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Abstract

A continuous family of quasilocal exact conservation laws is constructed in the anisotropic Heisen-
berg (XXZ) spin-1/2 chain for periodic (or twisted) boundary conditions and for a set of commensurate 
anisotropies densely covering the entire easy plane interaction regime. All local conserved operators follow 
from the standard (Hermitian) transfer operator in fundamental representation (with auxiliary spin s = 1/2), 
and are all even with respect to a spin flip operation. However, the quasilocal family is generated by dif-
ferentiation of a non-Hermitian highest weight transfer operator with respect to a complex auxiliary spin 
representation parameter s and includes also operators of odd parity. For a finite chain with open boundaries 
the time derivatives of quasilocal operators are not strictly vanishing but result in operators localized near 
the boundaries of the chain. We show that a simple modification of the non-Hermitian transfer operator 
results in exactly conserved, but still quasilocal operators for periodic or generally twisted boundary condi-
tions. As an application, we demonstrate that implementing the new exactly conserved operator family for 
estimating the high-temperature spin Drude weight results, in the thermodynamic limit, in exactly the same 
lower bound as for almost conserved family and open boundaries. Under the assumption that the bound is 
saturating (suggested by agreement with previous thermodynamic Bethe ansatz calculations) we propose a 
simple explicit construction of infinite time averages of local operators such as the spin current.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The anisotropic Heisenberg spin-1/2 chain, or the so-called XXZ model, is probably the best 
studied quantum many body model with strong interactions. This is mainly due to the fact that, 
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on one hand, it provides a paradigmatic example of a completely integrable system for which 
computation of the complete energy spectrum and the corresponding eigenstates can be reduced 
to solving a system of coupled algebraic equations, the so-called Bethe equations, while on the 
other hand, it can be used to describe the physics of magnetism in quasi-one-dimensional solids, 
the so-called spin chain materials [1]. Many simple (say local) physical observables, as well as 
correlation functions, at temperature zero or at thermal equilibrium are thus amenable to explicit 
evaluation [2–4]. Nevertheless, time-dependent phenomena and temporal-correlation functions, 
or other observables characterizing model’s nonequilibrium or transport properties [5] remain 
much harder to evaluate analytically [6] or even approximately, often involving unverifiable as-
sumptions. A prime example of this kind has been the problem of spin Drude weight at finite 
temperatures [7–16] which raised controversies over several decades since various approximate 
or numerical approaches were yielding conflicting results. This issue has only recently been re-
solved [17,18] by proposing new quasilocal (almost) conserved quantities which lie outside the 
scope of the traditional algebraic Bethe ansatz method. However, these new quantities, which de-
rived from exact steady state solutions of boundary driven quantum master equations for the open 
chain [17,19–24], are not exactly conserved, but their time derivative amounts to terms localized 
at the chain boundaries. These steady states in turn can be related [18] to infinitely-dimensional
solutions of the Yang–Baxter equation (or highest weight representations of the quantum group 
Uq(sl2) at complex value of spin representation parameter). The application of such almost con-
served quasilocal operators to rigorous estimation of Drude weights is associated with nontrivial 
mathematical issues [25] at finite (non-infinite) temperatures.

It is therefore highly desirable to clarify a possible existence of analogous quasilocal objects 
for periodic boundary conditions which would exactly commute with the Hamiltonian. This is 
what we achieve in the present work: by generalizing and slightly modifying the approach of 
Ref. [18] we explicitly construct holomorphic families of exactly conserved quasilocal operators 
for periodic as well as generally twisted boundary conditions. Half of these new operators are odd 
with respect to spin flip symmetry and these remain orthogonal to all local conserved operators 
of algebraic Bethe ansatz. This paper also provides a fully rigorous background which justifies 
some details of a calculation reported in Ref. [18].

In the rest of this section we shall define the model with different boundary conditions treated 
in this work. In Section 2 we define transfer operators of the XXZ model with respect to arbitrary 
complex spin representation of the quantum symmetry group and relate its s-derivative to the 
solution of the corresponding boundary driven Lindblad equation for the open chain. In Section 3
we then discuss algebraic properties of such objects together with precise definition of quasi-
and pseudo-locality of extensive spin chain operators. In Section 4 the main technical trick of the 
paper is presented which allows the aforementioned construction to extend to periodic boundary 
conditions. Quasilocality of the new conservation laws for both types of boundary conditions 
on the corresponding domain of the spectral parameter is then rigorously proven in Section 5. 
In Section 6 characterization of traditional local conserved operator and new quasilocal ones 
is given in terms of spin flip parity symmetry, which explains why the quasilocal quantities 
are of prime importance for nonequilibrium physics. In Section 7 we then show how periodic 
boundary conditions case straightforwardly generalizes to twisted boundary condition with an 
arbitrary gauging phase. In Section 8 we finally discuss the most direct application of the new 
exactly conserved quantities for periodic boundaries for providing rigorous lower bounds on 
finite temperature dynamical susceptibilities. In particular, we rederive Mazur–Suzuki’s theorem 
[26,27] for the case of a continuous set of conserved operators, formulating the general bound in 
terms of a solution of complex Fredholm integral equation of the first kind. Under the assumption 
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that the bound is saturating, the result gives also an explicit expression for the time-averaged 
physical operator in terms of a quasilocal conserved set. Explicit results for the case of spin 
current and spin Drude weights are given for illustration.

1.1. The XXZ model

We consider a chain of n quantum spins 1/2, described by Pauli matrices σα, α ∈
{x, y, z, ±, 0}, σ± ≡ 1

2 (σ x ± iσ y), σ 0 ≡ 12. Here and below 1d denotes d × d unit matrix. 
Considering a local interaction over a pair of sites of the anisotropic Heisenberg form

h = 2σ+ ⊗ σ− + 2σ− ⊗ σ+ + �σ z ⊗ σ z, (1)

one defines the XXZ Hamiltonian with trivial open boundaries (with no boundary fields) as a 
2n × 2n matrix, or an operator over the physical spin Hilbert space H⊗n

p , where Hp ≡C
2,

Hobc =
n−2∑
x=0

12x ⊗ h ⊗ 12n−x−2 . (2)

Similarly, one may introduce a XXZ Hamiltonian with arbitrary twisted boundary condition by 
introducing a flux (phase) φ ∈ [0, 2π):

Hφ = Hobc + 2eiφσ+ ⊗ 12n−2 ⊗ σ− + 2e−iφσ− ⊗ 12n−2 ⊗ σ+ + �σ z ⊗ 12n−2 ⊗ σ z. (3)

Note that for φ = 0 one obtains the more commonly studied XXZ Hamiltonian with periodic 
boundary conditions Hpbc = H0. Using a unitary (canonical) transformation

Cφ = exp

(
i
φ

n

n−1∑
x=0

x 12x ⊗ σ z

2
⊗ 12n−1−x

)
(4)

the twisted Hamiltonian becomes manifestly periodic, i.e., it can be written in a Zn translationally 
invariant form

H ′
φ = CφHφC

†
φ =

n−1∑
x=0

(
2e−iφ/nσ+

x σ−
x+1 + 2eiφ/nσ−

x σ+
x+1 + �σ z

xσ z
x+1

)
, (5)

if local spin variables are written as

σα
x = 12x ⊗ σα ⊗ 12n−x−1 (6)

and x + 1 is taken mod n. In the following we will only discuss the easy plane regime |�| ≤ 1
where we parametrize the anisotropy as � = cosη, for η ∈ [0, π].

2. Boundary driven chain and the nonequilibrium quantum transfer operator

XXZ chain is intimately connected to the quantum group Uq(sl2) symmetry [28], with q = eiη, 
whose generators S±, Sz satisfy the q-deformed sl2 algebra

[
S+,S−] = sin(2ηSz)

sinη
,

[
Sz,S±] = ±S±. (7)

Here we shall facilitate its general (non-unitary) highest weight representation, parametrized 
by a complex parameter s ∈ C (the so-called complex spin). Given the highest-weight-state 
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|0〉 such that S+
s |0〉 = 0, explicit representation (unique up to unitary transformations), over in-

finitely-dimensional Hilbert space spanned by a orthonormal basis {|k〉; k = 0, 1, 2, . . .} – Verma 
module Vs – reads

Sz
s =

∞∑
k=0

(s − k)|k〉〈k|,

S+
s =

∞∑
k=0

sin(k + 1)η

sinη
|k〉〈k + 1|,

S−
s =

∞∑
k=0

sin(2s − k)η

sinη
|k + 1〉〈k|. (8)

For a dense set of commensurate anisotropies η = πl/m, l, m ∈ Z
+, Vs becomes finite

m-dimensional (truncated linear span of states lsp{|k〉; k ∈ {0, 1, . . . , m −1}} as the states |m −1〉
and |m〉 are not connected by S+

s ). For 2s ∈ Z
+ (and any η), Vs becomes reducible to a well 

known (2s + 1)-dimensional irrep, and only then the representation is unitary. Moreover, only 
then the representation is parity symmetric in the sense that, for any η,

US±
s U−1 = S∓

s , USz
sU−1 = −Sz

s , for 2s ∈ Z
+ (9)

where U ∈ End(Vs) is the spin-flip operation

U =
2s∑

k=0

|k〉〈2s − k|. (10)

Quantum group Uq(sl2) defines the universal R-matrix Rs,s′(ϕ) ∈ End(Vs ⊗ Vs′) depending 
on the spectral parameter ϕ, as the solution of the Yang–Baxter equation (YBE) over a generic 
triple [29–31] Vs ⊗ Vs′ ⊗ Vs′′ for arbitrary s, s′, s′′ ∈ C. We consider the Lax operator as the 
R-matrix Rs,1/2 having one leg in the physical spin space carrying the fundamental representa-
tion V1/2 ≡ Hp = C

2 and the other one in the auxiliary space (so-called anzilla) Vs ≡ Ha, i.e., a 
2 × 2 matrix with entries1 in End(Vs)

L(ϕ, s) =
(

sin(ϕ + ηSz
s) (sinη)S−

s

(sinη)S+
s sin(ϕ − ηSz

s)

)
=

∑
α∈J

Lα(ϕ, s) ⊗ σα, (11)

where J = {+, −, 0, z} and

L0(ϕ, s) = sinϕ cos
(
ηSz

s

)
,

Lz(ϕ, s) = cosϕ sin
(
ηSz

s

)
,

L±(ϕ, s) = (sinη)S∓
s . (12)

Then, the YBE over Vs ⊗ Vs′ ⊗ V1/2 together with the fact that 〈0| ⊗ 〈0| (|0〉 ⊗ |0〉) is a left 
(right) eigenvector of the R-matrix over Vs ⊗Vs′ guarantees commutativity of the highest-weight 
non-Hermitian transfer operator (HNTO)2 Wn(ϕ, s) ∈ End(H⊗n

p ) [32]

1 In our notation we use bold-upright letters to denote operators which are not scalars in auxiliary space.
2 In order to avoid excessive use of indices and at the same time keep notation unambiguous we make the following 

convention: For algebraic objects which are defined as operators over tensor products over two or more different spaces 
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Wn(ϕ, s) = 〈0|L(ϕ, s)⊗pn|0〉. (13)

Namely, for any pair of spectral parameters ϕ, ϕ′ ∈ C and representation parameters s, s′ ∈ C, 
we have[

Wn(ϕ, s),Wn

(
ϕ′, s′)] = 0. (14)

The highest weight nature of the representation (8) immediately implies that the matrix Wn(ϕ, s)
is lower triangular. We note that the expression (13) generates a matrix product operator (MPO) 
representation of HNTO

Wn(ϕ, s) =
∑

α1...αn∈J
〈0|Lα1 Lα2 · · ·Lαn |0〉σα1 ⊗ σα2 · · · ⊗ σαn. (15)

On the other hand, considering YBE over V1/2 ⊗ V1/2 ⊗ Vs and the fact that Hamiltonian
density can be generated as ∂ϕR1/2,1/2(ϕ)|ϕ=0 ∝ h (see e.g. [2]), one obtains a fundamental 
divergence relation for local two-site commutators [33,3]

[h,L ⊗p L] = 2 sinη (L ⊗p Lϕ − Lϕ ⊗p L), (16)

where L ≡ L(ϕ, s), Lϕ ≡ ∂ϕL(ϕ, s) = cosϕ cos(ηSz
s) ⊗ σ 0 − sinϕ sin(ηSz

s) ⊗ σ z. Left-tensor-
multiplying Eq. (16) by 〈0|L⊗p(x−1), right-tensor multiplying it by L⊗p(n−x)|0〉, and summing 
over x ∈ {1, . . . , n}, we obtain a useful identity[

Hobc,Wn(ϕ, s)
] = −τ ⊗ Wn−1(ϕ, s) + Wn−1(ϕ, s) ⊗ τ, (17)

where τ is a diagonal 2 × 2 matrix

τ = 2 sinη
[
(cosϕ cosηs)σ 0 − (sinϕ sinηs)σ z]. (18)

It has been shown in Ref. [19] that if 2n × 2n upper triangular matrix Sn with unit diagonal 
elements satisfies the defining relation

[Hobc, Sn] = −iε
(
σ z ⊗ Sn−1 − Sn−1 ⊗ σ z) (19)

then

ρ∞ = SnS
†
n

tr(SnS
†
n)

(20)

is the (unique) nonequilibrium steady state density operator of the maximally boundary driven 
Lindblad dynamics

d

dt
ρt = −i[Hobc, ρt ] + ε

2∑
j=1

(
2AjρtA

†
j − {

A
†
jAj , ρt

})
(21)

with a pair of ultra-local incoherent boundary-jump processes A1 = σ+ ⊗ 12n−1 , A2 =
12n−1 ⊗σ−, with the rates ε. Comparing the relations (17) and (19) one may identify HNTO with 
the fixed point of Lindblad dynamics in exactly two non-equivalent cases: (i) For ϕ = 0 one finds

Hv ⊗ Hother, say v ∈ {p, a}, the symbol ⊗v will denote a partial tensor product with respect to a space Hv , making 
the resulting object acting over Hv ⊗ Hv ⊗ Hother, and the usual operator (matrix) product with respect to all other 
spaces. Concretely, writing A = ∑

μ aμXμ and B = ∑
bμYμ, where aμ, bμ ∈ End(Hν), Xμ, Yμ ∈ End(Hother), one 

has A ⊗ν B = ∑
μ,μ′ (aμ ⊗ bμ′ )XμYμ′ .
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Sn = WT
n (0, s)

(σ z)⊗n

(sinηs)n
for cotηs = − iε

2 sinη
, (22)

while (ii) for ϕ = π/2 one finds

Sn = WT
n

(
π

2
, s

)
1

(cosηs)n
for tanηs = iε

2 sinη
. (23)

In both cases, the steady state solution of boundary-driven nonequilibrium problem (21) requires 
imaginary spin s ∈ iR representation which is therefore always nonunitary. Since with fixed di-
agonal of Sn the Cholesky decomposition SnS

†
n is unique, one thereby also obtains an interesting 

symmetry relation for HNTO

Wn

(
π

2
, s

)
= (−σ z)⊗n

Wn

(
0, s + π

2η

)
. (24)

Another remarkable property of HNTO is the spin-inversion identity

Wn(ϕ, s)Wn(ϕ,−s) = (
sin(ϕ + ηs) sin(ϕ − ηs)

)n12n , (25)

which can be proved straightforwardly by writing the LHS as an iterative map over Ha ⊗ Ha, 
sandwiched between 〈0| ⊗ 〈0| and |0〉 ⊗ |0〉, and showing that all matrix elements in physical 
space H⊗n

p should vanish except for trivial diagonal ones.

3. Quasilocal almost conserved operator family for open boundaries

HNTO (13) is neither a local operator, nor it is conserved in time as its time derivative (17) is a 
non-local object. Yet, it can be used to generate a very interesting family of operators in terms of 
differentiation with respect to the spin representation parameter s around the scalar point s = 0

Zn(ϕ) = 1

2(sinϕ)n−2η sinη
∂sWn(ϕ, s)

∣∣
s=0 − sinϕ cosϕ

2 sinη
Mz

n, (26)

where Mz
n = ∑n−1

x=0 12x ⊗ σ z ⊗ 12n−1−x is the conserved component of magnetization. The 
s-derivative can be implemented as an MPO in terms of an additional ‘derivative anzilla’ qubit 
Hb =C

2,

Zn(ϕ) = sin2 ϕ

2η sinη
〈0|a〈0|bL̃(ϕ)⊗pn|0〉a|1〉b − sinϕ cosϕ

2 sinη
Mz

n, (27)

defining an extended Lax operator L̃(ϕ) ∈ End(Ha ⊗Hb ⊗Hp)

L̃(ϕ) = 1

sinϕ

(
L(ϕ,0) ∂sL(ϕ, s)|s=0

0 L(ϕ,0)

)
= L0(ϕ)1b + L1(ϕ)σ+

b , (28)

where

L0(ϕ) := (cscϕ)L(ϕ,0), L1(ϕ) := (cscϕ)∂sL(ϕ, s)|s=0. (29)

We shall refer to the operator family Zn(ϕ) as the modified highest-weight non-Hermitian 
transfer operators (mHNTO). It can be shown that Zn(ϕ) are quasilocal operators whose time-
derivative is localized at the chain boundaries for a suitable domain ϕ ∈ D ⊂ C. Indeed, differ-
entiating (17) w.r.t. s at s = 0 and using the definition we immediately obtain a very insightful 
relation
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[
Hobc,Zn(ϕ)

] = σ z ⊗ 12n−1 − 12n−1 ⊗ σ z

− 2 sinη cotϕ
(
σ 0 ⊗ Zn−1(ϕ) − Zn−1(ϕ) ⊗ σ 0). (30)

Writing the Lax operator components L̃α ∈ End(Ha ⊗ Hb), Lα ∈ End(Ha), via L̃(ϕ) =∑
α∈J L̃α(ϕ) ⊗ σα , L̃α(ϕ) = Lα

0 (ϕ)1b + Lα
1 (ϕ)σ+

b satisfying the following boundary transition 
conditions

〈0|a〈0|bL̃0 = 〈0|a〈0|b, 〈0|a〈0|bL̃+ = 0,

L̃0|0〉a|1〉b = |0〉a|1〉b, L̃−|0〉a|1〉b = 0,

L̃z|0〉a|1〉b = η cotϕ|0〉a|0〉b, L̃z,±|0〉a|0〉b = 0, (31)

one sees that mHNTOs allow for an expression in terms of open boundary translationally invari-
ant sum of local operators

Zn(ϕ) =
n∑

r=2

n−r∑
x=0

12x ⊗ qr(ϕ) ⊗ 12n−r−x , (32)

where qr(ϕ) ∈ End(H⊗r
p ) are local r-point operator densities with MPO representation:

qr(ϕ) = sin2 ϕ

2η sinη

∑
α2...αr−1∈J

〈0|a〈0|bL̃−L̃α2 · · · L̃αr−1L̃+|0〉a|1〉bσ
− ⊗ σα2 · · ·σαr−1 ⊗ σ+,

(33)

while the r = 2 case has to be given separately, q2(ϕ) = σ− ⊗ σ+. Note that r = 1 term is 
exactly cancelled by the magnetization term subtracted in the definition (26). Alternatively, since 
L+

0 (ϕ)|0〉 = 0, the s-derivative should always hit the last factor and one may also write more 
explicitly (and usefully)

qr(ϕ)

= sin2 ϕ

2η sinη

∑
α2...αr−1∈J

〈0|L−
0 (ϕ)Lα2

0 (ϕ) · · ·Lαr−1
0 (ϕ)L+

1 (ϕ)|0〉σ− ⊗ σα2 · · ·σαr−1 ⊗ σ+

=
∑

α2...αr−1∈J
〈1|Lα2

0 (ϕ) · · ·Lαr−1
0 (ϕ)|1〉σ− ⊗ σα2 · · ·σαr−1 ⊗ σ+. (34)

Using the local operator sum ansatz (32) one is able to rewrite the RHS of (30) in a form of a 
sum of operators localized at the boundaries[

Hobc,Zn(ϕ)
] = σ z ⊗ 12n−1 − 12n−1 ⊗ σ z

+ 2 sinη cotϕ
n∑

r=2

(
qr(ϕ) ⊗ 12n−r − 12n−r ⊗ qr(ϕ)

)
. (35)

In the rest of this paper we show that there are important parameter regimes for which the op-
erator sequence {qr(ϕ); r = 2, 3, . . . , } is quickly decreasing in a suitable operator norm, so the 
operator family (32) can be considered as quasilocal and almost conserved.
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Definition 1. Quasilocality: An operator sequence Zn ∈ End(H⊗n
p ) which can be written as an 

open boundary translationally invariant sum of local operators qr , like (32), for any n, is called 
quasilocal if there exist positive constants γ, ξ > 0, such that

‖qr‖HS ≤ γ e−ξr , (36)

where, for any matrix a,

‖a‖2
HS := tr(a†a)

tr1
(37)

is a normalized Hilbert–Schmidt norm which satisfies a nice extensivity property

‖a‖HS = ‖a ⊗ 1d‖HS, ∀d, (38)

as well as the normalized Cauchy–Schwartz inequality∣∣∣∣ tr(ab)

tr1

∣∣∣∣ ≤ ‖a‖HS‖b‖HS. (39)

We remark that the Hilbert–Schmidt operator norm is the natural norm for high-temperature 
statistical mechanics as it is linked to an infinite temperature, tracial state ω0(a) = tra/ tr1, 
namely ‖a‖2

HS = ω0(a
†a). Note also that it satisfies a useful inequality in relation to a C∗ oper-

ator norm ‖b‖2 := supω ω(b†b), namely for any pair of bounded operators a, b (say, elements of 
End(H⊗n

p )), ‖ab‖HS ≤ ‖a‖HS‖b‖.
It is important to note also that the definition of quasilocality here differs from the standard 

one in C∗ statistical mechanics [34] which is based on the operator norm.

Definition 2. Pseudolocality [35]: An operator sequence Zn ∈ End(H⊗n
p ) of the form (32) is 

called pseudolocal if there exists a positive constant K > 0, such that

‖Zn‖2
HS ≤ Kn. (40)

Clearly, quasilocality implies pseudolocality as follows straightforwardly from the defini-
tions.3 Pseudolocality is in fact the weakest definition of spatial extensivity of physical ob-
servables and to control it shall be of utmost importance for applications in nonequilibrium 
statistical mechanics, the example of which we shall discuss in Section 8. We will show in 
the following sections that mHNTO Zn(ϕ) for XXZ chain at any commensurate anisotropy 
η = πl/m, l, m ∈ Z

+, and its extensions for periodic and twisted boundary conditions, are 
quasilocal operators in an appropriate domain of ϕ.

4. Quasilocal conserved operator family for periodic boundary conditions

So far, our constructions were meaningful for any value of anisotropy parameter η. From now 
on we shall restrict ourselves to the critical line |�| < 1 (easy plane anisotropy), and in particular, 
to a countable but dense set of commensurate anisotropies

η = πl

m
, coprime l,m ∈ Z

+, m �= 0, l ≤ m. (41)

3 See e.g. end of Section 5 for explicit demonstration.
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Under such condition, as discussed in Section 2, the auxiliary space becomes m-dimensional 
Ha = lsp{|k〉; k = 0, . . . , m − 1} ≡ Vs for any value of complex spin s. Then, one can define 
translationally invariant periodic non-Hermitian transfer operator (PNTO) in terms of a trace 
operation

Vn(ϕ, s) = tra
{
L(ϕ, s)⊗pn

}
. (42)

In analogy to HNTO, YBE in Vs ⊗ Vs′ ⊗ V1/2 and V1/2 ⊗ V1/2 ⊗ Vs , immediately implies com-
mutativity[

Vn(ϕ, s),Vn

(
ϕ′, s′)] = 0,

[
Hpbc,Vn(ϕ, s)

] = 0, ∀s, s′, ϕ,ϕ′. (43)

Similarly, YBE in Vs ⊗ VT
s′ ⊗ V1/2 where VT

s′ is the transposed spin-s′ representation, implies[
Vn(ϕ, s),V T

n

(
ϕ′, s′)] = 0. (44)

Note, however, since the transposed representation exchanges the roles of highest- and lowest-
weight states, similar commutativity does not hold for the HNTOs, i.e., [Wn(ϕ, s), WT

n (ϕ′, s′)]
�= 0. Only in case 2s ∈ Z

+ the PNTO in fact becomes Hermitian4 V T
n (ϕ, s) ≡ Vn(ϕ, s). In fun-

damental representation s = 1/2, Vn(ϕ, 1/2) is the standard transfer operator of algebraic Bethe 
ansatz [2] and generates all the local conserved operators [36] Q

(j)
n , j = 1, 2 . . . , n − 1, such that 

Hpbc ∝ Q
(1)
n :

Q
(j)
n = ∂j

ϕ logVn(ϕ,1/2)
∣∣
ϕ=η/2. (45)

Similarly as in the open boundary case, we define in the next step a family of modified periodic 
non-Hermitian transfer operators (mPNTO) by s-differentiation

Yn(ϕ) = 1

2(sinϕ)n−2η sinη
∂sVn(ϕ, s)

∣∣
s=0 − sinϕ cosϕ

2 sinη
Mz

n

= sin2 ϕ

2η sinη
tra

{〈0|bL̃(ϕ)⊗pn|1〉b
} − sinϕ cosϕ

2 sinη
Mz

n, (46)

which, clearly, again form a commuting and exactly conserved family[
Yn(ϕ),Yn

(
ϕ′)] = 0,

[
Yn(ϕ),Y T

n

(
ϕ′)] = 0,

[
Hpbc, Yn(ϕ)

] = 0, ∀ϕ,ϕ′. (47)

Let us define a periodic-left-shift as a linear map Ŝ : End(H⊗n
p ) → End(H⊗n

p ) which is com-
pletely specified by its action on the Pauli basis

Ŝ
(
σα0 ⊗ σα1 ⊗ · · ·σαn−2 ⊗ σαn−1

) = σα1 ⊗ σα2 ⊗ · · ·σαn−1 ⊗ σα0 . (48)

Clearly, the definitions (42), (46) imply periodic-shift invariance of the PNTOs

ŜVn(ϕ, s) = Vn(ϕ, s), ŜYn(ϕ) = Yn(ϕ). (49)

We shall now prove the following useful result which connects the modified non-Hermitian trans-
fer operators for open and periodic boundary conditions:

4 Strictly, it is Hermitian only for ϕ ∈ R, when it is in fact even a real symmetric matrix in the standard basis where 
(σ±)T = σ∓ .
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Fig. 1. (Color online.) All allowed transitions – indicated by arrows – with the Lax operators (29) [see Eq. (55) for explicit 
transition amplitudes] among auxiliary basis states. The left tower shows the ‘regular’ transitions Lα

0 (components α in 
different colors), while the right tower shows possible ‘single defect’ transitions Lα

1 due to s-differentiation. Note that 
the regular self-transition L0

0 on the ground state |0〉 has an amplitude 1 while all other regular self-transitions (by L0
0 or 

Lz
0) have amplitudes in modulus strictly less than 1 (for ϕ ∈ Dm), which is the intuitive origin of quasilocality (proven 

in Section 5). Each term of the quasilocal operator density qr in the Pauli basis (33) can be associated with an r-step 
recurrent walk |0〉 → |0〉 with exactly one defect, therefore never visiting the state |0〉 in between. Similarly, the terms 
of the remainder operators pn (51) can be identified with recurrent n-step walks starting and ending at the excited state 
|k〉 → |k〉, k > 0, hence they can never visit the ground state in between. This in turn implies exponential smallness (in n) 
of the norms of the remainder terms.

Lemma 1. Using the operator densities (33) we find the following periodic translationally in-
variant expression for mPNTO

Yn(ϕ) =
n∑

r=2

n−1∑
x=0

Ŝx
(
12n−r ⊗ qr(ϕ)

) +
n−1∑
x=0

Ŝx
(
pn(ϕ)

)
, (50)

where the ‘remainder’ operator pn(ϕ) ∈ End(H⊗n
p ) is given as

pn(ϕ) =
m−1∑
k=1

〈k|L0(ϕ)⊗p(n−1) ⊗p L1(ϕ)|k〉. (51)

Proof. The starting point is an obvious expression, following by applying the Leibniz rule to 
definition (46), then split into two terms:

∂sVn(ϕ, s)|s=0

(sinϕ)n
=

n−1∑
x=0

tra
(
L

⊗px

0 ⊗p L1 ⊗p L
⊗p(n−1−x)

0

) =
n−1∑
x=0

Ŝx
(
tra

(
L

⊗p(n−1)

0 ⊗p L1
))

=
n−1∑
x=0

Ŝx
(〈0|L⊗p(n−1)

0 ⊗p L1|0〉) +
m−1∑
k=1

n−1∑
x=0

Ŝx
(〈k|L⊗p(n−1)

0 ⊗p L1|k〉).
Using expressions (34) and (51), the first and the second term clearly correspond to the respective 
terms on the RHS of expression (50). Note the cancellation of the on-site magnetization terms in 
the final expression for the first term of (50). �

See Fig. 1 and the corresponding caption for an intuitive picture.
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Definition 3. The periodic-shift invariant sequence of operator sums Yn written in the form (50)
is quasilocal if there exist positive constants γ, γ ′, ξ > 0,

‖qr‖HS ≤ γ e−ξr , and ‖pn‖HS ≤ γ ′e−ξn. (52)

Again, quasilocality of periodic operator sums implies pseudolocality in the sense of Defini-
tion 2, i.e., ∃K > 0, such that ‖Yn‖2

HS ≤ Kn.
We shall proceed to show in the following section that both operator sequences {qr} and {pn}

are exponentially decreasing in Hilbert–Schmidt norm, i.e., that mPNTO Yn(ϕ) is quasilocal, for 
an appropriate domain of ϕ.

5. Proof of quasilocality

Now we are in position to state and prove the main result of the paper:

Theorem 1. For a dense set of easy-plane anisotropies η = πl/m, for coprime l, m ∈ Z
+, m �= 0, 

l ≤ m, translationally invariant operator sequences Zn(ϕ), for open boundaries as defined in 
(26), and Yn(ϕ), for periodic boundary conditions as defined in (46), are quasilocal, holomorphic 
operator-valued functions on the corresponding open vertical strips Dm = {ϕ; | Reϕ− π

2 | < π
2m

}.

Proof. The key tool of our constructive proof will be a (m −1) × (m −1) transfer matrix defined 
on a reduced auxiliary space H′

a = lsp{|k〉; k = 1, . . . , m − 1}:

T
(
ϕ,ϕ′) =

m−1∑
k=1

(
c2
k + cotϕ cotϕ′s2

k

)|k〉〈k| +
m−2∑
k=1

|sksk+1|
2 sinϕ sinϕ′

(|k〉〈k + 1| + |k + 1〉〈k|),
where ck := cos(πlk/m), sk := sin(πlk/m), (53)

by which one facilitates computation of Hilbert–Schmidt products of local densities

κr

(
ϕ,ϕ′) := 1

2r
tr
(
qT
r (ϕ)qr

(
ϕ′)) = 1

4
〈1|T(

ϕ,ϕ′)r−2|1〉, r ≥ 2. (54)

In order to demonstrate Eq. (54) let us first list explicitly the Lax components (the transition 
operators of Fig. 1)

L0
0 =

m−1∑
k=0

ck|k〉〈k|, L0
1 = η

m−1∑
k=1

sk|k〉〈k|,

Lz
0 = − cotϕ

m−1∑
k=1

sk|k〉〈k|, Lz
1 = η cotϕ

m−1∑
k=0

ck|k〉〈k|,

L+
0 = − cscϕ

m−2∑
k=1

sk|k + 1〉〈k|, L+
1 = 2η cscϕ

m−2∑
k=0

ck|k + 1〉〈k|,

L−
0 = cscϕ

m−2∑
sk+1|k〉〈k + 1|, L−

1 = 0. (55)

k=0
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Then we apply the representation (34) to LHS of (54), together with 〈0|L−
0 = s1 cscϕ〈1|, and 

L+
1 |0〉 = 2η cscϕ|1〉, and write the remaining multiple sum over α2, . . . , αr−1 in the Hilbert–

Schmidt product as a power r − 2 of a matrix over Ha ⊗ Ha, namely 2−r tr(qT
r (ϕ′)qr (ϕ)) =

1
4 〈1| ⊗ 〈1|Tr−2|1〉 ⊗ |1〉 with T = 1

2

∑
α∈J Lα

0 (ϕ) ⊗ Lα
0 (ϕ′)(tr(σα)T σα). Since T preserves the 

subspace of ‘diagonal’ vectors Hd = lsp{|k〉 ⊗|k〉; k = 1, . . . , m −1}, THd ⊆Hd, we identify Hd
with H′

a. More precisely, identification of basis states |k〉 ⊗ |k〉 ↔ |sk||k〉, 〈k| ⊗ 〈k| ↔ |sk|−1〈k|
makes T reading exactly as5 expression (53). We can use the same transfer matrix to write the 
Hilbert–Schmidt product of the remainders (51):

1

2n
tr
(
pT

n (ϕ)pn

(
ϕ′)) = tr

{
T

(
ϕ,ϕ′)n−1V

(
ϕ,ϕ′)}, (56)

where the vertex matrix V is obtained, similarly as before, by projection onto H′
a of the following 

transfer matrix V = 1
2

∑
α∈J Lα

1 (ϕ) ⊗ Lα
1 (ϕ′)(tr(σα)T σα),

V
(
ϕ,ϕ′) =

m−1∑
k=1

η2(s2
k + cotϕ cotϕ′c2

k

)|k〉〈k| +
m−2∑
k=1

2η2c2
k |sk+1|

|sk| sinϕ sinϕ′ |k + 1〉〈k|. (57)

Note that, with definition (56) and explicit representation of transition operators (55), one imme-
diately sees that the state |0〉 is never visited, justifying projection Ha → H′

a in representation 
(56). Then we proceed in the following steps:

(i) The operators qr(ϕ), pn(ϕ) are all holomorphic matrix-valued functions of ϕ(
qr(ϕ)

)† = qT
r (ϕ̄),

(
pn(ϕ)

)† = pT
n (ϕ̄), (58)

which is following from definitions (34), (51) with explicit ϕ-dependences given in (55), 
and consequently,

∥∥qr(ϕ)
∥∥2

HS = 1

4
〈1|T(ϕ̄, ϕ)r−2|1〉, r ≥ 2,∥∥pn(ϕ)

∥∥2
HS = tr

{
T(ϕ̄, ϕ)n−1V(ϕ̄, ϕ)

}
. (59)

(ii) Next we will show that if ϕ ∈Dm then the matrix T ≡ T(ϕ̄, ϕ) is strictly contracting, i.e., its 
eigenvalues τj (ϕ), if properly ordered, satisfy 1 > |τ1| ≥ |τ2| ≥ . . . ≥ |τm−1|. Let us write 
Reϕ = π

2 + u. Defining a positive diagonal matrix

D =
m−1∑
k=1

|sk||k〉〈k|, (60)

and a tridiagonal Toeplitz matrix

A = cos(2u)1 − E, where E = 1

2

m−2∑
k=1

(|k〉〈k + 1| + |k + 1〉〈k|), (61)

we have

1 − T = | sinϕ|−2DAD. (62)

5 The rescaling of basis, preserving bra–ket orthonormality, is needed to make T(ϕ, ϕ′) (conveniently) symmetric.
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All matrix elements of T are real and non-negative so the leading eigenvalue should be 
positive τ1 > 0, and T is contracting if 1 − T > 0. This is equivalent to condition A > 0, or 
equivalently, E < cos(2u)1, which holds if |u| < π

2m
, i.e., ϕ ∈ Dm.

(iii) The matrix T is real and symmetric and can be diagonalized T = O diag{τj }OT , which, 
when applied to (59), yields quasilocality (52), with

ξ(ϕ) = −1

2
log τ1(ϕ) > 0, (63)

and prefactors γ, γ ′ > 0 which in general depend on ϕ as well. �
From Hilbert–Schmidt orthogonality of Pauli matrices and definitions (33), (54) the following 

useful orthogonality identities follow, for x, x′ ∈ Zn and 2 ≤ r, r ′ ≤ n:

1

2n
tr
{
Ŝx

(
12n−r ⊗ qT

r (ϕ)
)
Ŝx′(

12n−r′ ⊗ qr

(
ϕ′))} = δr,r ′δx,x′κr

(
ϕ,ϕ′), (64)

1

2n
tr
{
Ŝx

(
12n−r ⊗ qr(ϕ)

)
Ŝx′(

12n−r′ ⊗ qr

(
ϕ′))} = 0. (65)

These immediately imply pseudolocality of operators Zn(ϕ) (26), and Yn(ϕ) (46) where 
Eqs. (38), (39), (59)) are used to manipulate and finally estimate the effect of the remainder 
pn(ϕ):

∥∥Zn(ϕ)
∥∥2

HS = n

n∑
r=2

(
1 − r − 1

n

)
‖qr‖2

HS ≤ nγ 2
n∑

r=2

e−2ξr < n
γ 2

1 − e−2ξ
, (66)

∥∥Yn(ϕ)
∥∥2

HS = n

n∑
r=2

‖qr‖2
HS + 2 Re

n−1∑
x=0

n∑
r=2

1

2n
tr
{
p†

nŜx(12n−r ⊗ qr)
} + ‖pn‖2

HS

≤ nγ 2
n∑

r=2

e−2ξr + 2nγ ′γ e−ξn

n∑
r=2

e−ξr + γ ′ 2e−2ξn

< n

(
γ 2

1 − e−2ξ
+ 2γ γ ′

1 − e−2ξ
e−ξn

)
+ γ ′ 2e−2ξn. (67)

Clearly, the end expression (67) can be estimated by Kn for a suitable K > 0.

6. Spin flip parity

The XXZ model can be characterized in terms of a particularly important Z2 symmetry, 
namely the spin flip parity. We shall here focus only on periodic boundary conditions even though 
the same discussion applies to open boundaries as well. Defining the parity operator as

P = (
σ x)⊗n = P † = P −1, (68)

one realizes that both, the Hamiltonian Hpbc as well as the whole family of transfer operators 
in fundamental representation Vn(ϕ, 1/2) (as well as in any other finite-dimensional irrep.) and 
consequently, the standard family of local conserved operators Q(j)

n , j = 1, . . . , n − 1, commute 
with it

[Hpbc,P ] = 0,
[
Q

(j)
n ,P

] = 0,
[
Vn(ϕ, s),P

] = 0 for 2s ∈ Z
+. (69)
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The latter directly follows from spin flip symmetry (9) in the auxiliary space for half-integer 
auxiliary spin. On the other hand, some important nonequilibrium physical observables, like the 
spin current operator

Jn = i
n−1∑
x=0

(
σ+

x σ−
x+1 − σ−

x σ+
x+1

)
, (70)

or magnetization, anticommute

JnP = −PJn, Mz
nP = −PMz

n. (71)

As a consequence the expectation value any observable A anticommuting with P , AP = −PA, 
in equilibrium state should vanish since tr(e−βHpbcA) = tr(e−βHpbcP 2A) = − tr(e−βHpbcPAP) =
− tr(P e−βHpbcPA) = − tr(e−βHpbcA). We shall declare an operator A for which AP = PA, or 
AP = −PA, to be of even (ν = 1), or odd (ν = −1) parity, respectively. Clearly, the product 
of an operator of parity ν and an operator of parity ν′ is an operator of parity νν′. Therefore, 
negative parity observables are invisible for the entire standard machinery of (algebraic) Bethe 
ansatz [2].

Let us now show that the non-Hermitian transfer operators behave nontrivially under P . 
Straightforward inspection from the definitions reveals the following PT-like [37] symmetry

PVn(ϕ, s)P = V T
n (π − ϕ, s), PYn(ϕ, s)P = YT

n (π − ϕ), (72)

and similarly with Wn and Zn for open boundaries. Note that the quasilocality domain Dm is 
symmetric under ϕ → π − ϕ. It is therefore useful to decompose the quasilocal conserved oper-
ators into even and odd components, Yn(ϕ) = Y+

n (ϕ) + Y−
n (ϕ),

Y±
n (ϕ) := 1

2

(
Yn(ϕ) ± PYn(ϕ)P

) = 1

2

(
Yn(ϕ) ± YT

n (π − ϕ)
)

(73)

satisfying Y±
n (ϕ)P = ±PY±

n (ϕ). Y−
n (ϕ) is thus expected to play particularly important role in 

nonequilibrium applications (see e.g. Section 8.3, or Ref. [38]).

7. Twisted boundary conditions

Here we describe a simple modification of (quasilocal) non-Hermitian transfer operators 
which enables their exact commutation with the Hamiltonian Hφ (3) with twisted boundary 
condition. The key will the following diagonal gauge matrix exp(iφSz

s) which produces a fixed 
flux-phase upon commutation with spin raising/lowering operators in m-dimensional represen-
tation Vs (following from algebra (7))

exp
(
iφSz

s

)
S±

s exp
(−iφSz

s

) = e±iφS±
s . (74)

As a result, we have U(1) symmetry of the Lax operator over Ha ⊗Hp = Vs ⊗ V1/2

exp
(
iφSz

s

)
L(ϕ, s) exp

(−iφSz
s

) =
(

e−iφ/2 0
0 eiφ/2

)
L(ϕ, s)

(
eiφ/2 0

0 e−iφ/2

)
. (75)

And as a further result of that, and of YBE over Vs ⊗Vs′ ⊗V1/2 and V1/2 ⊗V1/2 ⊗Vs , one finds 
that the following twisted non-Hermitian transfer operator TNTO (see Ref. [39] for a related 
concept in the isotropic XXX model)
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Vn(ϕ, s;φ) = tra
{
L(ϕ, s)⊗pn exp

(−iφSz
s

)}
, (76)

commutes with all the members of its family as well as with the Hamiltonian Hφ[
Vn(ϕ, s;φ),Vn

(
ϕ′, s′;φ)] = 0,

[
Hφ,Vn(ϕ, s;φ)

] = 0, ∀s, s′, ϕ,ϕ′. (77)

Similarly as in purely periodic case we define the modified twisted non-Hermitian transfer oper-
ators (mTNTO)

Yn(ϕ;φ) = 1

2(sinϕ)n−2η sinη
(∂s + iφ)Vn(ϕ, s;φ)

∣∣
s=0 − cosϕ sinϕ

2 sinη
Mz

n (78)

= sin2 ϕ

2η sinη
tra

{〈0|bL̃(ϕ)⊗pnGφ |1〉b
} − cosϕ sinϕ

2 sinη
Mz

n, (79)

where Gφ := exp(−iφSz
0) = diag(1, eiφ, e2iφ, . . . , e(m−1)iφ), acting as a scalar in physical space 

Hp as well as on derivative anzilla Hb. The second term on the RHS of (78) is subtracted in 
order to conveniently compensate for the operator which is obtained when the s-derivative hits 
the gauge matrix exp(−iφSz

s) noting that ∂sSz
s |s=0 = 1, while the last term is still there to com-

pensate for the trivial component in the direction of total magnetization. As all the three terms 
are mutually commuting, we have again[

Yn(ϕ;φ),Yn

(
ϕ′;φ)] = 0, ∀ϕ,ϕ′. (80)

Using canonical transformation (4), (5) one can write Y ′
n(ϕ; φ) = CφYn(ϕ; φ)C

†
φ and use U(1)

symmetry (75) to distribute the gauging phase homogeneously

Y ′
n(ϕ;φ) = sin2 ϕ

2η sinη
tra

{〈0|b
(
L̃(ϕ)Gφ/n

)⊗pn|1〉b
} − cosϕ sinϕ

2 sinη
Mz

n, (81)

so the resulting mTNTO becomes periodic-shift invariant

ŜY ′
n(ϕ;φ) = Y ′

n(ϕ;φ). (82)

This means that Y ′
n can again be written as a periodic-shift invariant sum of local operators (50)

according to lemma 1 with Lα
0,1 replaced by Lα

0,1Gφ/n in the expressions of local densities (34), 
and remainders (51), denoting them as qn(ϕ; φ), and pn(ϕ; φ), respectively. As 〈0|Gφ/n = 〈0|, 
Gφ/n|0〉 = |0〉 all the boundary transition conditions (31), crucial for establishing locality of 
separate terms, remain intact.

Furthermore, also the quasilocality theorem 1 goes through without change in the presence of 
the flux φ. In fact, since(

qr(ϕ,φ)
)† = qT

r (ϕ̄,−φ),
(
pn(ϕ,φ)

)† = pT
n (ϕ̄,−φ), φ ∈R, (83)

one finds that Hilbert–Schmidt products (at fixed φ) do not depend on φ, as they can be facilitated 
with exactly the same transfer matrix (53) as a consequence of invariance of diagonal space Hd
where G−φ ⊗ Gφ acts trivially:

1

2r
tr
(
qT
r (ϕ;−φ)qr

(
ϕ′;φ)) = κr

(
ϕ,ϕ′),∥∥qr(ϕ;φ)

∥∥
HS = ∥∥qr(ϕ)

∥∥
HS,

∥∥pn(ϕ;φ)
∥∥

HS = ∥∥pn(ϕ)
∥∥

HS. (84)

As a further consequence, extensive quasilocal operator norms can only differ by exponentially 
small amount, since the mixed terms 2−n tr{pT

n (ϕ; −φ)Ŝx(12n−r ⊗ qT
r (ϕ′; φ))} will in general 

depend on φ,
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∥∥Yn(ϕ)
∥∥

HS − ∥∥Yn(ϕ;φ)
∥∥

HS =O
(
ne−ξ(ϕ)n

)
. (85)

8. Applications: Drude weight bounds and time-averaged operators

8.1. Inner products of quasilocal conservation laws

Let us define an inner product which turns End(H⊗n
p ) into a Hilbert space, namely (A, B) :=

2−n trA†B . Then, by means of the results of Section 5, one can straightforwardly write the fol-
lowing, complete families of inner products

(
Zn(ϕ̄),Zn

(
ϕ′)) =

n∑
r=2

(n − r + 1)κr

(
ϕ,ϕ′)

= n

∞∑
r=2

κr

(
ϕ,ϕ′) −

∞∑
r=2

(r − 1)κr

(
ϕ,ϕ′) +O

(
ne−ξn

)
= nK

(
ϕ,ϕ′) +O(1), (86)

(
Yn(ϕ̄), Yn

(
ϕ′)) = n

∞∑
r=2

κr

(
ϕ,ϕ′) +O

(
ne−ξn

)
= nK

(
ϕ,ϕ′) +O

(
ne−ξn

)
, (87)

while the inner products with the transposed quasi-local operators either vanish or are exponen-
tially small [see Eqs. (64), (65)](

ZT
n (ϕ̄),Zn

(
ϕ′)) = 0,

(
YT

n (ϕ̄), Yn

(
ϕ′)) =O

(
ne−ξn

)
, (88)

where ξ = min{ξ(ϕ), ξ(ϕ′)} > 0, for ϕ, ϕ′ ∈ Dm. We note that inner products for open and peri-
odic (or equivalently, twisted, see Section 7) boundary cases have the same volume coefficient in 
the thermodynamic limit

K
(
ϕ,ϕ′) =

∞∑
r=2

κr

(
ϕ,ϕ′) = 1

4
〈1|(1 − T

(
ϕ,ϕ′))−1|1〉, (89)

whereas we have a relative ∝ 1/n versus a much smaller ∝ e−ξn finite size correction in the 
respective cases. To see that the geometric series (89), as well as the O(1) correction term in 
(86), converge ∀ϕ, ϕ′ ∈ Dm one may simply use Cauchy–Schwartz inequality (39) to estimate 
each summand∣∣κr

(
ϕ,ϕ′)∣∣ ≤ ∥∥qr(ϕ)

∥∥
HS

∥∥qr

(
ϕ′)∥∥

HS < γ (ϕ)γ
(
ϕ′)e−(ξ(ϕ)+ξ(ϕ′))r . (90)

In order to evaluate LHS of (89) we introduce |ψ〉 ∈H′
a as a solution of a linear equation(

1 − T
(
ϕ,ϕ′))|ψ〉 = |1〉. (91)

Furthermore, we generalize (62) and rewrite the transfer matrix (53) for any pair of spectral 
variables in terms of a convenient decomposition

1 − T
(
ϕ,ϕ′) = −(

cscϕ cscϕ′)D
{
cos

(
ϕ + ϕ′)1 + E

}
D. (92)

Writing the components as
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|ψ〉 =
m−1∑
j=1

|s1|
|sj |ψj |j〉, (93)

Eq. (91) then results in a second order difference equation

ψj+1 + 2 cos
(
ϕ + ϕ′)ψj + ψj−1 = −2 sinϕ sinϕ′

s2
1

δj,1 (94)

with boundary conditions ψ0 = ψm = 0, having an explicit solution, for j ≥ 1:

ψj = 2(−1)j
sinϕ sinϕ′

s2
1

sin((m − j)(ϕ + ϕ′))
sin(m(ϕ + ϕ′))

. (95)

Noting that 〈1|(1 − T(ϕ, ϕ′))−1|1〉 = ψ1 we finally obtain a compact expression

K
(
ϕ,ϕ′) = − sinϕ sinϕ′

2s2
1

sin((m − 1)(ϕ + ϕ′))
sin(m(ϕ + ϕ′))

. (96)

8.2. Mazur–Suzuki bounds for a continuous family of conserved operators

In preceding short papers [17,18] it has been shown how almost conserved quasi-local opera-
tors generate nontrivial lower bounds on the high temperature spin Drude weight. Due to residual 
boundary terms the thermodynamic limit in such a case has to be carefully discussed, in particu-
lar it has to be taken prior to a long time limit. Due to non-quasilocality w.r.t. C∗ operator norm 
of the operators6 Zn(ϕ), the application of Lieb–Robinson bounds [25] seems problematic for 
finite (non-infinite) temperatures.

However, one can avoid any sort of problems of this type (on the rigorous level) by considering 
the XXZ chain with periodic (or twisted) boundary conditions with exactly conserved quasilocal 
operators Yn(ϕ). Let us consider the dynamical susceptibility for an arbitrary observable7 A ∈
End(H⊗n

p ), defined in terms of a time-average as

Dn(A) := 1

2n
ωβ

(
Ā2), Ā := lim

T →∞
1

T

T∫
0

dteiHpbctAe−iHpbct , (97)

where ωβ(·) = tr{·e−βHpbc}/ tr e−βHpbc . Suzuki’s version [27] of the lower bound can be written 
rigorously for any fixed n, and thermodynamic limit n → ∞ (if it exists) can be taken optionally 
at the end. Existence of the limit of time integrals (97) in the definition of time-averaged observ-
able Ā is not in question for any finite n, as it can be evaluated explicitly in the eigenbasis of 
Hpbc.

Let us discuss here how to facilitate a continuous holomorphic family of exactly conserved 
quasilocal observables {Yn(ϕ); ϕ ∈ Dm ⊂ C} for explicit computation of a lower bound of 
D(A) = limn→∞ Dn(A) in the high temperature regime β → 0. Without loss of generality we 
may choose A to have a fixed parity ν, which means we need to consider only the corresponding 
family of conserved operators Yν

n (ϕ) while the others are all orthogonal (A, Y−ν
n (ϕ)) = 0.

6 This has been noted after the publication of Ref. [18].
7 In fact, for our analysis the operator A does not have to be Hermitian.
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We start by considering an arbitrary integrable but not necessarily a holomorphic function 
f : Dm → C which defines an operator

B = Ā −
∫
Dm

d2ϕ f (ϕ)Y ν
n (ϕ) (98)

and write a trivial inequality8

0 ≤ 1

2n
(B,B) = Dn(A) − 1

2n

∫
Dm

d2ϕf (ϕ)
(
A,Y ν

n (ϕ)
) − 1

2n

∫
Dm

d2ϕf (ϕ)
(
Y ν

n (ϕ),A
)

+ 1

2n

∫
Dm

d2ϕ

∫
Dm

d2ϕ′f (ϕ)f
(
ϕ′)(Y ν

n (ϕ),Y ν
n

(
ϕ′)). (99)

We used the conservation property (47), yielding (eiHpbctAe−iHpbct , Y ν
n (ϕ)) = (A, Y ν

n (ϕ)), imply-
ing (Ā, Y ν

n (ϕ)) = (A, Y ν(ϕ)). Let us define the components of A along the conserved operators 
in terms of a holomorphic function

a(ϕ) := lim
n→∞

1

n

(
A,Y ν

n (ϕ)
)
, (100)

assuming the limit n → ∞ exists (this question being trivial if A is a translationally invariant 
sum of local operators). The limit in the last term exists as well, due to asymptotics (87), (88), 
yielding

lim
n→∞

1

2n

(
Y ν

n (ϕ),Y ν
n

(
ϕ′)) = 1

4
K

(
ϕ̄, ϕ′), (101)

accounting for the ϕ → π − ϕ symmetry of the kernel (96). Therefore the limit D(A) =
limn→∞ Dn(A), if it exists, should satisfy the inequality

D(A) ≥ F [f ] :=
∫
Dm

d2ϕ Re
(
a(ϕ)f (ϕ)

) − 1

4

∫
Dm

d2ϕ

∫
Dm

d2ϕ′K
(
ϕ̄, ϕ′)f (ϕ)f

(
ϕ′) (102)

for any f . Optimizing RHS by asking the linear variation of the functional to vanish for any 
small complex variation δf of the function,

δF [f ] = Re
∫

d2ϕδf (ϕ)

{
a(ϕ) − 1

2

∫
d2ϕ′K

(
ϕ̄, ϕ′)f (

ϕ′)} = 0, (103)

where the symmetry of the kernel K(ϕ, ϕ′) = K(ϕ′, ϕ) and the fact that it is holomorphic in 
both variables has been used, results in the complex Fredholm equation of the first kind for the 
unknown function f (noting that Dm =Dm):

1

2

∫
Dm

d2ϕ′K
(
ϕ,ϕ′)f (

ϕ′) = a(ϕ̄). (104)

The solution of the above equation can be plugged back to the estimate (102) to yield the final 
Mazur–Suzuki lower bound

8 The reader should not confuse the operator-time-averaging notation with complex conjugation for non-operator-
valued quantities.



T. Prosen / Nuclear Physics B 886 (2014) 1177–1198 1195
D(A) ≥ 1

2
Re

∫
Dm

d2ϕ a(ϕ)f (ϕ). (105)

8.3. Spin Drude weight

The recipe can be immediately demonstrated on the important example of the high tempera-
ture spin Drude weight Dspin = βDJ , taking a spin current A = Jn (70) and the odd parity set 
{Y−

n (ϕ)}, yielding a constant coefficient a(ϕ) ≡ i/4. One finds, quite remarkably, that the integral 
equation (104) is in this case solved by a simple function

f (ϕ) = −i
ms2

1

π

1

| sinϕ|4 . (106)

Another elementary integral then yields the lower bound [18] DJ ≥ DK/4,

DK = sin2(πl/m)

sin2(π/m)

(
1 − m

2π
sin

(
2π

m

))
. (107)

It is remarkable that the lower bound (107) agrees exactly with the thermodynamic Bethe 
ansatz calculation [9] at the special – isolated – points of anisotropy η = π/m corresponding 
to q-deformation at primitive roots of unity (l = 1). Since Bethe ansatz calculation for other val-
ues of l seems to be highly nontrivial and has not yet been performed, we can only conjecture 
that the bound (107) is in fact saturating the exact value of thermodynamic high temperature spin 
Drude weight.

8.4. Operator time averaging

It is clear that the susceptibility bound derived in subsection 8.2 is saturating if and only if 
(B, B) = 0, i.e., B = 0, meaning that (see Eq. (98)) in such a case we have an explicit expan-
sion of a time-averaged operator in terms of the quasi-local conserved operators Yν

n (ϕ) and the 
solution f (ϕ) of the Fredholm equation (104)

Ā =
∫
Dm

d2ϕf (ϕ)Y ν
n (ϕ). (108)

Since f has been calculated in the thermodynamic limit while time-average is defined for a 
finite n, we expect to have corrections which are, in Hilbert–Schmidt norm, exponentially small 
in n. Note that in case ν = −1 one should subtract the trivial component in the direction of 
magnetization Mz (namely, take such A that (A, Mz) = 0), since it has been subtracted from the 
quasilocal conserved operators as well. Writing

Ā = 1

2

(
Ā′ + νP Ā′P

)
(109)

with Ā′ := ∫
Dm

d2ϕf (ϕ)Yn(ϕ) one can then write an explicit expression for time-averaged oper-
ator in terms of sums of local operators

Ā′ =
n−1∑ n∑

Ŝx(12n−r ⊗ ar) +O
(
e−cn

)
, c > 0, (110)
x=0 r=2
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where ar ∈ End(H⊗r
p ) are densities of time-averaged operator which read

ar =
∫
Dm

d2ϕf (ϕ)qr(ϕ), (111)

and can be expressed in terms of Pauli operators using explicit MPO expression for the densi-
ties qr (34). Defining (spectral) parameter-independent Lax operator components restricted to 
subspace H′

a, Bα ∈ End(H′
a), via

L0
0(ϕ)

∣∣
H′

a
=: B0, Lz

0(ϕ)
∣∣
H′

a
=: Bz cotϕ, L±

0 (ϕ)
∣∣
H′

a
=: B± cscϕ, (112)

where explicit (tridiagonal) matrix representation can be read directly from (55), and noting two 
other facts: (i) components α = + and α = − always come in pairs so the final amplitude in each 
term of qr(ϕ) is an even order monomial in cscϕ, and (ii) csc2 ϕ = 1 + cot2 ϕ, we write

a2 = a
{}
2 σ− ⊗ σ+,

ar =
∑

s2...αr−1∈J
a

α2...αr−1
r σ− ⊗ σα2 ⊗ · · ·σαr−1 ⊗ σ+, r > 2, (113)

where aα2...αr−1
r are coefficients given as

a
{}
2 =

∫
Dm

d2ϕ f (ϕ), (114)

a
α2...αr−1
r = 〈1|Bα2 · · ·Bαr−1 |1〉

∫
Dm

d2ϕ
(
1 + cot2 ϕ

)#+{αi }(cotϕ)#z{αi }. (115)

Here #α{αi} denotes the number of occurrences of index α in the list {αi} ≡ α2 . . . αr−1. With 
some combinatorics the latter integral can be expressed in terms of pure monomials

Ik =
∫
Dm

d2ϕ f (ϕ)(cotϕ)2k, k ∈ Z
+ (116)

while noting that the corresponding integrals with odd monomials vanish due to reflection sym-
metry ϕ → π − ϕ of the domain Dm, i.e., Ik+1/2 ≡ 0,

∫
Dm

d2ϕ
(
1 + cot2 ϕ

)#+{αi }(cotϕ)#z{αi } =
#+{αi }∑
j=0

(
#+{αi}

j

)
I
j+ 1

2 #z{αi }. (117)

8.5. Time-averaged spin current

A straightforward explicit calculation of the time-averaged spin-current (70) (or particle cur-
rent in the related interacting spinless fermion model) J̄ has recently been reported in [38]. In this 
case, the integrals (116) can be explicitly calculated due to simplicity of the function f and the 
fact that under conformal transformation z = cotϕ, the integrals (116) map to simple algebraic 
monomials

Ik = −i
ms2

1

π

∫
′

d2z z2k, (118)
Dm
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whereas 1/| sinϕ|4 = |dz/dϕ|2 from f (ϕ) is just the Jacobian of the conformal mapping9 which 
maps the domain Dm →D′

m to an intersection of two disks of equal radii csc(π/m) and centers at 
± cot(π/m), intersecting under angle π/m at the corners ±i. An exercise in elementary analysis 
then yields simple expressions for the integrals (118)

Ik = i(csc π
m

)2k

(2k + 1)

2k+1∑
j=0

(−1)j
(

2k + 1

j

)(
sinc

(
π(j + 1)

m

)

− sinc

(
π(j − 1)

m

))(
cos

π

m

)2k+1−j

. (119)

This concludes explicit representation of the time-averaged current J̄ in terms of sums of local 
Pauli operators. Coefficient of each local term is efficiently computable in terms of a product of 
matrices (115) and simple combinatorial sums (117), (119), whereas distinct nonvanishing terms 
can be completely enumerated by means of the left tower of Fig. 1.

9. Conclusions

In the present paper we have elaborated on a detailed derivation of quasi-local conservation 
laws for XXZ spin-1/2 chain with periodic, or twisted boundary conditions. Due to their intrin-
sically non-Hermitian character, these objects have access to the sector of observables with odd 
spin flip parity. Consequently, they have been shown to play an important role for understand-
ing spin-transport features of the model. There are several interesting future challenges: (i) To 
extend Drude weight calculations/bounds to finite (non-infinite) temperatures, where analytical 
computation of Kubo–Mori inner product of quasi-local operators should be considerably more 
involved. (ii) Establish, on a rigorous level, if Mazur bound using our set of quasilocal opera-
tors is generally saturating or there could be still a gap, say for incommensurable anisotropies 
in the regime of easy-plane interactions. (iii) Develop analogous concepts (perhaps based on 
non-quasilocal higher spin s-derivatives of PNTOs around s = 0) to systematically access finite 
size corrections to dynamical susceptibility bounds. (iv) To elaborate on such a construction in 
other integrable quantum models with the same trigonometric R-matrix, like e.g. sine-Gordon 
quantum field theory or its integrable discretizations.

10. Note added in proof

A closely related independent work [40], proposing essentially equivalent concepts, appeared 
on the public preprint repository just after the manuscript of the present work.
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