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CLASSICAL THERMALISATION

How does an 1solated classical system thermalise?

Chaotic dynamics makes the system ergodic at long times



CLASSICAL THERMALISATION

How does an 1solated classical system thermalise?

Chaotic dynamics makes the system ergodic at long times

===> Integrable
=={> Integrable with non

linear perturbations

KAM

Not every classical system thermalises:



‘QUANTUM THERMALIZATION’

* Experiments on cold atomic gases have shown that closed quantum
systems have a thermal spectrum

* How can a quantum system thermalise? '1'his violates unitarity of QM (for
close quantum systems)



‘QUANTUM THERMALIZATION’

* Experiments on cold atomic gases have shown that closed quantum
systems have a thermal spectrum

* How can a quantum system thermalise? '1'his violates unitarity of QM (for
close quantum systems)

related to the BH Information Paradox (BH radiation)

* What happens to the BH S-matrix if 1 throw some particles betore

the emission?

; : Polchinsk: ‘15
e Chaos in the BH S-matrix? Lo

s P Chaos might play a role also in the quantum regime

How can we define (and measure) quantum chaos?



Larkin and Ovchinnikov

HOW DO WE MEASURE QUANTUM CHAOS?
C(t,T) = =([W(t, Z), V(0)][W (¢, L), V(0)])

Intrinsically non local: Out-of-time correlator (O'1TOC)

In the semiclassical limit: Wottyesglty s V=
. L 0q(t)
Wi(t), V(0 1hiq(t), p(0)} = th
W (), V(0) (a(0).p0)} = ing)
For systems whose classical limit 1s chaotic
5q(t) = §q(0)e r* (el cdy et

1
This correlation becomes O(1) at t, = —Ilog(1/h)
AL Kitaev

C(t, &) x ePL(t=171/v8)
’ Butterfly velocity



INFORMATION SCRAMBLING IN BH AND
THERMALISATION OF A QOUANTUM SYSTEM

» Information 1s not lost, 1t 1s scrambled! Not accessible to local observables.

* When we talk about thermalized systems, we actually talk about ‘local
thermalization’



INFORMATION SCRAMBLING IN BH AND
THERMALISATION OF A QOUANTUM SYSTEM

» Information 1s not lost, 1t 1s scrambled! Not accessible to local observables.

* When we talk about thermalized systems, we actually talk about ‘local
thermalization’

Unitarity 1s preserved

* How fast does a BH scramble (hide/delocalize) its information?



* Systems with conserved charges on a long time scale are described by hydro,
which 1s dissipative: where 1s unitarity?

* Unitarity provides at least some conserved charges: norm of operators
(emergent hydro)

tr(OT(H)O(t))



* Systems with conserved charges on a long time scale are described by hydro,
which 1s dissipative: where 1s unitarity?

* Unitarity provides at least some conserved charges: norm of operators
(emergent hydro)

tr(OT(H)O(t))

How does dittusive Hydro (dissipative) emerge from unitary evolution

(reversible)?

SR Khemani, Vishwanath
' p)
Scrambling 1s the answer! e



CHAOS AND DIFFUSION

There seem to be an interplay between scrambling and diffusion but

Quantum chaos Diftusion/hydro

Early time dynamics Late time dynamics

How can they be related?



* Hartnoll (2014) proposed that diffusion 1n strongly coupled systems with
no quasiparticles is set by

D = Fv = h Planckian
L BT kBT time

Sachdev, Zaanen




* Hartnoll (2014) proposed that diffusion 1n strongly coupled systems with
no quasiparticles is set by

D = Fv = h Planckian
L BT kBT time

Sachdev, Zaanen

Insights from holography:

e Blake T Iﬂl and v = vg

* Charge diffusion in locally charge neutral QFT

D= Cv?g Blake ’16
AL
& Uz
* Energy dittusion DT ey 1= Blake, Davison and
2z — 2 )\L Sachdev ‘17

Why are they related?



Bound on chaos

Under mild assumptions it can be shown that

haho 27TkBT Maldacena, Shenker
foolins 7 and Stanford ‘15

Is 1t possible to derive a lower/upper bound on diffusion?

1
Q > 4— Kovtun, Son and Starinets ‘05
S T
h
D > V2 ﬁ Hartnoll ‘15
B

Hartman, Hartnoll and Mahajan ‘17

2
Lk VLRTeq Emergent light cone + diffusive transport

D o V2BTeq Lucas ‘17
Many-body quantum chaos + diffusive transport



HOLOGRAPHIC
CORRESPONDENCE

Classical gravity in asympt AdS Strongly coupled Large N
spacetimes Gauge theories

~
~

Maldacena, Witten,

Gubser, Klebanov, ZCFT[J] o eiSZZEShell[¢|¢AdS:J]

Polyakov

Finite temperature BH temperature
Chemical potential Boundary value of A
Global internal symmetries Gauge symmetries = ¢

Linearised gravity dynamics Energy dynamics



CHAOS IN HOLOGRAPHY

* The exponential growth of OTOG is encoded in the shockwave geometry

ds® = A(uv)dudv + V (wv)dzs — A(uv)h(2)(u)du?

Shenker and Stanford
. : 14
Bt 't Hooft, Stetsos
0;0 il h(x) o e {0 Eeﬁ%é(x)
A% X
A A(0)

But (from the dictionary): linearised gravity dynamics 1s energy dynamics



BLACK HOLES
SCRAMBLING FROM

HYDRODYNAMICS

Based on Grozdanov, Schalm and VS ‘17

* We construct a sound solution (spin 0 metric fluctuation)

It encodes all relevant shock dynamics

* This solution 1s encoded 1n the sound channel spectrum, analytically
conttnuedto Imw >0 kiR

* In holography it 1s possible to reconstruct the information about chaos
(OTOCQ) by studying the E-E retarded Green’s function



Grozdanov, Schalm and VS
We construct a sound solution

dr?

f(r)
— | f(r)Hydt® — 2Hadtdr +

ds® = —f(r)dt> + +b(r) (dz® + dy® + dz?)

Hgd’l“z

f(r)

+ Hy (dx2 + dyz)

With

Hl o HS o (C—I—W—I—(ta 2 7a) a C—W—(tv 2 T)) 3
H2 = (C-I-W-I—(ta 2 T) R C—W—(ta 2y T))
AdSs -Schwarzschild

and

— W [t:: 8 fcé?;:)] Fikz

Witz s e ha(r)




Grozdanov, Schalm and VS
* EOMs imply a diffusion relation

1
Crymbe=d) # W+ _7:@]62 . ::ig—TkQ X
708

* Regularity at the horizon implies a constraint

e N R



Grozdanov, Schalm and VS
* EOMs imply a diffusion relation

1
Crymbe=d) # OB o Z@k’Q — :_Zg—TkQ A
7is

* Regularity at the horizon implies a constraint

ksl Rt e

e This sound wave solution 1s a smeared shockwave:

w+51:z')\L, )\LZQT('T,

W
’UB:|k_ —=INSALSL

o(U) - 1/U
Udy A(U) = —A(U) U85 AU) = 2A(U)

e [t works at the linearised level



ISIT ASOUND MODE?

In holography sounds is related to the two lowest quasinormal frequencies

* We need to check 1f these modes are 1n the pole structure of

G?ooToo (W, ]{7)

Numerically the solution 1s Analytically possible 1n the hydro
exact: the full series, not only limit
the first terms!

Blwl<1 Blkl <1

w*t(k) ~ +v.k — i DE? 3 i

Ll




Wf_(k’) el Z Vgn_|_1 ]{72n+1 — 1 Z F2n+2k2n+2

Re al (L 2 ’ k,

RGEN

* Sound modes (relaxation time)

* Penetration depth (relaxation length) Real ¢ Complex

» Shockwave solution  w_{k = iu) = 1AL Imaginary , Imaginary



QUANTUM CHAOS FROM
HYDRO

* The information about chaos 1s recovered from the sound channel spectrum
analytically continued to Imw and ImK



QUANTUM CHAOS FROM
HYDRO

Bounding
speed?

Chaos point
2 sound
modes

* The information about chaos 1s recovered from the sound channel spectrum
analytically continued to Imw and ImK

T'his point 1s special, since 1t has vanishing residue




HYDRO SIGNATURE OF CHAOS:
POLE-SKIPPING PHENOMENON

Res G?ooToo (w — wj_ (Z,u) — ’i)\L, st Z,U) <ill)

Numerically observed in
our case

Discussed 1n Blake, Lee, and Liu ' Exponential growth implies pole

(maximal chaos) skipping



T'his solution describing BH scrambling belongs to the
spectrum of the sound channel

BH scrambling (quantum chaos), Diffusion, late ime and
time and microscopic collective dynamics
dynamics

AL n



T'his solution describing BH scrambling belongs to the
spectrum of the sound channel

BH scrambling (quantum chaos), Diffusion, late ime and
time and microscopic collective dynamics
dynamics
AL 7

Physics should be different between these time scales!



T'his solution describing BH scrambling belongs to the
spectrum of the sound channel

BH scrambling (quantum chaos), Diffusion, late time and
carly time and microscopic collective dynamics
dynamics

AL n

Physics should be different between these time scales!

* Another known example of this relation: diluite gas

V(v (T))

AL Loll)  Wh(T)[ah—2 1N~ m
van Zon,van 02—2
Berjeren, Maxwell

Dellago ‘98 BHs satisty an analogous relation




QUANTUM CHAOS AND
HYDRO IN WEAKLY-
COUPLED FIELD THEORIES

Based 1804.09182 and work 1n
progress with Grozdanov & Schalm

* We present a new way to derive the kinetic equation from QF 1T

* In weakly coupled field theories 1t’s possible to recover the O TOGC from a
retarded Green’s function

* This allows to derive a kinetic theory for (quantum) chaos

e Gross number of collisions



BOLTZMANN EQUATION
FOR TRANSPORT

* [t describes the time evolution of the single-particle distribution function

df (t. 7. 5 e . |
f( C}Zap) i) [(Rgazn(ﬁ7 l) . RZOSS(ﬁ»7 l))f(t, 77, l)
[




BOLTZMANN EQUATION
FOR TRANSPORT

* [t describes the time evolution of the single-particle distribution function

df (t, 7, ain (= 1\ 088 (= T - 73
HEED _ [(oeinid) = Rov (00,7

b p D B [ b
X X
oo 3 [ oo p s

Thermal bath



BOLTZMANN EQUATION
FOR TRANSPORT

* [t describes the time evolution of the single-particle distribution function

df(tc};:,p) i /[)(Rgain(ﬁyl_j 8 RZOSS(ﬁ’Z_j)f(t,F,Z_j
ps 0 ey G ] ”
> >< o >< 7 ><
Thermal bath

* [f we are interested 1n energy observables

den(t1 H’I_ ._g(t’ ) gain loss
= T |¥(‘R (R -L R (L) F 5, (t, £




FROM QFT TO THE KINETIC
EQUATION

* Consider the Wigner transtorm

plz,p) = e PYTr[®(z +y/2)®(z — y/2)



FROM QFT TO THE KINETIC
EQUATION

* Consider the Wigner transtorm

plz,p) = e PYTr[®(z +y/2)®(z — y/2)

* On-shell, it 1s related to the single particle distribution function

on(z, p)
p)(1+n(p))

Pl pli= o



FROM QFT TO THE KINETIC
EQUATION

* Consider the Wigner transtorm

plz,p) = e PYTr[®(z +y/2)®(z — y/2)

* On-shell, it 1s related to the single particle distribution function

on(z, p)
p)(1+n(p))

Pl pli= o

* [t satisties a linearised Boltzmann-like equation

Oep(t, p) + Llp)(t,p) =0



FROM QFT TO THE KINETIC
EQUATION

Oep(t, p) + Llpl(t,p) =0

 The retarded Green’s function

iGY (x,ply, q) = 0(z” — y°)([p(z, p), p(y, D))
= |00 + C(%P‘%Q)]_l :

* The pole structure of the G (z,ply, ¢) has all the information regarding the
kinetic equation!



FROM QFT TO THE KINETIC
EQUATION

Oep(t, p) + Llpl(t,p) =0

 The retarded Green’s function

iGY (x,ply, q) = 0(z” — y°)([p(z, p), p(y, D))
= |00 + C(%P‘?J:Q)]_l :

* The pole structure of the G (z, ply, ¢) has all the information regarding the
kinetic equation!

6(p + q) T'he Boltzmann equation 1s

Similarly to <¢(p)gb(q)> s : relaxational
O s S

Gr




HOW DO WE COMPUTE THIS

CORRELATOR?
Im|t]
* Schwinger-Keldysh (SK) formalism

Dy 1, B 1

e Re[{]

R/

SK Branches 9

P,

. G%p 1s a linear combination of 24 correlation functions

Gaaar Grara Giraq

each satistying a different BSE
B1 Ps

1 Uj 0% U3 a1 U3
S + O
Us Uy U9 U4 U9 U4

B2 PB4



e In the hydrodynamic limit w,k - 0

)y - di R
!

s 5(p0 E2 U
N*— PP -
By, —iw + 21, _Z /l/C(p, b (llk)

GP?(plk) =

Imaginary part ot self-energy

Yafte, Jeon Wang and
95 Heinz ‘03



GPP(plk) =

T 5(29(2) 3 Ef,) _

B a2

iNZ_ /l K(p, )G (U1k) .

* The solution 1s supported on-shell

G (plk) = 6(p8 — E2)G* (plk)




T 5(29(2)_E;2>) _ !

PP b N PP
G (plk) = £ 20 N~ | K. DG (k)|

* The solution 1s supported on-shell
G?* (plk) = d(p5 — Ep)G'’ (plk)

* So the BSE becomes

imIN? i 2rprf(p|k) 25 T K(Ep + EY) + K(E, — E))

—iwG? (plk) =
Lp 1 2By

GII (1K)




T 5(29(2)_E;2>) _ |

[eJe, i N2 JoJe,
G (plk) = £ 20 N~ | K. DG (k)|

* The solution 1s supported on-shell
G?* (plk) = d(p5 — Ep)G'’ (plk)

* So the BSE becomes

—iwG (plk) = i%]:)ﬂ — 2, G/ (plk) — TK(Ep o2 EI)ZEPK(EP =) G k)
Rloss Rgafm
* These terms are exactly the RI?%¢ and RIV"
1 i IN

G (plk) =

—iw — [, (R9*"(p,1) — Rl*s(p, 1)) Ep




HOW IS THIS RELATED TO THE

OTOC?
/I 5(1?0 EQ) s :
GPP (plk) = N°— | K(p,D)GPP(LIk)]|.
(vlk) = 5= T2 iV [ K06 Uk)
* There exist another ansatz to the previous BSE —1( E)

G} orr(plk) = 8(p§ — E3) sinh(Bpo/2) G’/ (p|k)



HOW IS THIS RELATED TO THE
OTOC?

T 5(1?(2) 0 EE)
i ¢ oRk ot B

GERplkl=

iN°— /ZIC(p,l)GPP(l\k) .

* There exist another ansatz to the previous BSE £ Y(E)

Gourr (PIK) = 6(p5 — EZ) sinh(Bpo/2) G'7 (plk)
* This 1s exactly the BSE for the O TOC! Stanford 15
e f i i IN? e I_lSinh(ﬁE]/Q) K(Ep i E|) 1 K(Ep Sh E|) f
(—iw + 2Tp)G" (plk) = Iy  Snh(BE,/2) oE, G" (1|k) .

W=+ O




Computing the Ljapunov exponent Rl

Chowdhury;
Sachte and
Swingle ‘17

(e @

AG(tp) = I+ M(p,G(t|)

Stanford 15

* 'The exponential behaviour 1s determined by the homogeneous part

* The Lyapunov exponents are related to the eigenvalues ot the operator

ALG(tp) = 9, G(tp) = M (p, HG(¢|I)



\ ||
S f(r ) s HORENRIY R°(p,1) f(t,1).
1 g D o [ o
P& T 4
s I [ s p

‘T hermal bath

[ sinh(BE/2)
athTOC(t7 p> T /lsinh(ﬁEp/z)

x [R9*"™(p, 1) + R**5(p,1) — 4Tpd(p — D] foroc(t, 1) -



ing

2>< -
B I

[ sinh(BE/2)
athTOC(t7 p) T /lsinh(ﬁEp/Q)

x [R9*"™(p, 1) + R**5(p,1) — 4Tpd(p — D] foroc(t, 1) -

f><‘

B / i B p F

e
1o |
R
1S

‘T hermal bath

|

[y

o



Moreover

The kernel is mainly supported P = |

U ain loss -
Otforoc(t,P) = R (P, D)+ RZ(p, D) —4lp0 (P — 1) foroo(t,1).

ing

Gross number of collision



FROM THE BSE TO KINETIC EQUATION

* Iransport: negative definite spectrum

L ain loss
Ocf(t,p) = le (Roh). = R p,

f(t,p) CeY¥ A<O0

l1t::]
f

(¢, 1) .

* OTOC: non-negative definite spectrum

e ain loss L
Ot foroc(t:P) = IRQ (P, ) + B(p, 1) =4lpo(p — 1) foroo(t, ).

fO Nt p) ey A XD

Front propagating into Van Saarloos
unstable states (review on front)



Poles (BC?)

Retarded

[

10™4 1073 1072 1071 10°
bm



Stanford B*m Al

OTOC spectrum e

OTOC

POIGS <BG?> 1073 102 /Bm 1071 10°

Retarded

R
l||||||H| ||||||H|||| Ret. spectrum

Moore ‘18

107 107° 10 10~ 10°
bm



ANALOGIES WITH THE CLASSICAL GAS

* Gross-energy exchange

[

U ain loss
Otforoc(t,P) = | R¥¥ N (p, )+ R (p, 1) —40p6(p— 1) foroc(t,1).

* Clock model for hard spheres and hard disks (ad-hoc)

4 ek
Osfr = —fr + fomi +2fi—1 i Vaéleizj;i’fn
(=0 Dellago ‘98

Density of particles with clock value k

Front propagating into an unstable state



Connections with transport

L R e Ve Ty 2 Py G (plw, k)

w,k,—0 w,k,—0 D

* The shear viscosity 1s related to this Green’s function by the Kubo formula

n= lim —ImGp (w, k)



Connections with transport

L R e Ve Ty 2 Py G (plw, k)

w,k,—0 w,k,—0 D

* The shear viscosity 1s related to this Green’s function by the Kubo formula

1 XY TTX
== wl}jnlo Z—(;ImG% V11 y(w, kz)

* The OTOUC corresponds to an analytic continuation of G%p which 1s
odd in Po

PzPy
p

G(ROTO(J) i



WHAT IS THE ROLE OF LARGE N?

The BSE 1s formally equivalent to

d 4 nT2 2
i gtNEL Y F
& vy

Whose solution

1 | PNATt
i priry co e’
T'he scrambling time
1 4
bscr = g4N2L ln(l/g LCO)

There 1s no need for large N



CONCLUSIONS

In holographic theories

* Scrambling 1s related to hydrodynamics: analytical continuation of a sound

pole
Pole-skipping No need for OTOC

In weakly coupled field theories

* The kinetic equation can be derived from QF1 by the analytical structure
of an correlation function

* OTOCGC emerges as a analytical continuation of this correlation function

* 'This allows to derive the kinetic equation for quantum chaos

li=d

U ain loss
thOTOC(t7 p) = I Rg (pv I) ok (pv I) i 4Fp5(p T I) fOTOC(t7 I) :






