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Abstract. The ensemble of random Markov matrices is introduced as a set of
Markov or stochastic matrices with the maximal Shannon entropy. The statistical
properties of the stationary distribution π, the average entropy growth rate h and
the second-largest eigenvalue ν across the ensemble are studied. It is shown and
heuristically proven that the entropy growth rate and second-largest eigenvalue
of Markov matrices scale on average with the dimension of the matrices d as
h ∼ log(O(d)) and |ν| ∼ d−1/2, respectively, yielding the asymptotic relation
hτc ∼ 1/2 between the entropy h and the correlation decay time τ = −1/ log |ν|.
Additionally, the correlation between h and τc is analysed; it decreases with
increasing dimension d.

Keywords: dynamical processes (theory), dynamical processes (experiment),
stochastic processes (theory), stochastic processes (experiment)

c©2009 IOP Publishing Ltd and SISSA 1742-5468/09/P07005+14$30.00

mailto:martin.horvat@fmf.uni-lj.si
http://stacks.iop.org/JSTAT/2009/P07005
http://dx.doi.org/10.1088/1742-5468/2009/07/P07005


J.S
tat.M

ech.
(2009)

P
07005

The ensemble of random Markov matrices

Contents

1. Introduction 2

2. Preliminaries 3

3. The entropy and stationary distribution of the random Markov matrices 5

4. The correlation decay induced by random Markov matrices 8

5. Conclusions 13

Acknowledgments 13

References 13

1. Introduction

In information theory and mathematical modelling of physical processes we often stumble
upon Markov chains [1] and Markov or stochastic matrices [2], which determine the
evolution of the former. Let us assume that a Markov chain is based on the set of
states S = {si}d

i=1 and P (sj|si) is the conditional probability for a transition from state
si to sj; then the corresponding Markov matrix M ∈ R

d×d
+ is a collection of conditional

probabilities

Mi,j = P (sj|si) ≥ 0,
d∑

j=1

Mi,j = 1,

where d is the dimension of the Markov matrix. Notice that the sum of elements in
each row is normalized to 1. The applications of Markov matrices and their construction
are very diverse. Particularly interesting is their use in dynamical systems for giving a
probabilistic description of the dynamics. For a general introduction in this direction see
e.g. [3]. For example, let us consider a discrete dynamical system φt: X → X, where
t ∈ N, with the phase space X and the invariant measure μ. By choosing disjoint subsets
of phase space {Xi ⊂ X: Xi ∩ Xj = 0 for i �= j}, which satisfy

⋃
i Xi = X, the Markov

matrix M = [Mi,j ]
d
i,j=1 corresponding to the dynamical system can be defined as

Mi,j =
μ(φ(Xi) ∩ Xj)

μ(Xi)
,

and describes a single time step of the dynamical system. In this way a paradigmatic
example of a dynamical system with an algebraic decay of correlation—the triangle
map [4]—was examined in [5]. Besides the method presented for constructing a Markov
matrix and other methods producing matrices with specific properties, there is often a
need for a way to construct a Markov matrix ad hoc, i.e. without incorporating any
information about the system except the number of states d. If the construction procedure
is a stochastic process, then the resulting matrix is called the random Markov matrix and
the set of such matrices form the ensemble of random Markov matrices. These matrices
are usually used, without much theoretical background, for testing purposes. For example

doi:10.1088/1742-5468/2009/07/P07005 2

http://dx.doi.org/10.1088/1742-5468/2009/07/P07005


J.S
tat.M

ech.
(2009)

P
07005

The ensemble of random Markov matrices

testing of algorithms or certain statistical hypotheses, where applications in the field of
dynamical systems, connected to ergodicity and mixing properties, are the most interesting
to us. In information theory, random Markov matrices are used to test the algorithms for
recognition or attribution processes, compression algorithms etc.

The present work is strongly related to the work of [6] discussing the general properties
of the Markov ensemble and to [7] and [8], where a closer look at the second-largest (sub-
dominant) eigenvalue of random Markov matrices was taken. In contrast to the past
works, ours tries to emphasize the physical application of results, in particular in the field
of dynamical systems. Interestingly, recently an ensemble of random Markov matrices
was applied in the spectral analysis of the random quantum super-operators [9].

2. Preliminaries

The set of all possible Markov matrices M of dimension d is defined as

M(d) = {M ∈ R
d×d
+ : M1 = 1}, 1 = (1, . . . , 1) ∈ R

d,

and it is isomorphic to the direct product of d convex sets

d⊗
{x ∈ R

d
+: xT1 = 1}.

The set M(d) forms together with the matrix product a semi-group, whereas the set
of non-singular Markov matrices form a group of stochastic matrices. The ensemble of
random Markov matrices is defined as a set of Markov matrices M(d) with the probability
measure of matrix elements Mi,j ∈ R+ reading

dP (M) = [(d − 1)!]dδd(M1 − 1)dM, dM :=

d∏

i,j=1

dMi,j, (1)

which incorporates minimal information about the set, i.e. only constraints due to
the probability conservation in the Markov process. The ensemble of random Markov
matrices, denoted by the pair (dP (M),M(d)), is also referred to as the Dirichlet
ensemble [6] and corresponding matrices are called doubly (row and column) stochastic
or bi-stochastic Markov matrices [2].

The rows of the Markov matrix from the ensemble (dP (M),M(d)) are independent
random vectors X = (Xi ≥ 0)d

i=1 with the distribution

Prows(X) = (d − 1)! δ(1TX − 1). (2)

It can be rather awkward to numerically generate components of vector-rows X directly
and so a different approach for doing that is taken. By following the notes on the
exponential distribution in [10] (p 76), we find that the vector-rows X of Markov matrices
can be expressed using vectors Y = (Yi)

d
i=1 of independent variables Yi with a common

exponential distribution in the following way:

X =
Y

1TY
. (3)

In this way we numerically generate the pseudo-random rows in Markov matrices, where
each row is generated independently. Consequently, the distribution of the rows can be
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written as

Prows(X) =

∫

R
d
+

ddY δd

(
X − Y

1TY

)
e−1TY . (4)

This identity of expressions is checked by calculating the moment-generating function of
the expression above and expression (2), yielding the same result equal to

∫

R
d
+

ddXe−λTXProws(X) = (−1)d−1(d − 1)!
d∑

i=1

e−λi

w′(λi)
,

where λ = (λi)
d
i=1 and w(x) =

∏d
i=1(x − λi). Let us denote the sum of variables Yi

by S = 1TY and examine its statistics. The ratio between the standard deviation
σS =

√
〈(S − 〈S〉)2〉 of S and its average value 〈S〉 is equal to σS/〈S〉 = d−1/2 and

it is decreasing with increasing dimension d. This means that the renormalization of
variables Yi in the expression (3) has less and less effect on the functional dependence
between X and Y as d is increased. We conclude that in the limit for large dimensions
d � 1, variables Xi are approximately independent and exponentially distributed with
distribution Pm(Xi) = d exp(−d Xi). Following this idea we write the asymptotic
approximation of the probability measure of Markov ensemble as

dP (M) ∼ dPasym(M) = dd2

e−d1TM1dM, (5)

which is valid in the limit d → ∞. It can be verified that the averages w.r.t. the
distributions dP (M) and dPasym(M) of a well behaved observable on M, which depends
only on a finite number of matrix elements, are asymptotically equal.

The probability measure of the Markov ensemble dP (M) has several unique properties
that makes the defined ensemble of random Markov matrices (dP (M),M(d)) interesting
and potentially useful.

For instance the probability measure dP (M) has a maximal Shannon entropy and in
this information sense it is unique. The set of Markov matrices is merely a direct product
of planes restricted to R

d
+, and dP (M) is uniform on them. The Shannon entropy of the

measure dP (M) on the set M(d) is just the sum of Shannon entropies of the uniform
distribution on the planes, which are themselves minimal. Hence the Shannon entropy of
dP (M) is also minimal. Any modification of the measure would necessarily increase the
Shannon entropy and therefore it is unique.

It is also interesting to notice that the measure dP (M) is not invariant w.r.t. matrix
multiplication. However, for a given non-singular Markov matrix A ∈ M(d), the measure
dP (M) is invariant under matrix multiplication up a constant

P (AB) = | det(A)|−dP (B) ∀B ⊂ M(d).

In fact there is no measure of Markov matrices with the matrix elements Mi,j

approximately independent in the limit d � 1 which would be invariant w.r.t. matrix
multiplication. To show this let us consider two large matrices A = [Ai,j ]

d
i,j=1 and

B = [Bi,j]
d
i,j=1 with the matrix elements being i.i.d. variables with the distribution

Pm(x). Here we denote the ith central moment of some distribution Q(x) for i > 1
as μi(Q) =

∫
dx (x− μ1(Q))iQ(x) and for i = 1 by μ1(Q) =

∫
dx Q(x)x. We assume that
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the first three central moments of Pm(x) are finite. The matrix elements of the product

AB = [Ci,j =
∑d

k=1 Ai,kBk,j]
d
i,j=1 are distributed as

PC(x) = PAB ∗ · · · ∗ PAB︸ ︷︷ ︸
d

(x), PAB(x) =

∫

R+

da

a
Pm(a) Pm

(x

a

)
da,

where the sign ∗ denotes the convolution and PAB is the distribution of the product Ai,jCj,k

with the first two central moments reading

μ1(PAB) = μ1(Pm)2 and μ2(PAB) = 2
(
μ1(Pm)2 + μ2(Pm)

)
μ2(Pm).

According to the central limit theorem (CLT) [10] the distribution PC(x) converges in
the limit d → ∞ to a Gaussian distribution with the first two central moments equal to
μ1(PC) = d · μ1(PAB) and μ2(PC) = d · μ2(PAB). For distribution Pm(x) to be invariant
w.r.t. to the matrix multiplication it has to be asymptotically equal to PC(x), meaning
that Pm(x) is also a Gaussian distribution for large dimension d � 1. By comparing the
first two central moments of PC(x) and Pm(x) we find that the average value of matrix
elements of the Markov matrix and their variance are asymptotically equivalent to

μ1(Pm) ∼ 1

d
and μ2(Pm) ∼ 1

d
− 2

d2
,

respectively. The ratio between the standard deviation and the average scales with
dimension as

√
μ2(Pm)/μ1(Pm) = O(d1/2) and diverges in the limit d → ∞. This indicates

that a measure of Markov matrices by which the matrix elements are asymptotically
independent and distributed via Pm(x) does not exist.

In the following we discuss the properties of random Markov matrices from the Markov
ensemble (dP (M),M). We focus on the entropy growth rate and correlation decay in
the Markov chains generated by these Markov matrices, and examine their asymptotic
behaviour for d � 1.

3. The entropy and stationary distribution of the random Markov matrices

We consider a Markov chain defined on the set of states S = {si}d
i=1 and with the

conditional probabilities P (sj|si) = Mi,j given in the Markov matrix M = [Mi,j ]
d
i,j=1.

The initial probability distribution over the states is (P (si))
d
i=1. The probability that the

Markov chain has evolved up to time t following a specific route (e1, . . . , et) ∈ St is given
with the product of conditional probabilities reading

P (e1, . . . , et) = P (e1)P (e2|e1)P (e3|e2) · · ·P (et|et−1).

Then the dynamic entropy S of the Markov chain at time t is given by the sum

S(t) = −
∑

e∈St

P (e) log P (e),

taken over all different routes up to time t. In ergodic Markov chains we expect that the
entropy in the limit t → ∞ increases linearly with increasing time t as

S(t) ∼ ht,
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where h ∈ R denotes the asymptotic entropy growth rate of the Markov chain. The
entropy growth rate is given by the formula [11]

h = −
d∑

i=1

πi

d∑

j=1

Mi,j log Mi,j , (6)

where we use the stationary distribution π = (πi ≥ 0)d
i=1 defined as the eigenvector of the

Markov matrix corresponding to the unit eigenvalue,

πTM = πT,
d∑

i=1

πi = 1. (7)

In the following we discuss the distribution Pπ(x) of elements πi corresponding to a
stationary distribution π of a random Markov matrix M = [Mi,j ]

d
i,j=1. In particular

we are interested in the asymptotic limit as d → ∞, where the matrix elements Mi,j

are approximately independent variables with an exponential distribution Pm(Mi,j) =
d exp(−d Mi,j). Further we assume that pi and Mi,j have no correlations. On doing this
the eigenvalue equation (7) written in components πi =

∑
j πjMj,i can be translated into

an asymptotic self-consistent condition for the distribution Pπ(x) reading

Pπ(x) ∼ PπM ∗ · · · ∗ PπM︸ ︷︷ ︸
d

(x) as d → ∞, (8)

with the distribution PπM(x) of the products pjMj,i depending again on distribution Pπ(x)
and written as

PπM(x) = d

∫

R+

db

b
exp

(
−d

x

b

)
Pπ(b),

where ∗ denotes the convolution. Assuming that the first three central moments of the
distribution PπM(x) are finite, we can use the CLT and state that the distribution Pπ(x)
converges to a Gaussian distribution as d → ∞. By inserting the ansatz

Pπ(x) =
1√
2πσ2

π

exp

(
−(x − π)2

2σ2
π

)
, π =

1

d
,

into equation (8) and imposing the asymptotic equality (8) we obtain the variance
σ2

π ∼ d−3 of the elements πi. On appropriately rescaling the coefficients πi, their
cumulative distribution is independent of dimension d in the limit d → ∞ and reads

Prob

(
dπi − 1√

2
<

x√
d

)
∼ G(x) =

1

2

(
erf

(
x√
2

)
+ 1

)
. (9)

This result is compared in figure 1 with numerically obtained distributions of rescaled
coefficients πi for different large dimensions d and we find a very good agreement. We
continue the analysis of the entropy growth rate h (6) of an typical random Markov matrix
from the ensemble by decomposing it into an average term have and an oscillating term
hosc reading

h = have + hosc, have =
1

d

d∑

i=1

Ui, hosc =

d∑

i=1

(
πi −

1

d

)
(Ui − have),
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(a) (b)

Figure 1. The cumulative distribution of the rescaled coefficients πi

corresponding to a stationary distribution π = (πi)di=1 (a) and its deviation from
the expected limiting form G(x) (9) (b) calculated for individual random Markov
matrices of different dimensions d taken from the ensemble.

where we introduce auxiliary variables

Ui = −
d∑

j=1

Mi,j log Mi,j .

In the asymptotic limit d → ∞ the variables Ui have, according to the CLT, a Gaussian
distribution with the first two central moments reading

〈Ui〉 ∼ log(eγ−1d),

σ2
U ∼

[
1 + (γ − 4)γ + π2/3 + (2γ − 4 + log d) log d

] 1

d
= O(d−1),

with γ being the Euler constant. The average 〈·〉 in the expressions above is taken w.r.t. the
asymptotic distribution Pasym(M) (5). It is easy to see that the average term converges
with increasing d to 〈Ui〉 as

have = 〈Ui〉 + O(d−1/2),

where the last term on the rhs denotes the statistical deviation. The oscillating term
hosc can be treated as a scalar product of vectors (πi − 1/d)d

i=1 and (Ui − hosc)
d
i=1 and by

applying the Schwarz–Cauchy inequality it be bounded from above:

h2
osc ≤

d∑

i=1

(
πi −

1

d

)2

(Ui − have)
2 = O(d−2).

The last term on the rhs denotes again the statistical deviation obtained by taking into
account the statistical deviations 〈(πi − 1/d)2〉 = O(d−3) and 〈(Ui − have)

2〉 = O(d−1).
We conclude from this analysis that h behaves over the ensemble, in the leading order
in d, approximately as the Gaussian variable have or Ui. This is supported by the
numerical results in figure 2(a), where we show that the cumulative distribution of
(h − 〈h〉)/σh converges to the cumulative normal distribution G(x) (9). By averaging h
over the ensemble, the fluctuations from 〈Ui〉 are eliminated and we obtain the asymptotic
equivalence

〈h〉 ∼ log(eγ−1d) as d → ∞.
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(a)

(b) (c)

Figure 2. The cumulative distribution of the entropy growth rate h of random
Markov matrices for different dimensions d (a), and the average entropy growth
rate 〈h〉 (b) and its standard deviation σh (c) as a function of dimension d
calculated using N = 106 random Markov matrices from the ensemble.

The latter agrees very well with the numerically obtained 〈h〉 as we can see in figure 2(b).
This result supports the rule of thumb saying that in order to describe a dynamical system
with an entropy rate h accurately via a Markov process we need to have a Markov matrix
of the size d ∼ eh. The standard deviation σh scales as O(d−1), as seen in figure 2(c),

and this agrees with the expected statistical deviation of the form
√

(σ2
U + h2

osc)/d in our
asymptotic approximation.

4. The correlation decay induced by random Markov matrices

A state of a Markov chain defined using a Markov matrix M = [Mi,j ]
d
i,j=1 ∈ R

d×d
+ is

described by a probability distribution

p = (pi)
d
i=1 ∈ R

d
+,

d∑

i=1

pi = 1,

over a given set of states {si}d
i=1. Some initial probability distribution p ∈ R

d
+ is evolved

in time to p(t) by the Markov matrix in the following way:

p(t)T = pTM t,

where t ∈ N0 denotes the discrete time. We find that a Markov chain generated by a
typical random Markov matrix M is mixing and consequently ergodic [1]. We assume
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(a) (b)

Figure 3. The spectrum of a random Markov matrix of dimension d = 104 (a)
without the eigenvalue 1, which corresponds to the stationary distribution, and
the second-largest eigenvalues ν ∈ C (b) of approximately N = 106 random
Markov matrices calculated for different dimensions d.

that the measure of Markov matrices in the ensemble corresponding to a non-mixing
Markov chain is zero.

The discrete analogue of the time correlation function Cf,g(t) between two real
observables f = (fi ∈ R)d

i=1 and g = (gi ∈ R)d
i=1 is defined as

Cf,g(t) = 〈fi, (g(t))i〉i − 〈fi〉i〈gi〉i,

where we introduce a time propagated observable g(t)T = gTM t and averaging over the
stationary distribution 〈ui〉i =

∑
i πiui. The second-largest eigenvalue (called also the sub-

dominant eigenvalue) of the Markov matrix ν ∈ C determines the decay of correlation
between almost all pairs of observables (f, g) following the formula

|Cf,g(t)| = O(|ν|t) = O(e−t/τc) as t → ∞,

with τc = − log |ν| called the correlation decay time. It is important to notice that the
spectrum Λ = {λ: det(M − λid.) = 0} of a Markov matrix M has the symmetry

Λ∗ = Λ,

where (·)∗ represents the complex conjugation. The symmetry can be noticed in figure 3,
where we show a spectrum of a typical random Markov matrix in the complex plane. In
the limit of large dimensions d � 1 the eigenvalues are distributed symmetrically around
the origin with the constant distribution of the square absolute value of the form

Prob(x ≤ ‖λ‖2 < x + dx) ≈ O(d−1/2) dx.

This feature is along the lines of Girko’s circular law [12] and its generalizations [13], but
this particular case is not yet proved to the best of our knowledge. Here we are mainly
interested in the second-largest eigenvalues ν ∈ C of the random Markov matrices. These
are depicted for N = 106 matrices sampled uniformly across the ensemble in figure 3(b)
for several different dimensions d. For large d the values of ν are distributed radially
symmetrically around the origin with the average radius and dispersion decreasing with
increasing d. Further we examine the distribution of the magnitudes of the second-largest
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(a)

(b) (c)

Figure 4. The cumulative distribution of the magnitude of the second-largest
eigenvalue |ν| of random Markov matrices at different dimensions d (a) and the
average 〈|ν|〉 (b) and the standard deviation of the amplitude σ|ν| (b) as a function
of the dimension d calculated from approximately 106 and 103 random Markov
matrices from the ensemble for d < 512 and d ≥ 512, respectively.

eigenvalue |ν| denoted by P|ν| and its first two central moments: average magnitude 〈|ν|〉
and standard deviation σ|ν|. The cumulative distribution of the rescaled magnitude

ξ =
|ν| − 〈ν〉

σ|ν|

is depicted in figure 4(a). From the figure we conclude that the distribution of ξ is basically
independent of dimension d for large d and we find that it agrees well with the extreme
value statistics of type 1 (Gumbel) [14]. Let us assume xi are i.i.d. standard Gaussian
variables. Then the maximal value of d variables y = max{xi}d

i=1 is distributed according
to the cumulative distribution

Pmax(y, d) = [G(y)]d,

where we use the cumulative Gaussian distribution G(y) (9). It is known that under simple
linear transformation of the variable y, which depends on d, the distribution of transformed
y converges in the limit d → ∞ to the Gumbel or double-exponential distribution. To
avoid certain problems of slow convergence towards the limiting distribution outlined
in [15] we compare in figure 4(a) the numerically obtained distribution directly with
Pmax((y − y)/σy, d) for several large enough d, where y and σy are the average maximal
value and its standard deviation, respectively. We find a very good agreement, suggesting

doi:10.1088/1742-5468/2009/07/P07005 10
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that the eigenvalues of the Markov matrix behave as i.i.d. random complex variables
inside some disc in the complex plane with the radius O(d−1/2). The first two central
moments of numerical results as a function of d are shown in figures 4(b) and (c). The
average magnitude of the second-largest eigenvalue 〈|ν|〉 fits very well to the asymptotic
formula found empirically:

〈|ν|〉 ∼ C0 d−1/2, d → ∞, (10)

where C0 ≈ 1. This result supports the conjecture that Girko’s circular law is valid for
the random Markov matrices stated in [6] and it can be better understood through the
asymptotics of the upper bound for |ν| obtained in the following. By taking into account
that all left-hand eigenvectors except the stationary distribution π are perpendicular to
the vector 1, we can upper bound the second-largest eigenvalue |ν| as

|ν|2 ≤ lim sup
x∈S

‖x†M‖2
2, S = {x ∈ C

d: ‖x‖2 = 1 ∧ x ⊥ 1}.

Here we write the expression ‖x†M‖2
2 = x†Nx using the matrix N = MMT. In the

asymptotic limit the matrix N takes the form

Ni,j =
d∑

k=1

Mi,kMj,k ∼ 1

d
δi,j + 1T1 + O(d−2),

where the last term denotes the statistical error of the expression. From here we
immediately obtain the asymptotic expression for the upper bound:

lim sup
x∈S

‖Mx‖2
2 ∼ d−1/2.

This means that the second-largest eigenvalue in a typical random Markov matrix is
bounded from below by d−1/2 in the limit d → ∞. This is true also in the averaging
over the ensemble yielding the relation 〈ν〉 ≤ d−1/2 and setting the value of the constant
C0 = 1. The asymptotic behaviour of the standard deviation σ|ν| is not as clear as in the
case of the average value 〈|ν|〉. The numerical results suggest the power law decay

σ|ν| ∼ C1 d−α, α ≈ 1.1.

For the Markov approximations of dynamical systems with the mixing property [16], as
described in the introduction, it is interesting to know about the correlation decay time
τc and entropy growth rate h and their dependence on the cardinality of the state space.
In the random Markov matrices from the ensemble we find that the average correlation
decay time t := −1/ log〈|ν|〉 and average entropy growth rate 〈h〉 obey the asymptotics

〈h〉τ c ∼ 1
2

as d → ∞.

In dynamical systems there are strong indications that the correlation decay time and the
entropy growth rate, given as the sum of positive Lyapunov exponents, are correlated,
but this connection is not well understood, yet; see e.g. [17, 18]. We address this question
for the random Markov matrices and calculate pairs (|ν|, h) corresponding to the Markov
matrices sampled uniformly over the ensemble. The result is graphically depicted in
figure 5, where one can note that in particular at small dimensions d there is clearly some
correlation between the amplitude of the second-largest eigenvalue |ν| and the entropy
growth rate h of random Markov matrices.
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Figure 5. The amplitude of the second-largest eigenvalue |ν| and corresponding
entropy h calculated for some number of random Markov matrices sampled
uniformly with respect to the measure dP (M) (1) at different dimensions d.
For details on the statistics see the caption of figure 4.

Figure 6. The normalized correlation Corr(d)/Corr(0) between the reciprocal
correlation time τ−1

c = − log |ν| and the entropy growth rate h in the ensemble
of random Markov matrices as a function of dimension d. For details on the
statistics see the caption of figure 4.

The latter is tested by calculating the statistical correlation between the reciprocal
correlation decay time τ−1

c = − log |ν| and the entropy growth rate h over the ensemble
of random Markov matrices and is given by

Corr(d) =
〈(τ−1

c − 〈τ−1
c 〉) (h − 〈h〉)〉√

〈(τ−1
c − 〈τ−1

c 〉)2〉〈(h − 〈h〉)2〉
.
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The correlation Corr(d) as a function of dimension d is presented in figure 6 and we see
that it slowly decreases with increasing d. Currently it is not possible to determine the
dependence of the correlation Corr(d) on dimension more precisely.

5. Conclusions

We define the ensemble of random Markov matrices, present its basic properties and point
out a few of the potential physical, technical and mathematical applications. We analyse
the statistical properties of the stationary distribution π = (πi)

d
i=1 corresponding to a

typical element of the ensemble, and study the distribution of the entropy growth rate h
over the ensemble, where we find a good agreement with analytical predictions stating that
πi is a Gaussian variable and h is asymptotically equal to log(eγ−1d) in the limit of large
dimensions d → ∞. Further we analyse the second-largest eigenvalue ν of the Markov
matrices, which is connected to the correlation decay in the Markov chains. We show
numerically and provide a heuristic proof that on average, over the ensemble, the second-
largest eigenvalue decreases with increasing dimension d as |ν| ∼ d−1/2. Additionally we
calculate the correlation between the correlation decay rate and the entropy growth rate
and find that it decreases with increasing dimension of the Markov matrices.

We believe that the current results enrich the understanding of Markov processes in
the limit of large state spaces and all applications which can be described by Markov
processes.
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