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Conservation laws in the one-dimensional Hubbard model
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We examine the nature, number, and interrelation of conservation laws in the one-dimensional Hubbard
model. In previous work by Shastry@Phys. Rev. Lett.56, 1529~1986!; 56, 2334~1986!; 56, 2453~1986!; J.
Stat. Phys.50, 57 ~1988!#, who studied the model on a large but finite number of lattice sites (Na), only Na

11 conservation laws, corresponding toNa11 operators that commute with themselves and the Hamiltonian,
were explicitly identified, rather than the;2Na conservation laws expected from the solvability and integra-
bility of the model. Using a pseudoparticle approach related to the thermodynamic Bethe ansatz, we discover
an additionalNa11 independent conservation laws corresponding tononlocal, mututally commuting opera-
tors, which we calltransfer-matrix currents. Further, for the model defined in the whole Hilbert space, we find
there are two other independent commuting operators~the squares of theh-spin and spin operators! so that the
total number of local plus nonlocal commuting conservation laws for the one-dimensional Hubbard model is
2Na14. Finally, we introduce an alternative set of 2Na14 conservation laws which assume particularly
simple forms in terms of thepseudoparticleand Yang-particleoperators. This set of mutually commuting
operators lends itself more readily to calculations of physically relevant correlation functions at finite energy or
frequency than the previous set.

DOI: 10.1103/PhysRevB.63.205114 PACS number~s!: 71.10.Pm, 05.30.Ch, 11.30.2j, 71.20.2b
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I. INTRODUCTION

The one-dimensional Hubbard model, arguably the s
plest physical model forN interacting electrons on a lattic
of Na sites, is well known to be solvable by the coordina
Bethe ansatz.1–3 Lieb and Wu reduced the problem of diag
nalizing the model to solving a set of two coupled nonline
equations.1 Takahashi2 introduced thestring hypothesis,
which led to the thermodynamic Bethe-ansatz-coupled n
linear equations~also see Ref. 2,3!. While the two Lieb-Wu
equations are associated with two types ofrapidities, each
thermodynamic Bethe ansatz equation of Takahashi is
associated with a different type of rapidity, whose numb
becomes infinite in the limit ofNa→`. The string hypoth-
esis is only valid in the limit of very largeNa which is
associated with the thermodynamic Bethe-ansatz equatio

Reference 4 considered Takahashi’s thermodyna
Bethe-ansatz equations, and associated each of the c
sponding rapidities with a branch ofpseudoparticles. The
concept of a pseudoparticle is well defined only within t
thermodynamic Bethe ansatz equations and follows from
ideal positions of the discretepseudomomentumquantum
numbers associated with the string-hypothesis rapidities.
pseudoparticles are neither fermions nor bosons, but the
obey an anticommuting algebra. As a result of the integ
bility of the Hubbard model, their collisions are dissipatio
less and do not lead to momentum and/or energy trans
with pseudoparticle collisions producing only shifts in the
phases.4,5 The pseudoparticle operator representation of
thermodynamic Bethe-ansatz solution provides insight i
the low- and finite-energy elementary excitations of t
model and associated symmetries6 and is useful for the study
of correlation functions at finite energy and frequency.5,7
0163-1829/2001/63~20!/205114~11!/$20.00 63 2051
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Shastry8 explored the relationship between the solvabil
of the model and the concept ofintegrability ~inspired by
Liouvilian integrability in classical mechanics! by exhibiting
an infinite number~in the thermodynamic limit,Na→`) of
commuting operators corresponding to the expected con
vation laws. He also found a two-dimensional classical v
tex model whose transfer matrix commutes with the Hubb
Hamiltonian. These results were verified by oth
approaches.9–12 The invariance of the model under tw
Y@su~2!# Yangians was also studied.13,14

As an alternative to the coordinate Bethe ansatz, the
lution of many integrable quantum models can also be
tained by means of the inverse scattering method, first in
duced in Ref. 15. This is the quantum version of the inve
scattering method used in classical problems. This met
provides more insight into the structure and symmetries
integrable systems than the usual Bethe-ansatz solu
However, as a consequence of the nonadditive propert
the Hubbard-modelR matrix, its solution by means of the
inverse scattering method has remained a long-standing o
problem.

Recently, Martins and Ramos solved this problem by fi
finding the commutation rules of the operators present in
embedding vertex model found by Shastry, and then solv
the one-dimensional Hubbard model by means of the inve
scattering method.16,17They found that a hidden symmetry o
six-vertex type was important for the integrability of th
model.

Within the inverse-scattering solution of the model, t
Na21 local conservation laws first identified by Shastry c
be extracted from the transfer matrix. This follows from t
fact that the associated auxiliary eigenvalue is analytic in
spectral parameterl. TheNa21 coefficients of thel expan-
©2001 The American Physical Society14-1
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sion of the logarithm of that eigenvalue provide the expr
sions in terms of Bethe-ansatz rapidities for the correspo
ing Na21 Shatry’s conservation laws.17 Hence, in this paper
we call theNa21 conservation laws found in Refs. 8–1
and 17,transfer-matrix charges.

However, there remain important open issues regard
the nature, number, and interrelations of the conserva
laws in the one-dimensional Hubbard model. For instan
what is the total number of independent conservation la
For a large but finite number of lattice sitesNa , the total
number of transfer-matrix charges isNa11, when one in-
cludes the obvious conservation of total electron number
magnetization. This number appears insufficient to ens
the integrability of the model, which by analogy to classic
mechanics ought to require aminimumnumber of commut-
ing conservation laws equal to the number of degrees
freedom, which is 2Na , since there are two degrees of fre
dom, spin- and spin-down electrons, per lattice site.

In this paper we provide insights into that open issue.
first show that combining the expressions of the trans
matrix charges in terms of the Bethe-ansatz rapidities p
vided by the transfer-matrix approach17 on the one hand
with the thermodynamic Bethe ansatz string hypothesis
Takahashi2,3 on the other hand, allows us to express the
conservation laws in the pseudoparticle basis. Then, obs
ing that the numbers of right and left pseudoparticles
independently conserved, we find explicit expressions for a
extra set of Na11 new conservation laws beyond th
transfer-matrix charges previously found by Shastry;
term the operators corresponding to these new conserva
laws transfer-matrix currents. These conservation laws ar
nonlocalwhen expressed in terms of electron operators, w
their nonlocality providing a natural explanation for their n
having been previously found~to our knowledge!.

While we know how to express the transfer-mat
chargesboth in terms of pseudoparticle and electron ope
tors, we have the expression of the newly found trans
matrix currents only in terms of pseudoparticle operator
For general values of the onsite repulsionU, we have been
unable to find explicit expressions for them in terms of el
tron operators. Hence, to gain insight, we study the lim
U/t→0, where as usualt is the transfer integral. In this limit
we obtain explicit expressions for the conservation laws c
responding to the first few transfer-matrix currents, dem
strating that they are indeed nonlocal in terms of elect
operators in this limit.

The Bethe ansatz solution refers to the Hilbert subsp
spanned the lowest weight states~LWS’s! or highest weight
states~HWS’s! of the h-spin and spin algebras.18 In this
paper we call these two algebrasSc andSs algebras, respec-
tively. In the case of the one-dimensional Hubbard mo
defined in the whole Hilbert space we find that the square
the Sc andSs operators—which for simplicity we denoteŜc

2

and Ŝs
2 , respectively—are independent conservation la

We express these two conservation laws both in terms
electronic and pseudoparticle/pseudohole operators, with
final result that we find a total of 2Na14 independent con
servation laws.
20511
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Having established the number and nature of these c
servation laws, we introduce an alternative set of indep
dent pseudoparticle4 conservation laws. We are able to sho
that these 2Na14 conservation laws are independent an
because the expressions are considerably simpler—in te
of pseudoparticle operators—than those in the form deri
from the transfer matrix, are much more useful for calcul
ing physically relevant correlation functions for finite ener
or frequency; indeed, results in this direction were or will
presented elsewhere.5,7

The remainder of the paper is organized as follows.
Sec. II we introduce some useful basic information both
the one-dimensional Hubbard model and on the pseudo
ticle and Yang-particle algebra. TheNa11 transfer-matrix
currents, which are in one-to-one correspondence with
previously knownNa11 transfer-matrix charges, are studie
in Sec. III. Together with theŜc

2 and Ŝs
2 operators, these

charges and currents constitute a set of 2Na14 independent
conservation laws. In Sec. IV we introduce an alternative
of 2Na14 independent conservation laws with~relatively!
simple expressions in terms of the pseudoparticle and Ya
particle operators. Finally, in Sec. V, we discuss our res
and add some concluding remarks.

II. MODEL AND PSEUDOPARTICLE PICTURE

In a chemical potentialm and magnetic fieldH the Hub-
bard Hamiltonian reads

Ĥ5ĤSO(4)1(
a

ma2Ŝa
z , ~1!

wherea runs overc ~for charge! ands ~for spin!. The Hamil-
tonian

ĤSO(4)5T̂1U@D̂2N̂/2# ~2!

has SO~4! symmetry, and

T̂52t(
j ,s

@cj s
† cj 11s1H.c.#, D̂5(

j
n̂ j ,↑n̂ j ,↓ ~3!

are thekinetic-energyand the double-occupancy operato
respectively. The operators

Ŝc
z52 1

2 @Na2N̂#, Ŝs
z52 1

2 @N̂↑2N̂↓#, ~4!

are the diagonal generators of the SU~2! Sc andSs algebras,3

respectively. Using these standard definitions, we see
mc5m andms5m0H, with m0 the Bohr magneton andH the
external magnetic field. We assumeNa is large and even, and
recall, for definiteness, that the number operators are

N̂5(
s

N̂s , N̂s5(
j

n̂ j ,s , n̂ j ,s5cj s
† cj s , ~5!

and cj s
† and cj s are s electron operators at sitej

51, . . . ,Na .
The HamiltonianĤSO(4) @Eq. ~2!# has SO~4! symmetry,18

and commutes with the six generators of theSc andSs alge-
bras, with the expressions of the two corresponding diago
4-2
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generators being given in Eq.~4! and the off-diagonal gen
erators of these two SU~2! algebras reading

Ŝc
†5(

j
~21! j cj↓

† cj↑
† , Ŝc5(

j
~21! j cj↑cj↓ ~6!

and

Ŝs
†5(

j
cj↓

† cj↑ , Ŝs5(
j

cj↑
† cj↓ , ~7!

respectively. The operatorsŜc
2 and Ŝs

2 can be expressed i
terms of the generators of Eqs.~4!, ~6!, and~7! as follows:

Ŝa
2[ŜW a .ŜW a5Ŝa

† Ŝa1@Ŝa
z #22Ŝa

z . ~8!

In Eq. ~8! and throughout this paper, we use units\51.
Moreover, we also use units with a lattice spacinga51 and
an electron charge2e51. We consider densitiesn5N/Na
and spin densitiesm5@N↑2N↓#/Na in the domains 0<n
<1 and 1<n<2 and 2n<m<n and 2(22n)<m<(2
2n), respectively.

The Bethe ansatz solvability of the one-dimensional H
bard model@Eq. ~1!# is restricted to the Hilbert subspac
spanned by the LWS’s~Refs. 1 and 2! or HWS’s~Ref. 17! of
the Sc and Ss algebras, i.e., by the states whoseSa and Sa

z

numbers are such thatSa52Sa
z or Sa5Sa

z , respectively3.
The Bethe-ansatz solution used in this paper describes
ergy eigenstates associated with densities and spin den
in the domains 0<n<1 and 0<m<n, respectively, i.e., as
sociated withSa LWS’s. The description of the states corr
sponding to the extendedn andm domains mentioned abov
is achieved by application of the off-diagonal generators
the SU~2! Sc andSs algebras18 on the LWS’s, as we discus
below.

The use of the SO~4! algebra reveals that the model
integrable in the whole Hilbert space.18 The transfer-matrix
charges are closely related to that integrability, and the t
number of pseudoparticle branches of the operator bas
Ref. 4 isNa11, and is equal to the number of these ind
pendent conservation laws. These pseudoparticle bran
are labeled by the pseudoparticle quantum numbersa andg
with a5c,s and g50,1,2, . . . ,Na/2 and 0,1,2, . . . ,Na /2
21 for c and s, respectively, which indeed gives a tot
number ofNa11 independent branches.

The a,g pseudoparticles are well-defined objects wh
Na is large, and the string hypothesis becomes valid.2,3 Fur-
ther, from the inverse-scattering Bethe-ansatz solution,16,17

one can extract explicit expressions for the Hamiltonian,
other transfer-matrix charges~as we find in Sec. III!, and the
diagonal parts~in the energy basis! of all operators in terms
of elementary anticommutinga,g pseudoparticle operator
bq,a,g

† andbq,a,g such that4

$bq,a,g
† ,bq8,a8,g8%5dq,q8da,a8dg,g8 . ~9!

At each a,g band there areNa,g* qj values, i.e., j
51,2, . . . ,Na,g* , with
20511
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qj 112qj5
2p

Na
. ~10!

This property of the pseudomomentumqj correspond to the
ideal positions of the Bethe-ansatz rapidities associated
the string hypothesis. Moreover,

qa,g
(21)<q<qa,g

(11) , ~11!

where the limits of the (a,g)-band pseudo-Brillouin zone
read

qa,g
(i) 5iqa,g1da,c dg,0 yc,0

p

Na
, ~12!

qa,g5
p

Na
@Na,g* 21#, yc,056

1

2
@11~21!N0#50,61;

~13!

the index

i5sgn~q!1 ~14!

refers to right (i511) and left (i521) a,g pseudoparticle
movers whose numbers,Na,g,i , are independently conserve
and are eigenvalues of the operatorsN̂a,g,i ; N0
5((a,gNa,g2Nc,0); and Na,g5(iNa,g,i denotes the num-
ber of occupiedqj values at thea,g band—the a,g
pseudoparticles.

As we shall show in Sec. III, the independent conser
tion of the i561 pseudoparticle numbers plays a cent
role in the derivation ofNa11 transfer-matrixcurrentsthat
go beyond the transfer-matrix charges found by Shas
Along with the Na,g occupied pseudomomentum value
there areNa,g

h emptypseudomomentum values, which w
call a,g pseudoholes, in eacha,g band: we have

Na,g* 5Na,g1Na,g
h ,

Na,g
h 5Na,0

h 2 (
g8.0

@g1g82ug2g8u#Na,g8 ~15!

and

Nc,0
h 5Na2Nc,0 , Ns,0

h 5Nc,022(
g8

Ns,g8 . ~16!

Equations~15! and ~16! reveal that the numbers ofa,g
pseudoholes,Na,g

h , are fully determined by the set ofa,g
pseudoparticle numbers$Na,g%. Furthermore, the discret
pseudomomentum values are such that

qj5
2p

Na
I j

a,g , ~17!

whereI j
c,0 ~or I j

a,g for all remaininga,g bands! are integers
and half-integers forNa/21N0 ~or Na,g* ) odd and even, re-
spectively.

In Ref. 4, two types ofa,0 pseudoholes were considere
which were distinguished by an extra quantum numberb
56 1

2 . In that reference theSa non-LWS’s were described in
4-3
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terms ofa,b pseudoholes~corresponding to the two type
b56 1

2 of a,0 pseudoholes! by anticommuting elementar
operatorsaq,a,b

† and aq,a,b and a number operatorN̂a,b
h

5(q N̂a,b
h (q) where N̂a,b

h (q)5aq,a,b
† aq,a,b . In terms of

thesea,b pseudohole operators, the SU~2! Sa generators of
Eqs.~4!, ~6!, and~7! read

Ŝa
z 5 (

b561/2
b N̂a,b

h , Ŝa
†5(

q
aq,a,1(1/2)

† aq,a,2(1/2) ,

Ŝa5(
q

aq,a,2(1/2)
† aq,a,1(1/2) , ~18!

and the numbersSa associated with the eigenvaluesSa@Sa
11# of the operators~8! can be written as

Sa5 1
2 Na,0

h 2 (
g.0

gNa,g , Na,0
h 5 (

b56(1/2)
Na,b

h , ~19!

where the pseudohole numbersNa,0
h can also be expressed

terms of pseudoparticle numbers—see Eq.~16!.
For our later discussion, we shall find another represe

tion of the non-LWS’s to be useful. It involves describing t
non-LWS’s by applying onto theSa LWS’s of creation op-
erators forc and s Yang particleshaving momentaqc5p
andqs50, respectively. These operators are

dqa

† [
Ŝa

†

A22Ŝa
z

, dqa
[

Ŝa

A22Ŝa
z

, ~20!

and obeycommutationrelations

@dqa
,dqa8

† #5da,a8 . ~21!

The Sa SU~2! generatorsŜa
z , Ŝa

† , and Ŝa , involved in the
expression of thea Yang-particle operators of Eq.~20!, are
expressed in Eqs.~4!, ~6!, and ~7! in terms of electronic
operators, and in Eqs.~18! in terms ofa,b pseudoholes.

III. TRANSFER-MATRIX CHARGES AND
TRANSFER-MATRIX CURRENTS

For U50, the 2Na operators

N̂s~k!5cks
† cks , ~22!

and associated 2Na operators

N̂s
h~k!5ckscks

† , ~23!

wherecks
† andcks ares electron operators at momentumk

with discrete values

kj5
2p

Na
j , j 52

Na

2
11,2

Na

2
12, . . . ,0, . . . ,

Na

2
21,

Na

2
,

~24!

commute with Hamiltonian~1! and are conservation laws.
is convenient to introduce the quantum numbern5sgn(k)1
for kÞ0 which refers to the number of right-moving (n5
20511
a-

11) and left-moving (n521) electrons. At U50 all con-
servation laws can be expressed in terms of the operator~22!
@or ~23!#. For instance, one can construct 2Na local conser-
vation laws, associated with twos (↑ and ↓) decoupled
free-fermion models and 2Na corresponding nonlocal laws
for the number right- and left-movingelectronsare indepen-
dent conservation laws. Furthermore, in contrast to theU
.0 case, atU50 one can rewriteall 4Na conservation laws
in a local form.11

On the other hand, for finite values ofU the electronic
operators~22! and ~23! do not commute with Hamiltonian
~1!. However, all energy and momentum eigenstatescan be
described by distributionsNa,g(q) and Na,g

h (q) for
pseudoparticles and pseudoholes, respectively.4 These distri-
butions are the eigenvalues of the operators

N̂a,g~q!5bq,a,g
† bq,a,g ~25!

and

N̂a,g
h ~q!5bq,a,gbq,a,g

† , ~26!

respectively. @Note that for g50 we have thatN̂a,0
h (q)

5(b56(1/2)N̂a,b
h (q).# In addition, we consider thea Yang-

particle operators

N̂a5dqa

† dqa
, ~27!

whose eigenvalues are the number ofa Yang particles,

Na5Sa1Sz
a , ~28!

such that 0<Na<2Sa and withNa50 for the Sa LWS’s.
Operator~27! can be written in terms ofa,b pseudohole
~relative to thea,g50 band! anda,g pseudoparticle num-
ber operators as follows:

N̂a5N̂a,1(1/2)
h 2 (

g.0
gN̂a,g . ~29!

For finite values ofU, the elementaryq,a,g pseudoparticle
operators@Eq. ~25!# and thea Yang-particle operators@Eq.
~29!# commute with Hamiltonian~1!, i.e., these operators
are conserved and thus represent conservation laws. Note,
however, that in contrast to the electronic operators@Eq.
~22!#, the number ofq,a,g pseudoparticle operators of Eq
~25! depends on the pseudoparticle fillings. To understa
this point, we introduce the useful concept of a ‘‘subcano
cal ensemble Hilbert subspace’’~SEHS!, which is spanned
by all energy and momentum eigenstates with the same
of numbers$Na,g,i% and $Na%. Unlike the electronicopera-
tors @Eq. ~22!#, whose number is 2Na independently of the
values of the electron numbersNs , the number of the opera
tors @see Eq.~25!# is different for different SEHS’s. This is
because the pseudomomentum discrete valuesqj of Eq. ~17!
are such thatj 51,2, . . . ,Na,g* , where according to Eq.~15!,
and in contrast to a noninteracting system, the values of
numbersNa,g* depend on the pseudoparticle occupancies
follows that, unlike the 2Na electronic operators@Eq. ~22!#,
the operators of form~25! are not in general independen
4-4
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However, these operators have an important property:All
conservation laws of the one-dimensional Hubbard mo
can be expressed in terms of the elementary operators~25!
and ~29!, as we discuss below.

Our first goal in this paper is to identify the maximal s
of independentconservation laws. By analogy to classic
mechanics, the integrability of model~1! ought to require a
minimum number of independent commuting conservat
laws equal to the number of degrees of freedom, which
2Na . Therefore, we expect that out of operators~25! and
~29! one can constructat least2Na independent conservatio
laws.

The Na11 transfer-matrix charges include the operat
Ŝc

z and Ŝs
z of Eq. ~4!, which are associated with the electro

number and the magnetization, respectively. For the o
dimensional Hubbard model defined in the Hilbert subsp
spanned bySa LWS’s, we have thatSa52Sa

z , and the two

Ŝa
2 operators of Eq.~8! and the two diagonal SU~2! Sa gen-

eratorsŜa
z of Eq. ~4! correspond to the same numbers.

On the other hand, for the one-dimensional Hubb
model defined in the whole Hilbert space, the two operat
of Eq. ~8! become independent conservation laws relative
the set ofNa11 transfer-matrix charges, which gives a to
number ofNa13 independent conservation laws. The use
Eqs. ~4!, ~6!, ~7!, and ~18! leads directly to expressions fo
the two conservation laws of Eq.~8! in the electronic and
pseudoparticle/pseudohole basis, respectively. Therefore
know how to writeNa13 independent conservation laws
terms of electronic operators. These are the two operato
Eq. ~8!, and the previously knownNa11 transfer-matrix
charges of Refs. 8–11 and 17. This still leaves us shor
our expected number of;2Na conservation laws.

To find the remaining laws, we take a hint from the resu
for the caseU50. For U50, the numbers of right- and
left-moving electrons areindependentlyconserved. Thus we
can in principle immediately write down twice as many co
servation laws; later, as an explicit check of our general
sults, we shall do this forU/t→0. For now, however, we
proceed by observing that whereas for finite values ofU the
numbers of right- and left-moving electrons are no long
good quantum numbers, the numbers of right- and l
moving pseudoparticlesassociated with the quantum num
bers of Eq.~14! are good quantum numbers. This simple b
key insight underlies the detailed calculations that follow
the remainder of this section. As a guide to these calc
tions, let us briefly outline the logic behind them. If the num
bers of right- and left-moving pseudoparticles are separa
conserved, so must their sums and differences. By stud
the expressions for known conservation laws correspond
to transfer-matrix charges in terms of the pseudoparticles
will eventually be able to show that their expressions invo
the addition of two separate sums over right- and le
moving pseudoparticle operators. This suggests that we
for the conservation laws to be expressed in terms of sim
sums over the differences of right- and left-moving
pseudoparticles. Doing so indeed allows us to find a new
of Na11 independent conservation laws which arenonlocal
in the original electronic basis even in the limitU/t→0.
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Let us start our detailed analysis by finding expressio
for the Na11 known transfer-matrix charges in terms
pseudoparticle operators. The transfer-matrix charges w
the simplest expressions areŜc

z and Ŝs
z . In addition to their

representations in terms of electrons,@Eq. ~4!# and of a,b
pseudoholes@Eq. ~18!#, we can write these diagonal gener
tors of theSc and Ss algebras in terms of the basicq,a,g
pseudoparticle operators@Eq. ~25!# anda Yang-particle op-
erators @Eq. ~27!#. The corresponding expressions involv
simpleq andg summations of the operators@Eq. ~25!#, and
read

Q̂15Ŝc
z52 1

2 @Na2N̂#52 1
2 (

q
@12N̂c,0~q!#

1 (
g.0

(
q

gN̂c,g~q!1N̂c ,

~30!

Q̂25Ŝs
z52 1

2 @N̂↑2N̂↓#52 1
2 (

q
N̂c,0~q!1(

q
N̂s,0~q!

1 (
g.0

(
q

@11g#N̂s,g~q!1N̂s ,

where we have defined the two transfer-matrix charges asQ̂1

and Q̂2, respectively. Moreover, we denote byQ̂m with m
51,2, . . . ,Na11 theNa11 transfer-matrix charges of Refs
8–11 and 17.

On the other hand, the expressions of all remainderNa
21 transfer-matrix charges do not involve thea Yang-
particle operators@Eq. ~27!# and are functionals exclusivel
of the basicq,a,g pseudoparticle operators@Eq. ~25!#. How-
ever, their expressions in terms of the latter pseudopart
operators are more involved than expressions~30!. All these
Na21 operators can be expressed in terms of the opera
N̂c,g(q) and of therapidity operators

R̂c,0~q!54t sin@K̂~q!#/U, R̂c,g~q!, ~31!

whose expressions are functionals of all the basic opera
N̂a,g(q) of Eq. ~25!. Therefore, rapidity operators~31! com-
mute with Hamiltonian~1!, and the energy eigenstastes a
also eigenstates of these operators. Rapidity operators~31!
play an important role in the pseudoparticle operator rep
sentation of the model.~For further information on these
operators, see Sec. IV of Ref. 4.! The functional dependenc
of the eigenvalues of operators ~31!, Rc,0(q)
54t sin@K(q)#/U and Rc,g(q), on the distributions
Na8,g8(q8) are defined by the coupled integral equatio
~66!–~69! of Ref. 4. As discussed in that reference, the lat
equations are fully equivalent to the set of thermodynam
Bethe-ansatz equations first derived by Takahashi within
string hypothesis.2 These eigenvalues are the real part
Bethe-anstaz rapidities2–4 and are functionals of the
pseudoparticle distributionsNa8,g8(q8).

Solving the above coupled integral equations to find
expressions for the functionalsRc,g(q) in terms of the
4-5
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pseudoparticle distributions is an involved problem. Ho
ever, it is straightforward to show that that solution leads
expressions for these functionals that are summations
the quantum numbersq8, a8, andg8 involving the distribu-
tions Na8,g8(q8). The corresponding operatorsR̂c,g(q) have
the same expressions, with the distributionsNa8,g8(q8) re-
placed by the corresponding operatorsN̂a8,g8(q8).

In order to show that the expressions of them.2
transfer-matrix charges involve the rapidity operators of E
~31!, we consider the auxiliary eigenvalue of Eq.~99! of Ref.
17. Although the authors of that reference considered
Bethe-ansatz solution associated with HWS’s of theSa alge-
bras, it is straightforward to derive from their expressions
corresponding functions for the Bethe-ansatz solution a
ciated withSa LWS’s. The main point is that all coefficient
of the l expansion of the logarithm of the auxiliary eige
value,@Eq. ~106! of Ref. 17#, only involve the rapidity func-
tion (107) of the same reference. In our casekj is the dis-
crete value of the rapidity functionK(qj ), which is the
eigenvalue of the corresponding operatorK̂(qj ) of Eq. ~31!.

By considering the limit of largeNa and introducing the
rapidities associated with the string hypothesis, we find t
all the m.2 transfer-matrix chargesQ̂m have the following
general expression in the pseudoparticle basis:

Q̂m5dm,3~U/4!Na1(
q

N̂c,0~q! O 0
m@K̂~q!#

1 (
g.0

(
q

N̂c,g~q! O g
m@R̂c,g~q!#. ~32!

Here m53,4, . . . ,Na11, and the functionsO 0
m(x) and

O g
m(x) can be extracted from combining the invers

scattering Bethe ansatz solution of Ref. 17 with the str
hypothesis rapidities. General equation~32! confirms that the
expression of them.2 transfer-matrix charges only involv
the operatorsN̂c,g(q) and the rapidity operatorsK̂(q) and
R̂c,g(q) of Eq. ~31!. However, the charges@Eq. ~32!# involve
all operatorsN̂a,g(q) of Eq. ~25! because the rapidity opera
tors are functionals of these basic operators.

To clarify this general result, we consider the explicit e
pression in the pseudoparticle basis of Hamiltonian~2!,
which is the transfer-matrix chargeQ̂3, and the expression
for the first nontrivial transfer-matrix charge commuting wi
it, which we denote byQ̂4. In terms of electronic operator
this first nontrivial transfer-matrix charge reads8,17

Q̂452 i t(
j ,s

@cj s
† cj 12s2cj 12s

† cj s#

2 iU(
j ,s

@cj s
† cj 11s2cj 11s

† cj s#@ n̂ j 11,s1n̂ j ,s21#.

~33!

Recomputing expansion~106! of Ref. 17 for electrons
instead of holes, introducing theg.0 rapidities associated
with the string hypothesis, and using the pseudoparticle
20511
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resentation introduced in Ref. 4, after some algebra we ar
at the following expressions for Hamiltonian~2! and the first
nontrivial transfer-matrix charge~33! in terms of the
pseudoparticle operators

Q̂35ĤSO(4)522t(
q

N̂c,0~q! $cos@K̂~q!#1~U/8t !%

1~U/4!(
q

@12N̂c,0~q!#

2 (
g.0

(
q

N̂c,g~q!H gU22t

3 (
l 561

A12~U/4t !2@R̂c,g~q!1 i l g#2J
~34!

and

Q̂454t(
q

N̂c,0~q! $cos@K̂~q!#1~U/2t !%sin@K̂~q!#

1U (
g.0

(
q

N̂c,g~q!H ~U/4t !~g21! R̂c,g~q!

2 (
l 561

@R̂c,g~q!1 i l g#

3A12~U/4t !2@R̂c,g~q!1 i l g#2J , ~35!

respectively. Comparision of general expression~32! with
expressions~34! and ~35! leads to

O 0
3~x!522t cosx2~U/2!,

~36!

O g
3~x!52gU12t (

l 561
A12~U/4t !2@x1 i l g#2],

and

O 0
4~x!54t @cosx1~U/2t !#sinx,

~37!

O g
4~x!5U H ~U/4t !~g21! x2 (

l 561
@x1 i l g#

3A12~U/4t !2@x1 i l g#2J ,

respectively. The same procedure leads to expressions fo
remainder Na23 transfer-matrix charges,Q̂m, with m
55, . . .Na11, in terms of pseudoparticle operators. He
omit the expressions form.4, which are of the general form
given in Eq. ~32!, with the functionsO 0

m(x) and O g
m(x)

more involved than expressions~36! and ~37!.
In addition to the conservation laws associated with th

Na21 transfer-matrix charges, there are only two more
4-6
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dependent local laws. These are associated with the SU~2! Sc

and Ss algebras, and are the two operatorsŜa
z ~4!. Further-

more, we know that the twononlocaloperators,Ŝa
2 ~8! also

lead to independent conservation laws. We thus have ide
fied Na13 independent conservation laws. Armed with the
results, we shall next show that the conservation laws co
sponding to the transfer-matrix charges can be expresse
sums over separately conserved contributions of right-
left-moving pseudoparticles. Then, by looking at the diffe
ence of the right- and left-moving pseudoparticles, we sh
see that this approach indeed leads to the expected inde
dent conservation laws, which we shall call transfer-ma
currents and which arenonlocalin character, an attribute tha
explains their elusiveness.

We use the subscripti introduced in Eq.~14! to distin-
guish right (i511) and left (i521) pseudoparticles an
the corresponding operators. When expressed in term
pseudoparticle operators, theNa11 transfer-matrix charge
Qm can be rewritten as

Q̂m5(
i

Q̂i
m , ~38!

where, form51 and 2, we find

Q̂i
152 1

2 (
q

Q~iq!@12N̂c,0~q!#

1 (
g.0

(
q

Q~iq!gN̂c,g~q!1 1
2 N̂c ,

~39!

Q̂i
252 1

2 (
q

Q~iq!N̂c,0~q!1(
q

Q~iq!N̂s,0~q!

1 (
g.0

(
q

Q~iq!@11g#N̂s,g~q!1 1
2 N̂s ,

and form.2 operators~38! read

Q̂i
m5dm,3~U/8!Na1(

q
Q~iq!N̂c,0~q! O 0

m@K̂~q!#

1 (
g.0

(
q

Q~iq!N̂c,g~q! O g
m@R̂c,g~q!#, ~40!

and Q(iq)51 for iq.0, Q(0)51/2, andQ(iq)50 for
iq,0. Thus, as anticipated, the conservation laws co
sponding to transfer-matrix charges can be expresse
terms of ‘‘right plus left’’ pseudoparticle operators.

Since the operatorsQ̂21
m andQ̂11

m are conserved indepen
dently, we can define immediately the following set of as
ciatedNa11 operators, which in anticipation of our resul
we shall denote as transfer-matrix currentsĴm,

Ĵm[ 1
2 (

i
iQ̂i

m , ~41!

which, for m51 and 2 can be written as
20511
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Ĵ15
1

2 H(
i

1

2 (
q

Q~iq!iN̂c,0~q!

1 (
g.0

(
i

(
q

Q~iq!igN̂c,g~q!J ,

~42!

Ĵ25
1

2 H 2
1

2(i
(

q
Q~iq!iN̂c,0~q!1(

i
(

q
Q~iq!iN̂s,0~q!

1 (
g.0

(
i

(
q

Q~iq!i@11g#N̂s,g~q!J ,

and form.2 read

Ĵm5
1

2 H(
i

(
q

Q~iq!iN̂c,0~q! O 0
m@K̂~q!#

1 (
g.0

(
i

(
q

Q~iq!iN̂c,g~q! O g
m@R̂c,g~q!#J .

~43!

That this set ofNa11 operators@Eqs. ~41!–~43!# corre-
sponds to independent conservation laws follows imme
ately from their construction as the difference between se
rately and independently conserved right and l
pseudoparticle operators.

Can we express these new conservation laws explicitly
terms of electron operators? Unfortunately, for generalU, the
answer is ‘‘not yet.’’ In the limitU/t→0, however, we have
been able to find such expressions. That they are both n
local and nontrivial suggests that finding the results for g
eral U will be a challenging problem.

For U/t→0, the left- and right-movingelectron operators
become separately conserved, and we can apply the s
approach used above—taking the difference of right min
left instead of the sum—to generate the transfer matrix ‘‘c
rent’’ operators associated with each transfer-ma
‘‘charge’’ operator. The validity of this procedure is justifie
by the fact that in the limit ofU/t→0 the expressions o
right ~left! electronic operators in terms of pseudopartic
involve only right ~left! pseudoparticle operators. Startin
with the expressions for the currents in terms of elect
operatorscks

† and cks of momentumk, and using Fourier
transforms to re-express these operators in terms of the e
tron operators in coordinate space,cj s

† and cj s , after some
algebra we find expressions for the first few (m51, 2, 3, and
4! transfer-matrix currentsĴm associated with the transfer
matrix charges of Eqs.~30!, ~34!, and~35!. The results are

Ĵ15
i

4p (
j Þ j 8,s

@12~21! u j 2 j 8u#

~ j 2 j 8!
cj s

† cj 8s , ~44!

Ĵ25
i

4p (
j Þ j 8

@12~21! u j 2 j 8u#

~ j 2 j 8!
@cj↑

† cj 8↑2cj↓
† cj 8↓#, ~45!
4-7
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Ĵ352
i t

2p (
j Þ j 8,s

@11~21! u j 2 j 8u# (
l 561

1

~ j 2 j 81 l !
cj s

† cj 8s ,

~46!

and

Ĵ45
i t

2p (
j Þ j 8,s

@12~21! u j 2 j 8u# (
l 561

l

~ j 2 j 812l !
cj s

† cj 8s .

~47!

Applying similar manipulations to the higher transfe
matrix charges@Eq. ~32!#, we can find similar expressions fo
the remainderNa23 transfer-matrix currents@Eq. ~41!#. Ex-
pressions~44!–~45! confirm the non-local character of th
operators of Eq.~41!: that is, in contrast to the expression
for the~local! transfer-matrix charges, which involve a sing
j summation, the expressions of operators~44!–~47! involve
two j summations, i.e., are nonlocal. This nonlocal charac
also characterizes the transfer-matrix currents of Eq.~41! for
finite values ofU.

To summarize our results in this section, we have sho
that the one-dimensional Hubbard model hasNa11 local
independent conservation laws andNa13 nonlocal indepen-
dent conservation laws. In addition, we have provided
plicit expressions for these operators in terms of pseudo
ticle operators. The total number of the above independ
conservation laws is 2Na14, and is larger than the mini
mum number of 2Na independent conservation laws requir
by the integrability of the model. When restricted to the H
bert subspace associated with the Bethe ansatz solu
which is spanned by theSa LWS’s, the number of indepen
dent conservation laws is reduced to 2Na12 for Sa52Sa

z .

IV. PSEUDOPARTICLE AND YANG-PARTICLE
CONSERVATION LAWS

Our results thus far have confirmed the expectation, ba
on the integrability of model~1!, that there should be;2Na
independent conservation laws for that model defined onNa
lattice sites. The particular representation of these conse
tion laws follows from an extension of the earlier transfe
matrix analyses of the problem8–11,17and is not particularly
simple when expressed in terms of either the pseudopart
or the electrons; indeed, we do not have a general expres
for the newly found nonlocal laws in terms of electron o
erators.

In this section we shall introduce an alternative set
independent conservation laws. Although we do not prov
an explicit representation of most of these laws in terms
the original electron operators, this alternative choice has
considerable virtue of providing much simpler expressions
terms of the pseudoparticles, where it arises fromNa11
pseudoparticle ‘‘charge’’ conservation laws andNa11
pseudoparticle ‘‘current’’ conservation laws which, togeth
with the two Yang-particle conservation laws@Eq. ~27!#
yield a full set of 2Na14 commuting, compatible operator
Importantly, as is established elsewhere,5,7 the representation
of the pseudoparticle conservation laws is better suited
study of correlation functions at finite energy or frequen
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than operators~32! and ~41!. Finally, the physics contained
in the commuting pseudoparticle conservation laws can
further clarified by the study of a relation that exists betwe
these laws and a hidden non-Abelian algebra which carac
izes the model in the thermodynamic limit.6

For finite values ofU one can constructNa11 pseudopar-
ticle ‘‘charge’’ conservation laws

N̂a,g5(
q

N̂a,g~q!, ~48!

andNa11 ‘‘current’’ pseudoparticle laws

Ĵa,g5 1
2 (

i
(

q
Q~iq!i N̂a,g~q!. ~49!

Based on both the anticommutinga,g pseudoparticle
characters and the commutinga Yang particle characters
and on the completeness of the corresponding basis, we
that the set ofNa13 commutingchargeoperatorsN̂a of Eq.
~27! andN̂a,g of Eq. ~48! correspond to independent conse
vation laws.

Moreover, since thea,g pseudoparticles obey indepen
dent right (i511) and left (i521) conservation laws, the
set of 2Na12 operatorsN̂a,g,i are independent conservatio
laws. It follows that theNa11 currentoperatorsĴa,g of Eq.
~49! are also independent conservation laws.

As a result, the set of 2Na14 charge and current opera
tors, which includes the two charge Yang particle operat
N̂a @Eq. ~27!#, the Na11 charge pseudoparticle operato
@Eq. ~48!#, and theNa11 current pseudoparticle operato
@Eq. ~49!# refer to independent conservation laws and co
mute with the Hamiltonian and among themselves, i.e.,

@ĤSO(4) ,N̂a#5@ĤSO(4) ,N̂a,g#5@ĤSO(4) ,Ĵa,g#50,
~50!

and also

@N̂a,g ,N̂a8,g8#5@ Ĵa,g ,Ĵa8,g8#5@N̂a,g ,Ĵa8,g8#50,
~51!

and N̂a also commutes with all these operators. Thus
have just confirmed explicitly by a different method the r
sult of Sec. III that the number of independent conservat
laws of the one-dimensional Hubbard model is 2Na14, and
is indeed greater than the 2Na needed to ensure integrability

The two Yang-particle operators@Eq. ~27!# are conserva-
tion laws for the one-dimensional Hubbard model defined
the whole Hilbert space. On the other hand, the Bethe-an
solution1,2,16,17 refers to that model defined in the Hilbe
subspace spanned by theSa LWS’s ~or HWS’s!. In this case
there are noa Yang particles, and the set of 2Na14 conser-
vations laws reduces to the set of 2Na12 laws @Eqs. ~48!
and ~49!#.

Since all the momentum and energy eigenstates belon
the same SEHS have the same values for the conserva
law numbers$Na%, $Na,g%, and$Ja,g%, we often use these
numbers to label these states, which we c
4-8
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uc i ;$Na%,$Na,g%,$Ja,g%& ~and sometimes justuc i&). How-
ever, this notation is not a complete representation for th
states, for states belonging the same SEHS have differeq
occupancies. In the completeq,a,g pseudoparticle basis an
a Yang-particle basis, the momentum and energy eigenst
have a noninteracting form that reads

uc i&5)
a

1

Na!
@dqa

1 #Nauc i ;0&, uc i ;0&5 )
q,a,g

bq,a,g
† u0&,

~52!

where

uc i ;0&5uc i ;0,$Na,g%,$Ja,g%& ~53!

is a Sa LWS and u0& is the N50 vacuum, and whenNa

50 we define@dqa

† #0[1 and 0![1.

In contrast to Eq.~23! of Ref. 4, which constructs the
energy eigenstates from thea,b pseudohole anda,g.0
pseudoparticle vacuum, states~52! and ~53! are obtained by
application of pseudoparticle and Yang-particle creation
erators on theN50 vacuum. Note that the former vacuum
the ground state of model~1! at Sc

z5Ss
z50. This difference

is a result of the use ofa Yang particles instead ofa,b
pseudoholes in the description of theSa non-LWS’s.

Equation~52! reveals that in the pseudoparticle and Yan
particle bases, all energy eigenstates are products of sim
Slater-determinant levels ofa,g pseudoparticles and ofa
Yang-particle creation operators. Note, however, that un
a noninteracting system the integer or half-integer chara
of the discrete pseudomomentum numbersI j

a,g of Eq. ~17!
depends on the parities of the pseudoparticle occupa
numbers. This implies that the generators that map an en
eigenstate with finite pseudoparticle occupancy onto ano
energy eigenstate also with pseudoparticle occupancy are
as simple as the generators of expressions~52!. While the
latter generators are simple products of Yang-particle
pseudoparticle creation operators, the former generators
volve in addition to Yang-particle and pseudoparticle c
ation and/or annihilation operators,a,g pseudoparticle topo
logical momentum-shift operators. The latter operat
generate collective pseudoparticle excitations that shift
6p/Na the pseudomomenta of alla,g pseudoparticles o
the final state whose numbersI j

a,g of Eq. ~17! change their
integer or half-integer character.4

Moreover, despite the seemingly non-interacti
pseudoparticle form of the energy eigenstates@Eq. ~52!#, the
pseudoparticles are indeed interacting objects, although
integrability of the model implies that their collisions a
dissipationless, i.e., do not lead to energy or momen
transfer and only give rise to shifts in the pseudoparti
phases.4

One can find alternative choices for the independ
2Na14 conservation laws of Eqs.~27! and Eqs.~48! and
~49!. For instance, we can use the set ofNa11 a,g pseudo-
hole operatorsN̂a,g

h associated with the numbersNa,g
h of Eq.

~15!. Following Eqs.~15! and~16!, the set ofNa11 laws can
be expressed in terms of theNa11 pseudoparticle conserva
tion laws of Eq.~48!, and contains the same informatio
20511
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Note, however, that there is not a one-to-one corresponde
between these two set of alternativeNa11 operators. Instead
of the two operators of Eq.~27! we could also use the two
a,b51 1

2 pseudohole operatorsN̂a,11/2
h of Eq. ~29!.

The two Ŝa
2 operators of Eq.~8!, the Na11 transfer-

matrix charges@Eq. ~38!# of Refs. 8–11 and 17, and theNa
11 transfer-matrix currents@Eq. ~41!# are also alternative to
the two Yang-particle operators@Eq. ~27!#, theNa11 charge
pseudoparticle operators@Eq. ~48!#, and theNa11 current
pseudoparticle operators@Eq. ~49!#. We showed in Sec. III
that the transfer-matrix charges and transfer-matrix curre
can also be expressed in terms of the elementary operato
Eq. ~25!. However, their expressions are considerably m
involved than the simple expressions~48! and ~49!.

Although the Na11 transfer-matrix charges@Eq. ~38!#
and Na11 transfer-matrix currents@Eq. ~41!# are indepen-
dent, there is not an obvious one-to-one correspondence
tween these operators and theNa11 charge pseudoparticl
operators@Eq. ~48!# and Na11 current pseudoparticles op
erators@Eq. ~49!#, respectively, as confirmed by comparin
their expressions in terms of basic pseudoparticle opera
For instance, this can be directly confirmed for the cha
operatorsQ̂1 andQ̂2 of Eq. ~30! and current operatorsĴ1 and
Ĵ2 of Eq. ~42!, the combined expressions of these four co
servation laws involvingall 2Na14 Yang-particle and
pseudoparticle operators~27!, ~48!, and~49!, and reading

Q̂152 1
2 @Na2N̂c,0#1 (

g.0
gN̂c,g1N̂c ,

~54!

Q̂252 1
2 N̂c,01N̂s,01 (

g.0
@11g#N̂s,g1N̂s ,

and

Ĵ15 1
2 Ĵc,01 (

g.0
g Ĵc,g ,

Ĵ252 1
2 Ĵc,01 Ĵs,01 (

g.0
@11g# Ĵs,g . ~55!

Note that the expression of them51 ~and m52) transfer-
matrix charges,@Eq. ~54!#, involves thec Yang-particle and
all the c,g charge pseudoparticle operators@the s Yang par-
ticle, the c,0 charge pseudoparticle, and all thes,g charge
pseudoparticle operators# @Eqs. ~27! and ~48!#, whereas the
expression of them51 @andm52] transfer-matrix currents
Eq. ~55!, involves all thec,g current pseudoparticle opera
tors @the c,0 current pseudoparticle operator and all thes,g
current pseudoparticle operators# @Eq. ~49!#. Since the
transfer-matrix currents@Eq. ~42!# are nonlocal operators
when expressed in terms of electrons, Eq.~55! suggests that
the Na11 current pseudoparticle conservation laws@Eq.
~49!# are also nonlocal operators in the electron basis.

Equation ~54! reveals that the expression of the tw
transfer-matrix chargesĴ1 and Ĵ2 involve both the Yang-
4-9
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particle operators@Eq. ~27!# and the charge pseudopartic
operators@Eq. ~48!#. While the two Yang-particle operator
@Eq. ~27!# are not independent conservation laws relatively
the set ofNa11 transfer-matrix charges@Eq. ~38!#, they are
independent operators relatively to theNa11 charge
pseudoparticle operators@Eq. ~48!#. On the other hand, the
two Ŝa

2 operators@Eq.~8!# are independent relative to the s
of Na11 transfer-matrix charges@Eq. ~38!# but are not inde-
pendent relative to theNa11 charge pseudoparticle oper
tors @Eq. ~48!#. However, our results show that one can
ways choose a set of 2Na14 independent conservation law
which is reduced to 2Na12 laws for the Hilbert subspac
associated with the Bethe-ansatz solvability of the o
dimensional Hubbard model@Eq. ~1!#.

V. DISCUSSION AND CONCLUDING REMARKS

The three main results of this paper are~i! the identifica-
tion of a set ofNa11 , independent, nonlocal ‘‘transfer
matrix current’’ conservation laws, which coupled with th
previously known set ofNa11 transfer-matrix ‘‘charge’’
conservation laws,8–11,17 provide the ;2Na conservation
laws that are expected by the integrability of the on
dimensional Hubbard model;~ii ! the explicit expression o
both the transfer-matrix charges and currents in terms
pseudoparticle operators, and the explicit form of t
transfer-matrix currents in terms of electron operators for
special caseU/t→0; and~iii ! the derivation of an alternative
complete set of conservation laws that have much sim
expressions in terms of the pseudoparticle operators, and
hence more useful for calculating physically relevant cor
lation functions.

In a sense the ‘‘naturalness’’ of the pseudoaprticle ope
tors is what allowed us to find this full solution. While a
energy eigenstates of the Hubbard model@Eq. ~1!# can be
constructed by application onto theN50 vacuum of suitable
generators expressed in terms of either electrons
pseudoparticles, the evaluation of expressions for these
erators in terms of electronic operators is a very complex
open problem, whereas from Eqs.~52! and ~53! we see that
these generators can be expressed as simple products oa,g
pseudoparticle creation operators anda-Yang particle cre-
ation operators. In this sense, the pseudoparticle and Y
particle representation naturally diagonalizees the quan
problem.

In order to construct the newNa11 transfer-matrix cur-
rents @Eq. ~41!#, we have expressed the associatedNa11
transfer-matrix charges of Refs. 8–11 and 17 in
pseudoparticle basis. This was achieved by combining
expressions for these charges in terms of the Bethe-an
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rapidities provided by the transfer matrix17 with the rapidities
of the string hypothesis.2,4 Taking into account that the num
bers of right and left pseudoparticles are independently c
served, we constructed the extra set ofNa11 independent
currents @Eq. ~41!#, beyond the transfer-matrix charge
which have a one-to-one correspondence with these cha

In contrast to the independent conservation of the nu
bers of right and left pseudoparticle for all finite values of t
on-site repulsionU, the numbers of right and left electron
become good quantum numbers only asU/t→0. It follows
that the seemingly simple expressions@Eq. ~41!# of the
transfer-matrix currents in terms of pseudoparticle opera
are likely to be complicated in terms of electron operato
and indeed expressions for a generalU are unknown. We
were able to find explicit expressions in terms of electr
operators in the specific limitU/t→0. Both in this limit and
for finite values of the on-site repulsionU, the transfer-
matrix currents are nonlocal when expressed in terms of
electron operators. Their nonlocality explains their previo
elusiveness.

The transfer-matrix charges and our transfer-matrix c
rents can be written in the pseudoparticle basis in terms
the basicq,a,g pseudoparticle operators of Eq.~25!, but
their expressions involve the rapidity operators~31!, which
are functionals of these basic operators. These leads to f
complex expressions. On the other hand, the expression
the alternative set of pseudoparticle conservation laws@Eqs.
~48! and ~49!# are much simpler, referring directly to th
numbers of pseudoparticles. This simplicity proves to be u
ful in applications which combine the symmetries7 associ-
ated with the 2Na12 pseudoparticle conservation laws@Eqs.
~48! and~49!# and two Yang-particle conservation laws@Eq.
~27!# with the nonlinear critical theory of Ref. 19. This lead
to useful finite-energy expressions for correlation functio
A preliminary but nontrivial example of application of thi
finite-energy theory is the evaluation of the optical condu
tivity of the Hubbard model@Eq. ~1!# for finite frequencies
just above the optical gap.5
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