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Abstract. We calculate a nonequilibrium steady state of a quantum XX chain
in the presence of dephasing and driving due to baths at chain ends. The
obtained state is exact in the limit of weak driving while the expressions for
one- and two-point correlations are exact for an arbitrary driving strength. In
the steady state the magnetization profile and the spin current display diffusive
behavior. The spin—spin correlation function, on the other hand, has long-range
correlations which, though, decay to zero in either the thermodynamical limit
or for equilibrium driving. At zero dephasing a nonequilibrium phase transition
occurs from a ballistic transport having short-range correlations to a diffusive
transport with long-range correlations.
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1. Introduction

The theory of equilibrium processes is well developed with known equilibrium distribution
functions. Nonequilibrium physics, on the other hand, is much more difficult to treat.
One of the simpler nonequilibrium situations is the steady state setting to which the
system relaxes after a long time under nonequilibrium driving. Still, it is not even known
if a generic distribution function for a nonequilibrium steady state (NESS) exists. A
particularly important aspect of NESS is the question of transport; for instance, it is not
fully understood under what conditions does one have a diffusive transport [1]. There is
also a large disparity between classical and quantum systems. For many classical models,
like various exclusion processes [2], an explicit solution is known, greatly facilitating our
understanding of interesting phenomena that can occur in NESS. The physics of quantum
NESS, on the other hand, is still a rather uncharted territory with only a few exact
solutions. One such class of exactly solvable systems is that described by master equations
quadratic in fermionic operators. The NESS in a doubly infinite XY chain has been studied
in [3]. Quadratic open systems can, in fact, be exactly diagonalized in operator space [4]
making it possible to study nonequilibrium phase transitions [5]. An XX chain interacting
with baths has also been analytically studied in [6]. Time evolution of quadratic open
systems can as well be calculated efficiently in terms of matrix product operators [7],
similarly as for closed systems [8]. A tight-binding (i.e. XX) model in the presence of
the environment has been studied in [9]. A superoperator corresponding to the master
equation has been diagonalized and found that there is a crossover from nondiffusive to
diffusive behavior as the chain size is increased. Diffusion in an XX model with classical
noise has been considered in [10]. In a recent work [11] quantum exclusion processes,
described by the master equation with nearest-neighbor Lindblad operators for stochastic
jumps as well as with a coherent unitary XX part, have been numerically studied. For
some parameters similar long-range correlations are obtained in the NESS as here.

In the present work we are going to provide an explicit solution for the NESS of a
quantum model, showing that the system exhibits diffusive transport and has long-range
correlations. Furthermore, as a parameter of the model is varied a nonequilibrium phase
transition occurs. To our knowledge this is the first quantum model for which one is able
to analytically show diffusive behavior.

The system studied is a one-dimensional XX chain of spin-(1/2) particles:

=

H = (07051 + U?U?H). (1)
1

<.
Il

To induce a nonequilibrium situation we couple the system at both ends to baths at
different potentials. In addition, each spin is also exposed to a dephasing. The same
model has been numerically studied in [13]. The evolution of the system’s density matrix
is governed by the master equation of the Lindblad form [14]:

%p = i[p, H] + L™ (p) + LI (p) = L(p). 2)

Nonunitary terms L£P*' and £9P" are expressed in terms of Lindblad operators as
Ly LI + Ly L!]). The bath superoperator £Path = gbath 4 rbath j¢ o gum of
> k([Lrps Ly, s Py, perop L R
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Lindblad terms for the left- and the right-most spin. Each consists of two Lindblad
operators L /R.

V1— \/1—0—
%Z\/fiuaﬂ =T a
vat \/1—
LR =T +'u+ LY =T ERLE

(3)

TL7

ot = 0% £ ioY. Two parameters for baths are the coupling strength I' and the driving

strength p. Dephasing acts independently on each spin separately, £dPh = S i1 L’deph
with E;leph having only one Lindblad operator Ldeph = \/7/205. It is diagonal in the

Pauli basis, E?eph(af/y) = —27y0; MV while Edeph( 0%) = 0 and Edeph( ;) = 0. Dephasing
with strength v therefore causes an eXponentlal decay of the off- dlagonal elements in the
diagonal basis of 7.

To find the NESS of the master equation (2) we are going to write p as a sum over
4™ different products of Pauli matrices and solve for unknown coefficients by demanding
stationarity L(p) = 0. Using a Jordan—Wigner transformation we can express the whole
system in terms of spinless fermions. While the H (1) and £ (3) are quadratic in
fermionic operators, £4P" is not. Because it involves a product of two o it is quartic
and therefore the recently introduced [4, 5] analytical solution for open quadratic systems
cannot be used. Note that all quadratic systems are ballistic.

Let us start with an unnormalized ansatz:
2

,owH+u(A+B)+%(AB+BA)+u2(C+D+F)+O(u3), (4)

with the individual terms being
n b n—1
pA=> a0,  pB= 3 > ks (5)
j=1 k=1

where j, = 2(o}0],, — 0)o},,) is the operator of local spin current, while the other two
terms are

pcC = ZZ Cjx + ajax)osog, (6)

J=1 k=j+1
n—Zd‘ n—1 n—1—j

=54 (5 mi-"S i), o
j=1 I=j+1 =1

= g > ki (8)

kAl=1
We shall show that using an appropriate coefficient in the above ansatz, acting with £
on such p gives zero up to O(u?), i.e. the above ansatz is the correct solution up to third
order in the driving strength p. Powers of p written in front of various coefficients in
the ansatz suggest a scaling of the corresponding coefficient in the solution, that is, post
festum we shall see that indeed uA oc p, u>C o< p?, ete. Note that for equilibrium driving,
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1 = 0, the solution is p ~ 1, which can be interpreted as an infinite temperature state,
although one must be careful speaking about the temperature because integrable systems
in general do not thermalize, even when coupled to reservoirs [12].

Demanding that the expansion coefficients in front of all operators in £(p) vanish one
obtains a set of equations. Coefficients in front of two boundary operators o7, give

—b—Tpu—Ta; =0, b+Tu—"Ta,=0. 9)

These two equations are exact to all orders in y because one can get the o, term in £(p)
only from terms of the form 1,07, or ji, in p, which are all included in our ansatz (4)!
That is, trlo},L(p)] # 0 only if p € {1,067, ji,n}. As we shall see, all equations we are
going to use are, in fact, exact to all orders in pu! Equations (9) give relation a, = —a
and a; = —p — b/T". From coefficients in front of o7 in the bulk (j # 1,n) one gets that
the expectation of the local current j; is independent of the site k, i.e. by = b, which has
already been explicitly taken into account in our ansatz.

Equations which we get by demanding that the coefficients in front of j; are zero are
as follows:

(a; — az1) — (b = BP)) =671 =0, (10)

with Tgk) =29+16;1+10i1 51, while h§3) is the coefficient in the expansion of p in front

of the operator H](-B) = 07071075+ ajyajz-ﬂajyﬁ. At the boundaries, terms from operators
having site indices out of chain range 1 < j < n are absent. These equations (10) are
exact because we can get the j;, term only from ji, of or of_ 070%,  +0}_ 050}, Before
solving equation (10) we are going to show that hEB) are actually zero.

To this end, in addition to the expansion coefficients which are explicitly included in
the ansatz, let us also denote by hg.k) the expansion coefficient in front of the operator
H;k) = 0505, 05, 9051 T U;-/O']Z-_H . -UJZ-Jrkfza;.’Jrkfl and by b§k) the expansion
coefficient in front of Bj(k) = 0705, -UJZ-Jrkfzaé’»’Jrk_l —ojofy, O k20T Bj(k) is
a generalization of the spin current while H ](k) is the hopping operator to the (k — 1)th
neighbor. Note that the rotational symmetry of £ around the z axis imposes the value of
the two signs in both operators. For bl(f) we already know that it is site-independent and
equal to b, in addition we define b,(:) = 0. We are going to show that all hg-k) as well as

b§k) (apart from b§2)) are zero. Demanding that the coeflicients in front of H J(k) in L(p)

are zero, we get for k = 2,...,n the equations
B — Dy @D Dy — p I = g, (11)
Equations from the coefficients in front of Bj(k) are, on the other hand, for k =3,...,n
(A — Ry (D R D) ™ = o, (12)

With exact equations (11) and (12) we have a closed set of exactly as many equations

) and bﬁ»k). The homogeneous set is nonsingular with the only

as there are unknown hﬁk
solution being trivial hg-k) = 0 and bg-k) = 0. This means that NESS p does not contain

any BJ(.k) terms with k£ > 2 nor any H;k) terms with k > 2.
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Going now back to the equations obtained from currents (10), they can be solved
exactly. Together with two equations (9) they give the solution for b and all a;:

I

=R ey "
b
ay = _f — U
az = —b (%+F+27) —
(14)

1
an_1=—b<f+F+2(n—2)7) —

1
an:—b<f+2f+2(n—1)7) — [

This solution is exact to all orders in p for any n, irrespective of other terms present in
the expansion of p not included in our ansatz. Before proceeding to solve for C', D and F
for a moment let us discuss its physical significance. First, observe that the current and
the magnetization expectation values in the NESS are simply equal to the corresponding
coefficients, (03) = a;, (j) = 2b. Magnetization has a linear profile and the current scales
as j ~ p/n for large n as long as v # 0. Such behavior is typical for a system with
normal (diffusive) transport. Spin conductivity is k = 1/4 and, as one decreases the
dephasing strength 7, the current diverges as ~1/v [13]. Also interestingly, the limit of
weak coupling to the bath, I' — 0, is at fixed n and zero dephasing singular. That is,
the current is proportional to I' as j ~ ul' while the magnetization at the boundaries
is proportional to uI'?. In particular, without dephasing for v = 0, transport is ballistic
with b = —Tp/(1 +T?%), a; = —I?p/(1 +1?),a, = T?u/(1 4+ T?), while a;z1, = 0, the
same as in the recent result in [6].

To avoid cumbersome expressions for the second-order terms from now on we set
v = I"= 1. This has no qualitatively relevant consequences. In this case the solution (14)

and (13) can be simply written as

B _ b = 25 — 6y 4 6. 15
nil a; ] H, J J = 0j1 +9;, (15)
Expansion coefficients in front of o{o} give (using (15))
3b2+d1+0172:0, for k =2

dn,Q — 0173 = 0, for k=3

(16)
dy — Cy, =0, for k =n.
Interior nearest-neighbor terms o707, give (non-nearest-neighbor terms are zero)
20 +d;+d,—j =0, forj=1,...,n/2. (17)

Equations (16) and (17) are again exact because the 070} term can only be obtained from
terms of the same form or from jyo7 or of. Coefficients in front of o7ji, on the other
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hand, give
f—20"+4d, — Ci5+ Cy3 =0, for k =2,
2f —20* +4dy — Cyp, + Oy py1 = 0, 2<k<n—1, (18)
2f —20* +5d; — C1 1+ Crn =0, k=n-—1.
Equations are again exact for the same reason as before. The set of equations (16)—(18)
can be solved, giving explicit expressions for d;, f and C;j. Using these in equations

obtained for 03 j, enables one to obtain Cy j, then from o3j; we obtain C5; and so on. At
the end the solution is

b*(n +1) s b 12
n n(n+1) n (n+1)%n (19)
62
Ci,j = _E(kikn—i—l—j + (TL + 1) . 5j,i+1)7

where k; is the same as in a; (15). The solution is exact to all orders in . One can
check that the ansatz with coefficients (19) and (15) results in the £(p) having only terms
of order O(1?). One could systematically calculate also third- and higher-order terms,
however, because the main physical picture has already emerged from the second-order
term we are going to stop here (due to algebraic structure all nonzero operators in L(p)
are, in fact, products of three terms, each being either o or ji; moreover, the third-order
term in the ansatz would itself be a sum of such products of three operators, each being
either ji or o%).

Because coefficients in the ansatz are exact to all orders in p the corresponding single-
or two-point expectation values are also exact. The two-point connected correlation
function of the magnetization, C(i,7) = (0703) — (07)(07), is symmetric across the
diagonal and is negative for j > i and equal to C;; (19). On the diagonal we have
C(i,i) = 1—a?. If we are away from the diagonal, j # i+ 1 and i, j # 1, n, the correlation
function is, in terms of scaled variables, simply equal to C'(z =i/(n+1),y = j/(n+1)) =
(20 m)(1 — ).

To independently verify our exact analytical solution for magnetization profile and
correlation function we have compared it to the numerical simulation. Using the tDMRG!
we can calculate numerically exact expectation values in the NESS for chains with n ~ 100
spins. In figure 1 one can indeed see that the numerical and analytical solutions agree
perfectly also for very strong driving p = 0.9.

The correlation function indicates that there is long-range order present, which,
though, goes to zero either in the thermodynamic limit n — oo or in the equilibrium
limit © — 0. Long-range order is therefore a finite-size nonequilibrium phenomenon.
Such correlations in the same XX model with dephasing have been numerically observed
in [13]. There, a qualitatively same behavior has been obtained also for an anisotropic
XXZ model with dephasing, perhaps suggesting that the form of the solution found here
is more general and would approximately apply also for other systems. In particular, we
have indications [15] that a similar behavior is obtained for the pure XXZ model without
dephasing, whose seemingly normal spin transport [16] in the gapped regime is surprising
and needs further understanding. It appears that long-range correlations are a rather

! For details of our implementation for master equations see [13] or the third reference under [16].
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Figure 1. Comparison between the numerical calculation (symbols) for n = 32
and strong driving p = 0.9 and the analytical solution (equations (15) and (19),
full line). Top frame shows the magnetization profile and the bottom the
correlation function.

common feature of quantum NESS [5,11,13,15]. The form of the correlation function
C(x,y) = —((2u)*/n)z(1 — y) is the same as in many classical exclusion processes [2].
Whether there exists a deeper connection with classical statistical models remains to be
seen [11]. All these results suggest that the form of the exact solution found here might
have a more general validity.

Let us finally briefly discuss two-point correlations for the XX model without
dephasing, v = 0. Calculation along the same lines as above results in the solution

doi:10.1088,/1742-5468/2010/05 /105002 7
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(for ' =1) f = p?/4,d; =0, Cij = —(u?/4)d;i41, together with the already obtained
b= —p/2 and a;z1, = 0, while a1 = —a,, = —p1/2. We can see that there are no long-
range correlations present. Therefore, at v = 0 a nonequilibrium phase transition occurs
from a ballistic transport with short-ranged correlations for v = 0 to a diffusive regime
with long-range correlations for + # 0.

2. Conclusion

We have analytically calculated a nonequilibrium steady state of an open quantum spin
chain to the second order in the driving strength. One- and two-point correlation functions
are calculated exactly to all orders. The system, an XX model with dephasing, shows
diffusive transport with a linear magnetization profile and current scaling as ~1/n. There
are also long-range correlations present in the steady state. To our knowledge this is the
first quantum system for which one is able to analytically show diffusive transport. At
zero dephasing a nonequilibrium phase transition occurs from a short-ranged ballistic to a
diffusive transport with long-range correlations. Furthermore, long-range correlations in
the present model have the same form as in some classical statistical exclusion processes
and there are some indications that the same qualitative behavior is found also in other
quantum systems. Therefore, while the exact solution might be possible only for this
special model, the results might have more general (linear response) validity. It is hoped
that the presented result will lead to a better understanding of quantum transport in
one-dimensional systems as well as of the conditions under which long-range correlations
appear in nonequilibrium quantum states. This could bridge a gap between relatively
well-explored classical exclusion precesses, where many analytical solutions are known,
and quantum nonequilibrium steady states, where almost no exact solutions are known.
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