a result, the set ofi2,+4 charge and current opera-
by the integrability of the model. When restricted to the Hil- tors, which includes the two charge Yang particle operators

bert subspace associated with the Bethe ansatz solutioRf [Eq. (27)], the N,+1 charge pseudoparticle operators
a * 1 a

which is spanned by thg, LWS’s, the number of indepen- [Eq. (48)], and theN,+1 current pseudoparticle operators

. : o
dent conservation laws is reduced 2+ 2 for S,=—S, . [Eq. (49)] refer to independent conservation laws and com-

mute with the Hamiltonian and among themselves, i.e.,

andN,+1 “current” pseudoparticle laws

Based on both the anticommuting,y pseudoparticle

IV. PSEUDOPARTICLE AND YANG-PARTICLE
CONSERVATION LAWS [HSO(A) vNa]:[HSO(A) vNa,'y]:[HSCX4) 1‘]01,’)/]:0’

Our results thus far have confirmed the expectation, based (50
on the integrability of mode(l), that there should be-2N,  and also
independent conservation laws for that model definetgn
lattice sites. The particular representation of these conserva- [N, y!Na’ y,]:[ja 7'ja, y’]:[Na y,ja, ,1=0,
tion laws follows from an extension of the earlier transfer- ' ' ' ' ’ ’ (51)
matrix analyses of the problém'’and is not particularly .
simple when expressed in terms of either the pseudoparticlesd N, also commutes with all these operators. Thus we
or the electrons; indeed, we do not have a general expressitvave just confirmed explicitly by a different method the re-
for the newly found nonlocal laws in terms of electron op-sult of Sec. Ill that the number of independent conservation
erators. laws of the one-dimensional Hubbard model 8,24, and

In this section we shall introduce an alternative set ofis indeed greater than thé\2 needed to ensure integrability.
independent conservation laws. Although we do not provide The two Yang-particle operatof&q. (27)] are conserva-
an explicit representation of most of these laws in terms ofion laws for the one-dimensional Hubbard model defined in
the original electron operators, this alternative choice has ththe whole Hilbert space. On the other hand, the Bethe-ansatz
considerable virtue of providing much simpler expressions irsolutiont>®17 refers to that model defined in the Hilbert
terms of the pseudoparticles, where it arises fribigH-1 subspace spanned by t8g LWS's (or HWS'’s). In this case
pseudoparticle ‘“charge” conservation laws ard,+1  there are nax Yang particles, and the set oN2+4 conser-
pseudoparticle “current” conservation laws which, togethervations laws reduces to the set o2+ 2 laws[Egs. (48)
with the two Yang-particle conservation law&q. (27)] and(49)].
yield a full set of 2N,+4 commuting, compatible operators.  Since all the momentum and energy eigenstates belonging
Importantly, as is established elsewh&fehe representation the same SEHS have the same values for the conservation-
of the pseudoparticle conservation laws is better suited folaw numbers{N,}, {N, .}, and{J, ,}, we often use these
study of correlation functions at finite energy or frequencynumbers to label these states, which we call
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| ANLH{NG 1 {Ja,)) (and sometimes justy;)). How-  Note, however, that there is not a one-to-one correspondence
ever, this notation is not a complete representation for theseetween these two set of alternatNg+ 1 operators. Instead
states, for states belonging the same SEHS have diffgrentof the two operators of E¢27) we could also use the two
occupancies. In the completea, y pseudoparticle basis and «,8=+3 pseudohole operatoi*gzyﬂ,2 of Eq. (29).

a Yang-particle basis, the momentum and energy eigenstates The two & operators of Eq.(8), the N,+1 transfer-

have a noninteracting form that reads matrix charge$Eq. (38)] of Refs. 8—11 and 17, and th\,
1 +1 transfer-matrix currenfEq. (41)] are also alternative to
)= 11 m[d;a]/M %0y, |4;0)= IT ba,a,y|o>’ the two Yar}g-partlcle operatofgq. (27)], theN,+ 1 charge
a Na da,y pseudoparticle operatof&q. (48)], and theN,+ 1 current
(52 pseudoparticle operatof&q. (49)]. We showed in Sec. IlI
where that the transfer-matrix charges and transfer-matrix currents
can also be expressed in terms of the elementary operators of
[;0) =] ;04NG {301 (53 Eqg. (25). However, their expressions are considerably more
involved than the simple expressio@8) and (49).
is a$S, LWS and|0) is the N=0 vacuum, and whew, Although the N,+1 transfer-matrix chargefEq. (38)]
=0 we define[d;a %=1 and 0=1. and N,+1 transfer-matrix currentfEq. (41)] are indepen-

In contrast to Eq.(23) of Ref. 4, which constructs the dent, there is not an obvious one-to-one correspondence be-
energy eigenstates from the,B pseudohole andv,y>0  tween these operators and tNg+1 charge pseudoparticle
pseudoparticle vacuum, statés?) and (53) are obtained by operatorgEq. (48)] andN,+1 current pseudoparticles op-
application of pseudoparticle and Yang-particle creation operators[Eq. (49)], respectively, as confirmed by comparing
erators on th&l=0 vacuum. Note that the former vacuum is their expressions in terms of basic pseudopatrticle operators.
the ground state of modél) at S:=S:=0. This difference For instance, this can be directly confirmed for the charge
is a result of the use ofr Yang particles instead ofr,3  operator)* andQ? of Eq.(30) and current operators' and

pseudoholes in the description of tBg non-LWS's. J? of Eq. (42), the combined expressions of these four con-
Equation(52) reveals that in the pseudoparticle and Yang-servation laws involvingall 2N,+4 Yang-particle and

particle bases, all energy eigenstates are products of simpjseudoparticle operatot@7), (48), and(49), and reading
Slater-determinant levels af,y pseudoparticles and af

Yang-particle creation operators. Note, however, that unlike

a noninteracting system the integer or half-integer character Q'=—3[Na—Ngol+ ZO YNe,y + NG,

of the discrete pseudomomentum numbkts of Eq. (17) 7

depends on the parities of the pseudoparticle occupancy (54)
numbers. This implies that the generators that map an energy

eigenstate with finite pseudoparticle occupancy onto another Q%= — 1N, o+ Ngo+ E [1+ y]Ng 7+/§/’S,

energy eigenstate also with pseudoparticle occupancy are not ' T >0 ’

as simple as the generators of expressi@®. While the
latter generators are simple products of Yang-particle an[imd

pseudoparticle creation operators, the former generators in-

volve in addition to Yang-particle and pseudopatrticle cre- N=13_ ,+ 2 ),jcy,
ation and/or annihilation operators, y pseudoparticle topo- >0 '
logical momentum-shift operators. The latter operators

generate collective pseudoparticle excitations that shift by

52 14 N R
+ /N, the pseudomomenta of alt,y pseudoparticles of J7°==2Jcot Jsot ;0 [1+ 7], (55)
the final state whose number§” of Eq. (17) change their

integer or half-integer charactér. Note that the expression of tte=1 (and m=2) transfer-

Moreover, despite the seemingly non-interactingmatrix charges|Eq. (54)], involves thec Yang-particle and
pseudoparticle form of the energy eigenstates. (52)], the  all the c,y charge pseudoparticle operatftise s Yang par-
pseudoparticles are indeed interacting objects, although thicle, thec,0 charge pseudoparticle, and all they charge
integrability of the model implies that their collisions are pseudoparticle operatdrfEgs. (27) and (48)], whereas the
dissipationless, i.e., do not lead to energy or momentunexpression of then=1 [andm= 2] transfer-matrix currents,
transfer and only give rise to shifts in the pseudoparticleEq. (55), involves all thec,y current pseudoparticle opera-
phase$. tors[the ¢,0 current pseudoparticle operator and all she

One can find alternative choices for the independenturrent pseudoparticle operatbr§Eq. (49)]. Since the
2N,+4 conservation laws of Eq$27) and Egs.(48) and  transfer-matrix current$Eg. (42)] are nonlocal operators
(49). For instance, we can use the seNof+1 «,y pseudo- when expressed in terms of electrons, Exh) suggests that
hole operator§\), , associated with the numbeks, , of Eq.  the N+1 current pseudoparticle conservation lajy.
(15). Following Eqs(15) and(16), the set oN,+ 1 laws can ~ (49)] are also nonlocal operators in the electron basis.
be expressed in terms of the,+ 1 pseudoparticle conserva- ~ Equation (54) reveals that the expression of the two
tion laws of Eq.(48), and contains the same information. transfer-matrix charged® and J2 involve both the Yang-
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particle operator$Eq. (27)] and the charge pseudoparticle rapidities provided by the transfer matrwith the rapidities
operator Eq. (48)]. While the two Yang-particle operators of the string hypothesi&? Taking into account that the num-
[Eq.(27)] are not independent conservation laws relatively tobers of right and left pseudoparticles are independently con-
the set ofN,+ 1 transfer-matrix chargg€q. (38)], they are  served, we constructed the extra setNyf+1 independent
independent operators relatively to the,+1 charge currents[Eq. (41)], beyond the transfer-matrix charges,
pseudoparticle operatof&q. (48)]. On the other hand, the WhI'Ch ha\tle at C:”et'go'Qnde corrgsp?ndence th_th thisteh charges.
a2 . . n contrast to the independent conservation of the num-
“’]Y‘;lsa iperat(;rs[Eq.(S?] aLe md;pengBe ntbrelatlve to _thg set bers of right and left pseudopatrticle for all finite values of the
Of Nat tran§ er-matrix chargd#q. (38)] but are _not INde-  on-site repulsiorlJ, the numbers of right and left electrons
pendent relative to th&l,+1 charge pseudoparticle opera- become good quantum numbers onlyl&—0. It follows
tors [Eq. (48)]. However, our results show that one can al-

. ) that the seemingly simple expressiofsq. (41)] of the
ways c.hoose a set of, +4 independent cqnserva'uon laws, transfer-matrix currents in terms of pseudoparticle operators
which is reduced to B,+2 laws for the Hilbert subspace

iated with the Beth t vabilitv of th are likely to be complicated in terms of electron operators,
associated wi € bethe-ansalz solvability of th€ 0neznq indeed expressions for a genddalare unknown. We
dimensional Hubbard modgEq. (1)].

were able to find explicit expressions in terms of electron
operators in the specific limly/t— 0. Both in this limit and
V. DISCUSSION AND CONCLUDING REMARKS for finite values of the on-site repulsiod, the transfer-

The three main results of this paper pethe identifica- matrix currents are nonlocal when expressed in terms of the
tion of a set ofN,+1 , independent, nonlocal “transfer- electron operators. Their nonlocality explains their previous
a 1 ) .
matrix current” conservation laws, which coupled with the €/USIveness.

previously known set oN,+1 transfer-matrix “charge” The transfer-matrix charges and our transfer-matrix cur-
conservation lawg-1117 prgvide the ~2N. conservation '€nts can be written in the pseudoparticle basis in terms of
I a

laws that are expected by the integrability of the one-N€ basicg,a,y pseudoparticle operators of E(@S), but

dimensional Hubbard modeii) the explicit expression of their expressions involve the rapidity operat¢@d), which

both the transfer-matrix charges and currents in terms of® functionals of these basic operators. These leads to fairly

pseudoparticle operators, and the explicit form of thecomplex expressions. On the other hand, the expressions of

transfer-matrix currents in terms of electron operators for thd€ alternative set of pseudoparticle conservation les.

special casé)/t— 0; and(iii) the derivation of an alternative (48 and (49)] are much simpler, referring directly to the

complete set of conservation laws that have much simplef!Mpers of pseudoparticles. This simplicity proves to be use-
in applications which combine the symmetfiesssoci-

expressions in terms of the pseudoparticle operators, and a

hence more useful for calculating physically relevant corre2t€d with the N,-+2 pseudoparticle conservation laj¥gs.

lation functions. (48) and(49)] and two Yang-particle conservation lap&g.

In a sense the “naturalness” of the pseudoaprticle Opera(27)] with t_h(_a nonlinear critical Fheory of Ref. 19. This Iegds
tors is what allowed us to find this full solution. While all © useful_ finite-energy EXpressions for correlatlo_n functhns.
energy eigenstates of the Hubbard mof&d;. (1)] can be A prellmlnary but nqntrlwal example of apphcagon of this
constructed by application onto the=0 vacuum of suitable  finite-energy theory is the evaluation of the optical conduc-
generators expressed in terms of either electrons apvity of the Hubbgrd mode[Eq. (1)] for finite frequencies
pseudoparticles, the evaluation of expressions for these gelf!St above the optical gab.
erators in terms of electronic operators is a very complex and
open problem, whereas from Eq52) and (53) we see that
these generators can be expressed as simple produetsy of We thank J. M. B. Lopes dos Santos and L. M. Martelo
pseudoparticle creation operators ameang particle cre- for stimulating discussions. We are grateful to the Center for
ation operators. In this sense, the pseudoparticle and Yan@#onlinear Studies at Los Alamos National Laboratory,
particle representation naturally diagonalizees the quantuwhere the collaboration leading to these results was initiated.
problem. In addition, D.K.C. thanks the Department of Physics of

In order to construct the neN,+1 transfer-matrix cur- UIUC, where part of this work was performed. This research
rents[Eq. (41)], we have expressed the associabegt-1  was supported by the Department of Energy under Contract
transfer-matrix charges of Refs. 8-11 and 17 in theNo. W-7405-ENG-36, by the Portuguese Program PRAXIS
pseudoparticle basis. This was achieved by combining th&XI under Grant No. 2/2.1/FIS/302/94, and by U.S. NSF
expressions for these charges in terms of the Bethe-ansa@Grant No. DMR-97-12765.
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